Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
100K - 1M
Tags:
emotion-Classitication
License:
metadata
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': sadness
'1': joy
'2': love
'3': anger
'4': fear
'5': surprise
splits:
- name: train
num_bytes: 36355191.79432066
num_examples: 333447
- name: validation
num_bytes: 4544412.60283967
num_examples: 41681
- name: test
num_bytes: 4544412.60283967
num_examples: 41681
download_size: 26751980
dataset_size: 45444017
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-classification
language:
- en
tags:
- emotion-Classitication
pretty_name: Emotion
size_categories:
- 10K<n<100K
Dataset Card for "emotion"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://github.com/dair-ai/emotion_dataset
- Repository: More Information Needed
- Paper: More Information Needed
- Point of Contact: More Information Needed
- Size of downloaded dataset files: 16.13 MB
- Size of the generated dataset: 47.62 MB
- Total amount of disk used: 63.75 MB
Dataset Summary
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
An example looks as follows.
{
"text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
"label": 0
}
Data Fields
The data fields are:
text
: astring
feature.label
: a classification label, with possible values includingsadness
(0),joy
(1),love
(2),anger
(3),fear
(4),surprise
(5).
Data Splits
The dataset has 2 configurations:
- split: with a total of 20_000 examples split into train, validation and split
- unsplit: with a total of 416_809 examples in a single train split
name | train | validation | test |
---|---|---|---|
split | 16000 | 2000 | 2000 |
unsplit | 416809 | n/a | n/a |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
The dataset should be used for educational and research purposes only.
Citation Information
If you use this dataset, please cite:
@inproceedings{saravia-etal-2018-carer,
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
author = "Saravia, Elvis and
Liu, Hsien-Chi Toby and
Huang, Yen-Hao and
Wu, Junlin and
Chen, Yi-Shin",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D18-1404",
doi = "10.18653/v1/D18-1404",
pages = "3687--3697",
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}
Contributions
Thanks to @lhoestq, @thomwolf, @lewtun for adding this dataset.