Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
name
stringlengths
12
16
split
stringclasses
1 value
informal_prefix
stringlengths
50
384
formal_statement
stringlengths
55
344
goal
stringlengths
18
313
header
stringclasses
20 values
nl_statement
stringlengths
43
377
header_no_import
stringclasses
20 values
exercise_1_13a
valid
/-- Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.-/
theorem exercise_1_13a {f : ℂ → ℂ} (Ω : Set ℂ) (a b : Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (hc : ∃ (c : ℝ), ∀ z ∈ Ω, (f z).re = c) : f a = f b:= sorry
f : ℂ → ℂ Ω : Set ℂ a b : ↑Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω hc : ∃ c, ∀ z ∈ Ω, (f z).re = c ⊢ f ↑a = f ↑b
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology open scoped BigOperators Topology
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.
open Complex Filter Function Metric Finset open scoped BigOperators Topology open scoped BigOperators Topology
exercise_1_13c
valid
/-- Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.-/
theorem exercise_1_13c {f : ℂ → ℂ} (Ω : Set ℂ) (a b : Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (hc : ∃ (c : ℝ), ∀ z ∈ Ω, abs (f z) = c) : f a = f b:= sorry
f : ℂ → ℂ Ω : Set ℂ a b : ↑Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω hc : ∃ c, ∀ z ∈ Ω, Complex.abs (f z) = c ⊢ f ↑a = f ↑b
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_1_19b
valid
/-- Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.-/
theorem exercise_1_19b (z : ℂ) (hz : abs z = 1) (s : ℕ → ℂ) (h : s = (λ n => ∑ i in (range n), i * z / i ^ 2)) : ∃ y, Tendsto s atTop (𝓝 y):= sorry
z : ℂ hz : Complex.abs z = 1 s : ℕ → ℂ h : s = fun n => ∑ i ∈ range n, ↑i * z / ↑i ^ 2 ⊢ ∃ y, Tendsto s atTop (𝓝 y)
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_1_26
valid
/-- Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.-/
theorem exercise_1_26 (f F₁ F₂ : ℂ → ℂ) (Ω : Set ℂ) (h1 : IsOpen Ω) (h2 : IsConnected Ω) (hF₁ : DifferentiableOn ℂ F₁ Ω) (hF₂ : DifferentiableOn ℂ F₂ Ω) (hdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x) (hdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x) : ∃ c : ℂ, ∀ x, F₁ x = F₂ x + c:= sorry
f F₁ F₂ : ℂ → ℂ Ω : Set ℂ h1 : IsOpen Ω h2 : IsConnected Ω hF₁ : DifferentiableOn ℂ F₁ Ω hF₂ : DifferentiableOn ℂ F₂ Ω hdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x hdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x ⊢ ∃ c, ∀ (x : ℂ), F₁ x = F₂ x + c
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_2_9
valid
/-- Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.-/
theorem exercise_2_9 {f : ℂ → ℂ} (Ω : Set ℂ) (b : Bornology.IsBounded Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (z : Ω) (hz : f z = z) (h'z : deriv f z = 1) : ∃ (f_lin : ℂ →L[ℂ] ℂ), ∀ x ∈ Ω, f x = f_lin x:= sorry
f : ℂ → ℂ Ω : Set ℂ b : Bornology.IsBounded Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω z : ↑Ω hz : f ↑z = ↑z h'z : deriv f ↑z = 1 ⊢ ∃ f_lin, ∀ x ∈ Ω, f x = f_lin x
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_3_3
valid
/-- Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.-/
theorem exercise_3_3 (a : ℝ) (ha : 0 < a) : Tendsto (λ y => ∫ x in -y..y, Real.cos x / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * (Real.exp (-a) / a))):= sorry
a : ℝ ha : 0 < a ⊢ Tendsto (fun y => ∫ (x : ℝ) in -y..y, x.cos / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * ((-a).exp / a)))
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_3_9
valid
/-- Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.-/
theorem exercise_3_9 : ∫ x in (0 : ℝ)..(1 : ℝ), Real.log (Real.sin (Real.pi * x)) = - Real.log 2:= sorry
⊢ ∫ (x : ℝ) in 0 ..1, (Real.pi * x).sin.log = -Real.log 2
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_3_22
valid
/-- Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.-/
theorem exercise_3_22 (D : Set ℂ) (hD : D = ball 0 1) (f : ℂ → ℂ) (hf : DifferentiableOn ℂ f D) (hfc : ContinuousOn f (closure D)) : ¬ ∀ z ∈ (sphere (0 : ℂ) 1), f z = 1 / z:= sorry
D : Set ℂ hD : D = ball 0 1 f : ℂ → ℂ hf : DifferentiableOn ℂ f D hfc : ContinuousOn f (closure D) ⊢ ¬∀ z ∈ sphere 0 1, f z = 1 / z
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.
open Complex Filter Function Metric Finset open scoped BigOperators Topology
exercise_1_1a
valid
/-- If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.-/
theorem exercise_1_1a (x : ℝ) (y : ℚ) : ( Irrational x ) -> Irrational ( x + y ):= sorry
x : ℝ y : ℚ ⊢ Irrational x → Irrational (x + ↑y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_2
valid
/-- Prove that there is no rational number whose square is $12$.-/
theorem exercise_1_2 : ¬ ∃ (x : ℚ), ( x ^ 2 = 12 ):= sorry
⊢ ¬∃ x, x ^ 2 = 12
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that there is no rational number whose square is $12$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_5
valid
/-- Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.-/
theorem exercise_1_5 (A minus_A : Set ℝ) (hA : A.Nonempty) (hA_bdd_below : BddBelow A) (hminus_A : minus_A = {x | -x ∈ A}) : Inf A = Sup minus_A:= sorry
A minus_A : Set ℝ hA : A.Nonempty hA_bdd_below : BddBelow A hminus_A : minus_A = {x | -x ∈ A} ⊢ Inf ↑A = Sup ↑minus_A
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_11a
valid
/-- If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.-/
theorem exercise_1_11a (z : ℂ) : ∃ (r : ℝ) (w : ℂ), abs w = 1 ∧ z = r * w:= sorry
z : ℂ ⊢ ∃ r w, Complex.abs w = 1 ∧ z = ↑r * w
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_13
valid
/-- If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.-/
theorem exercise_1_13 (x y : ℂ) : |(abs x) - (abs y)| ≤ abs (x - y):= sorry
x y : ℂ ⊢ |Complex.abs x - Complex.abs y| ≤ Complex.abs (x - y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_16a
valid
/-- Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.-/
theorem exercise_1_16a (n : ℕ) (d r : ℝ) (x y z : EuclideanSpace ℝ (Fin n)) -- R^n (h₁ : n ≥ 3) (h₂ : ‖x - y‖ = d) (h₃ : d > 0) (h₄ : r > 0) (h₅ : 2 * r > d) : Set.Infinite {z : EuclideanSpace ℝ (Fin n) | ‖z - x‖ = r ∧ ‖z - y‖ = r}:= sorry
n : ℕ d r : ℝ x y z : EuclideanSpace ℝ (Fin n) h₁ : n ≥ 3 h₂ : ‖x - y‖ = d h₃ : d > 0 h₄ : r > 0 h₅ : 2 * r > d ⊢ {z | ‖z - x‖ = r ∧ ‖z - y‖ = r}.Infinite
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_18a
valid
/-- If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$-/
theorem exercise_1_18a (n : ℕ) (h : n > 1) (x : EuclideanSpace ℝ (Fin n)) -- R^n : ∃ (y : EuclideanSpace ℝ (Fin n)), y ≠ 0 ∧ (inner x y) = (0 : ℝ):= sorry
n : ℕ h : n > 1 x : EuclideanSpace ℝ (Fin n) ⊢ ∃ y, y ≠ 0 ∧ ⟪x, y⟫_ℝ = 0
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_1_19
valid
/-- Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.-/
theorem exercise_1_19 (n : ℕ) (a b c x : EuclideanSpace ℝ (Fin n)) (r : ℝ) (h₁ : r > 0) (h₂ : 3 • c = 4 • b - a) (h₃ : 3 * r = 2 * ‖x - b‖) : ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r:= sorry
n : ℕ a b c x : EuclideanSpace ℝ (Fin n) r : ℝ h₁ : r > 0 h₂ : 3 • c = 4 • b - a h₃ : 3 * r = 2 * ‖x - b‖ ⊢ ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_2_24
valid
/-- Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.-/
theorem exercise_2_24 {X : Type*} [MetricSpace X] (hX : ∀ (A : Set X), Infinite A → ∃ (x : X), x ∈ closure A) : SeparableSpace X:= sorry
X : Type u_1 inst✝ : MetricSpace X hX : ∀ (A : Set X), Infinite ↑A → ∃ x, x ∈ closure A ⊢ SeparableSpace X
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_2_27a
valid
/-- Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.-/
theorem exercise_2_27a (k : ℕ) (E P : Set (EuclideanSpace ℝ (Fin k))) (hE : E.Nonempty ∧ ¬ Set.Countable E) (hP : P = {x | ∀ U ∈ 𝓝 x, ¬ Set.Countable (P ∩ E)}) : IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)}:= sorry
k : ℕ E P : Set (EuclideanSpace ℝ (Fin k)) hE : E.Nonempty ∧ ¬E.Countable hP : P = {x | ∀ U ∈ 𝓝 x, ¬(P ∩ E).Countable} ⊢ IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)}
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_2_28
valid
/-- Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.-/
theorem exercise_2_28 (X : Type*) [MetricSpace X] [SeparableSpace X] (A : Set X) (hA : IsClosed A) : ∃ P₁ P₂ : Set X, A = P₁ ∪ P₂ ∧ IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧ Set.Countable P₂:= sorry
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : SeparableSpace X A : Set X hA : IsClosed A ⊢ ∃ P₁ P₂, A = P₁ ∪ P₂ ∧ IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧ P₂.Countable
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_3_1a
valid
/-- Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.-/
theorem exercise_3_1a (f : ℕ → ℝ) (h : ∃ (a : ℝ), Tendsto (λ (n : ℕ) => f n) atTop (𝓝 a)) : ∃ (a : ℝ), Tendsto (λ (n : ℕ) => |f n|) atTop (𝓝 a):= sorry
f : ℕ → ℝ h : ∃ a, Tendsto (fun n => f n) atTop (𝓝 a) ⊢ ∃ a, Tendsto (fun n => |f n|) atTop (𝓝 a)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_3_3
valid
/-- If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.-/
theorem exercise_3_3 : ∃ (x : ℝ), Tendsto f atTop (𝓝 x) ∧ ∀ n, f n < 2:= sorry
⊢ ∃ x, Tendsto f atTop (𝓝 x) ∧ ∀ (n : ℕ), f n < 2
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable def f : ℕ → ℝ | 0 => sqrt 2 | (n + 1) => sqrt (2 + sqrt (f n))
If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable def f : ℕ → ℝ | 0 => sqrt 2 | (n + 1) => sqrt (2 + sqrt (f n))
exercise_3_6a
valid
/-- Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.-/
theorem exercise_3_6a : Tendsto (λ (n : ℕ) => (∑ i in range n, g i)) atTop atTop:= sorry
⊢ Tendsto (fun n => ∑ i ∈ range n, g i) atTop atTop
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable section def g (n : ℕ) : ℝ := sqrt (n + 1) - sqrt n
Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable section def g (n : ℕ) : ℝ := sqrt (n + 1) - sqrt n
exercise_3_8
valid
/-- If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.-/
theorem exercise_3_8 (a b : ℕ → ℝ) (h1 : ∃ y, (Tendsto (λ n => (∑ i in (range n), a i)) atTop (𝓝 y))) (h2 : Monotone b) (h3 : Bornology.IsBounded (Set.range b)) : ∃ y, Tendsto (λ n => (∑ i in (range n), (a i) * (b i))) atTop (𝓝 y):= sorry
a b : ℕ → ℝ h1 : ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i) atTop (𝓝 y) h2 : Monotone b h3 : Bornology.IsBounded (Set.range b) ⊢ ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i * b i) atTop (𝓝 y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_3_20
valid
/-- Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.-/
theorem exercise_3_20 {X : Type*} [MetricSpace X] (p : ℕ → X) (l : ℕ) (r : X) (hp : CauchySeq p) (hpl : Tendsto (λ n => p (l * n)) atTop (𝓝 r)) : Tendsto p atTop (𝓝 r):= sorry
X : Type u_1 inst✝ : MetricSpace X p : ℕ → X l : ℕ r : X hp : CauchySeq p hpl : Tendsto (fun n => p (l * n)) atTop (𝓝 r) ⊢ Tendsto p atTop (𝓝 r)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_3_22
valid
/-- Suppose $X$ is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty.-/
theorem exercise_3_22 (X : Type*) [MetricSpace X] [CompleteSpace X] (G : ℕ → Set X) (hG : ∀ n, IsOpen (G n) ∧ Dense (G n)) : ∃ x, ∀ n, x ∈ G n:= sorry
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : CompleteSpace X G : ℕ → Set X hG : ∀ (n : ℕ), IsOpen (G n) ∧ Dense (G n) ⊢ ∃ x, ∀ (n : ℕ), x ∈ G n
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $X$ is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_2a
valid
/-- If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. ($\overline{E}$ denotes the closure of $E$).-/
theorem exercise_4_2a {α : Type} [MetricSpace α] {β : Type} [MetricSpace β] (f : α → β) (h₁ : Continuous f) : ∀ (x : Set α), f '' (closure x) ⊆ closure (f '' x):= sorry
α : Type inst✝¹ : MetricSpace α β : Type inst✝ : MetricSpace β f : α → β h₁ : Continuous f ⊢ ∀ (x : Set α), f '' closure x ⊆ closure (f '' x)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. ($\overline{E}$ denotes the closure of $E$).
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_4a
valid
/-- Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.-/
theorem exercise_4_4a {α : Type} [MetricSpace α] {β : Type} [MetricSpace β] (f : α → β) (s : Set α) (h₁ : Continuous f) (h₂ : Dense s) : f '' Set.univ ⊆ closure (f '' s):= sorry
α : Type inst✝¹ : MetricSpace α β : Type inst✝ : MetricSpace β f : α → β s : Set α h₁ : Continuous f h₂ : Dense s ⊢ f '' Set.univ ⊆ closure (f '' s)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_5a
valid
/-- If $f$ is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions $g$ on $\mathbb{R}$ such that $g(x)=f(x)$ for all $x \in E$.-/
theorem exercise_4_5a (f : ℝ → ℝ) (E : Set ℝ) (h₁ : IsClosed E) (h₂ : ContinuousOn f E) : ∃ (g : ℝ → ℝ), Continuous g ∧ ∀ x ∈ E, f x = g x:= sorry
f : ℝ → ℝ E : Set ℝ h₁ : IsClosed E h₂ : ContinuousOn f E ⊢ ∃ g, Continuous g ∧ ∀ x ∈ E, f x = g x
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions $g$ on $\mathbb{R}$ such that $g(x)=f(x)$ for all $x \in E$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_6
valid
/-- If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.-/
theorem exercise_4_6 (f : ℝ → ℝ) (E : Set ℝ) (G : Set (ℝ × ℝ)) (h₁ : IsCompact E) (h₂ : G = {(x, f x) | x ∈ E}) : ContinuousOn f E ↔ IsCompact G:= sorry
f : ℝ → ℝ E : Set ℝ G : Set (ℝ × ℝ) h₁ : IsCompact E h₂ : G = {x | ∃ x_1 ∈ E, (x_1, f x_1) = x} ⊢ ContinuousOn f E ↔ IsCompact G
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_8b
valid
/-- Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.-/
theorem exercise_4_8b (E : Set ℝ) : ∃ f : ℝ → ℝ, UniformContinuousOn f E ∧ ¬ Bornology.IsBounded (Set.image f E):= sorry
E : Set ℝ ⊢ ∃ f, UniformContinuousOn f E ∧ ¬Bornology.IsBounded (f '' E)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_12
valid
/-- A uniformly continuous function of a uniformly continuous function is uniformly continuous.-/
theorem exercise_4_12 {α β γ : Type*} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : α → β} {g : β → γ} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous (g ∘ f):= sorry
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g ⊢ UniformContinuous (g ∘ f)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
A uniformly continuous function of a uniformly continuous function is uniformly continuous.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_19
valid
/-- Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.-/
theorem exercise_4_19 {f : ℝ → ℝ} (hf : ∀ a b c, a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c) (hg : ∀ r : ℚ, IsClosed {x | f x = r}) : Continuous f:= sorry
f : ℝ → ℝ hf : ∀ (a b c : ℝ), a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c hg : ∀ (r : ℚ), IsClosed {x | f x = ↑r} ⊢ Continuous f
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_4_24
valid
/-- Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.-/
theorem exercise_4_24 {f : ℝ → ℝ} (hf : Continuous f) (a b : ℝ) (hab : a < b) (h : ∀ x y : ℝ, a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2) : ConvexOn ℝ (Set.Ioo a b) f:= sorry
f : ℝ → ℝ hf : Continuous f a b : ℝ hab : a < b h : ∀ (x y : ℝ), a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2 ⊢ ConvexOn ℝ (Set.Ioo a b) f
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_5_2
valid
/-- Suppose $f^{\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad(a<x<b)$.-/
theorem exercise_5_2 {a b : ℝ} {f g : ℝ → ℝ} (hf : ∀ x ∈ Set.Ioo a b, deriv f x > 0) (hg : g = f⁻¹) (hg_diff : DifferentiableOn ℝ g (Set.Ioo a b)) : DifferentiableOn ℝ g (Set.Ioo a b) ∧ ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x:= sorry
a b : ℝ f g : ℝ → ℝ hf : ∀ x ∈ Set.Ioo a b, deriv f x > 0 hg : g = f⁻¹ hg_diff : DifferentiableOn ℝ g (Set.Ioo a b) ⊢ DifferentiableOn ℝ g (Set.Ioo a b) ∧ ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $f^{\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad(a<x<b)$.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_5_4
valid
/-- If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.-/
theorem exercise_5_4 {n : ℕ} (C : ℕ → ℝ) (hC : ∑ i in (range (n + 1)), (C i) / (i + 1) = 0) : ∃ x, x ∈ (Set.Icc (0 : ℝ) 1) ∧ ∑ i in range (n + 1), (C i) * (x^i) = 0:= sorry
n : ℕ C : ℕ → ℝ hC : ∑ i ∈ range (n + 1), C i / (↑i + 1) = 0 ⊢ ∃ x ∈ Set.Icc 0 1, ∑ i ∈ range (n + 1), C i * x ^ i = 0
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_5_6
valid
/-- Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.-/
theorem exercise_5_6 {f : ℝ → ℝ} (hf1 : Continuous f) (hf2 : ∀ x, DifferentiableAt ℝ f x) (hf3 : f 0 = 0) (hf4 : Monotone (deriv f)) : MonotoneOn (λ x => f x / x) (Set.Ioi 0):= sorry
f : ℝ → ℝ hf1 : Continuous f hf2 : ∀ (x : ℝ), DifferentiableAt ℝ f x hf3 : f 0 = 0 hf4 : Monotone (deriv f) ⊢ MonotoneOn (fun x => f x / x) (Set.Ioi 0)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_5_15
valid
/-- Suppose $a \in R^{1}, f$ is a twice-differentiable real function on $(a, \infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on $(a, \infty)$. Prove that $M_{1}^{2} \leq 4 M_{0} M_{2} .$-/
theorem exercise_5_15 {f : ℝ → ℝ} (a M0 M1 M2 : ℝ) (hf' : DifferentiableOn ℝ f (Set.Ici a)) (hf'' : DifferentiableOn ℝ (deriv f) (Set.Ici a)) (hM0 : M0 = sSup {(|f x|) | x ∈ (Set.Ici a)}) (hM1 : M1 = sSup {(|deriv f x|) | x ∈ (Set.Ici a)}) (hM2 : M2 = sSup {(|deriv (deriv f) x|) | x ∈ (Set.Ici a)}) : (M1 ^ 2) ≤ 4 * M0 * M2:= sorry
f : ℝ → ℝ a M0 M1 M2 : ℝ hf' : DifferentiableOn ℝ f (Set.Ici a) hf'' : DifferentiableOn ℝ (deriv f) (Set.Ici a) hM0 : M0 = sSup {x | ∃ x_1 ∈ Set.Ici a, |f x_1| = x} hM1 : M1 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv f x_1| = x} hM2 : M2 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv (deriv f) x_1| = x} ⊢ M1 ^ 2 ≤ 4 * M0 * M2
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $a \in R^{1}, f$ is a twice-differentiable real function on $(a, \infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on $(a, \infty)$. Prove that $M_{1}^{2} \leq 4 M_{0} M_{2} .$
open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
exercise_2_1_21
valid
/-- Show that a group of order 5 must be abelian.-/
def exercise_2_1_21 (G : Type*) [Group G] [Fintype G] (hG : card G = 5) : CommGroup G:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 5 ⊢ CommGroup G
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that a group of order 5 must be abelian.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_1_27
valid
/-- If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.-/
theorem exercise_2_1_27 {G : Type*} [Group G] [Fintype G] : ∃ (m : ℕ), ∀ (a : G), a ^ m = 1:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G ⊢ ∃ m, ∀ (a : G), a ^ m = 1
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_2_5
valid
/-- Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian.-/
def exercise_2_2_5 {G : Type*} [Group G] (h : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5) : CommGroup G:= sorry
G : Type u_1 inst✝ : Group G h : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5 ⊢ CommGroup G
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_3_17
valid
/-- If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$-/
theorem exercise_2_3_17 {G : Type*} [Mul G] [Group G] (a x : G) : centralizer {x⁻¹*a*x} = (λ g : G => x⁻¹*g*x) '' (centralizer {a}):= sorry
G : Type u_1 inst✝¹ : Mul G inst✝ : Group G a x : G ⊢ {x⁻¹ * a * x}.centralizer = (fun g => x⁻¹ * g * x) '' {a}.centralizer
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_4_36
valid
/-- If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function.-/
theorem exercise_2_4_36 {a n : ℕ} (h : a > 1) : n ∣ (a ^ n - 1).totient:= sorry
a n : ℕ h : a > 1 ⊢ n ∣ (a ^ n - 1).totient
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_5_30
valid
/-- Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.-/
theorem exercise_2_5_30 {G : Type*} [Group G] [Fintype G] {p m : ℕ} (hp : Nat.Prime p) (hp1 : ¬ p ∣ m) (hG : card G = p*m) {H : Subgroup G} [Fintype H] [H.Normal] (hH : card H = p): Subgroup.Characteristic H:= sorry
G : Type u_1 inst✝³ : Group G inst✝² : Fintype G p m : ℕ hp : p.Prime hp1 : ¬p ∣ m hG : card G = p * m H : Subgroup G inst✝¹ : Fintype ↥H inst✝ : H.Normal hH : card ↥H = p ⊢ H.Characteristic
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_5_37
valid
/-- If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$.-/
def exercise_2_5_37 (G : Type*) [Group G] [Fintype G] (hG : card G = 6) (hG' : IsEmpty (CommGroup G)) : G ≃* Equiv.Perm (Fin 3):= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 6 hG' : IsEmpty (CommGroup G) ⊢ G ≃* Equiv.Perm (Fin 3)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_5_44
valid
/-- Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.-/
theorem exercise_2_5_44 {G : Type*} [Group G] [Fintype G] {p : ℕ} (hp : Nat.Prime p) (hG : card G = p^2) : ∃ (N : Subgroup G) (Fin : Fintype N), @card N Fin = p ∧ N.Normal:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : p.Prime hG : card G = p ^ 2 ⊢ ∃ N Fin, card ↥N = p ∧ N.Normal
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_6_15
valid
/-- If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.-/
theorem exercise_2_6_15 {G : Type*} [CommGroup G] {m n : ℕ} (hm : ∃ (g : G), orderOf g = m) (hn : ∃ (g : G), orderOf g = n) (hmn : m.Coprime n) : ∃ (g : G), orderOf g = m * n:= sorry
G : Type u_1 inst✝ : CommGroup G m n : ℕ hm : ∃ g, orderOf g = m hn : ∃ g, orderOf g = n hmn : m.Coprime n ⊢ ∃ g, orderOf g = m * n
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_8_12
valid
/-- Prove that any two nonabelian groups of order 21 are isomorphic.-/
def exercise_2_8_12 {G H : Type*} [Fintype G] [Fintype H] [Group G] [Group H] (hG : card G = 21) (hH : card H = 21) (hG1 : IsEmpty (CommGroup G)) (hH1 : IsEmpty (CommGroup H)) : G ≃* H:= sorry
G : Type u_1 H : Type u_2 inst✝³ : Fintype G inst✝² : Fintype H inst✝¹ : Group G inst✝ : Group H hG : card G = 21 hH : card H = 21 hG1 : IsEmpty (CommGroup G) hH1 : IsEmpty (CommGroup H) ⊢ G ≃* H
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that any two nonabelian groups of order 21 are isomorphic.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_9_2
valid
/-- If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.-/
theorem exercise_2_9_2 {G H : Type*} [Fintype G] [Fintype H] [Group G] [Group H] (hG : IsCyclic G) (hH : IsCyclic H) : IsCyclic (G × H) ↔ (card G).Coprime (card H):= sorry
G : Type u_1 H : Type u_2 inst✝³ : Fintype G inst✝² : Fintype H inst✝¹ : Group G inst✝ : Group H hG : IsCyclic G hH : IsCyclic H ⊢ IsCyclic (G × H) ↔ (card G).Coprime (card H)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_11_6
valid
/-- If $P$ is a $p$-Sylow subgroup of $G$ and $P \triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$.-/
theorem exercise_2_11_6 {G : Type*} [Group G] {p : ℕ} (hp : Nat.Prime p) {P : Sylow p G} (hP : P.Normal) : ∀ (Q : Sylow p G), P = Q:= sorry
G : Type u_1 inst✝ : Group G p : ℕ hp : p.Prime P : Sylow p G hP : (↑P).Normal ⊢ ∀ (Q : Sylow p G), P = Q
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $P$ is a $p$-Sylow subgroup of $G$ and $P \triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_11_22
valid
/-- Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.-/
theorem exercise_2_11_22 {p : ℕ} {n : ℕ} {G : Type*} [Fintype G] [Group G] (hp : Nat.Prime p) (hG : card G = p ^ n) {K : Subgroup G} [Fintype K] (hK : card K = p ^ (n-1)) : K.Normal:= sorry
p n : ℕ G : Type u_1 inst✝² : Fintype G inst✝¹ : Group G hp : p.Prime hG : card G = p ^ n K : Subgroup G inst✝ : Fintype ↥K hK : card ↥K = p ^ (n - 1) ⊢ K.Normal
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_1_19
valid
/-- Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.-/
theorem exercise_4_1_19 : Infinite {x : Quaternion ℝ | x^2 = -1}:= sorry
⊢ Infinite ↑{x | x ^ 2 = -1}
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_2_5
valid
/-- Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative.-/
def exercise_4_2_5 {R : Type*} [Ring R] (h : ∀ x : R, x ^ 3 = x) : CommRing R:= sorry
R : Type u_1 inst✝ : Ring R h : ∀ (x : R), x ^ 3 = x ⊢ CommRing R
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_2_9
valid
/-- Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.-/
theorem exercise_4_2_9 {p : ℕ} (hp : Nat.Prime p) (hp1 : Odd p) : ∃ (a b : ℤ), (a / b : ℚ) = ∑ i in Finset.range p, 1 / (i + 1) → ↑p ∣ a:= sorry
p : ℕ hp : p.Prime hp1 : Odd p ⊢ ∃ a b, ↑a / ↑b = ↑(∑ i ∈ Finset.range p, 1 / (i + 1)) → ↑p ∣ a
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_3_25
valid
/-- Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.-/
theorem exercise_4_3_25 (I : Ideal (Matrix (Fin 2) (Fin 2) ℝ)) : I = ⊥ ∨ I = ⊤:= sorry
I : Ideal (Matrix (Fin 2) (Fin 2) ℝ) ⊢ I = ⊥ ∨ I = ⊤
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_5_16
valid
/-- Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.-/
theorem exercise_4_5_16 {p n: ℕ} (hp : Nat.Prime p) {q : Polynomial (ZMod p)} (hq : Irreducible q) (hn : q.degree = n) : ∃ is_fin : Fintype $ Polynomial (ZMod p) ⧸ span ({q} : Set (Polynomial $ ZMod p)), @card (Polynomial (ZMod p) ⧸ span {q}) is_fin = p ^ n ∧ IsField (Polynomial $ ZMod p):= sorry
p n : ℕ hp : p.Prime q : (ZMod p)[X] hq : Irreducible q hn : q.degree = ↑n ⊢ ∃ is_fin, card ((ZMod p)[X] ⧸ span {q}) = p ^ n ∧ IsField (ZMod p)[X]
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_5_25
valid
/-- If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$.-/
theorem exercise_4_5_25 {p : ℕ} (hp : Nat.Prime p) : Irreducible (∑ i : Finset.range p, X ^ p : Polynomial ℚ):= sorry
p : ℕ hp : p.Prime ⊢ Irreducible (∑ i : { x // x ∈ Finset.range p }, X ^ p)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_4_6_3
valid
/-- Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.-/
theorem exercise_4_6_3 : Infinite {a : ℤ | Irreducible (X^7 + 15*X^2 - 30*X + (a : Polynomial ℚ) : Polynomial ℚ)}:= sorry
⊢ Infinite ↑{a | Irreducible (X ^ 7 + 15 * X ^ 2 - 30 * X + ↑a)}
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_5_2_20
valid
/-- Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.-/
theorem exercise_5_2_20 {F V ι: Type*} [Infinite F] [Field F] [AddCommGroup V] [Module F V] {u : ι → Submodule F V} (hu : ∀ i : ι, u i ≠ ⊤) : (⋃ i : ι, (u i : Set V)) ≠ ⊤:= sorry
F : Type u_1 V : Type u_2 ι : Type u_3 inst✝³ : Infinite F inst✝² : Field F inst✝¹ : AddCommGroup V inst✝ : Module F V u : ι → Submodule F V hu : ∀ (i : ι), u i ≠ ⊤ ⊢ ⋃ i, ↑(u i) ≠ ⊤
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_5_3_10
valid
/-- Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$.-/
theorem exercise_5_3_10 : IsAlgebraic ℚ (cos (Real.pi / 180)):= sorry
⊢ IsAlgebraic ℚ (π / 180).cos
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_5_5_2
valid
/-- Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.-/
theorem exercise_5_5_2 : Irreducible (X^3 - 3*X - 1 : Polynomial ℚ):= sorry
⊢ Irreducible (X ^ 3 - 3 * X - 1)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.
open Fintype Set Real Ideal Polynomial open scoped BigOperators
exercise_2_12a
valid
/-- Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.-/
theorem exercise_2_12a (f : ℕ → ℕ) (p : ℕ → ℝ) (a : ℝ) (hf : Injective f) (hp : Tendsto p atTop (𝓝 a)) : Tendsto (λ n => p (f n)) atTop (𝓝 a):= sorry
f : ℕ → ℕ p : ℕ → ℝ a : ℝ hf : Injective f hp : Tendsto p atTop (𝓝 a) ⊢ Tendsto (fun n => p (f n)) atTop (𝓝 a)
import Mathlib open Filter Real Function open scoped Topology
Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.
open Filter Real Function open scoped Topology
exercise_2_29
valid
/-- Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.-/
theorem exercise_2_29 (M : Type*) [MetricSpace M] (O C : Set (Set M)) (hO : O = {s | IsOpen s}) (hC : C = {s | IsClosed s}) : ∃ f : O → C, Bijective f:= sorry
M : Type u_1 inst✝ : MetricSpace M O C : Set (Set M) hO : O = {s | IsOpen s} hC : C = {s | IsClosed s} ⊢ ∃ f, Bijective f
import Mathlib open Filter Real Function open scoped Topology
Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.
open Filter Real Function open scoped Topology
exercise_2_41
valid
/-- Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.-/
theorem exercise_2_41 (m : ℕ) {X : Type*} [NormedSpace ℝ ((Fin m) → ℝ)] : IsCompact (Metric.closedBall 0 1):= sorry
m : ℕ X : Type u_1 inst✝ : NormedSpace ℝ (Fin m → ℝ) ⊢ IsCompact (Metric.closedBall 0 1)
import Mathlib open Filter Real Function open scoped Topology
Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.
open Filter Real Function open scoped Topology
exercise_2_57
valid
/-- Show that if $S$ is connected, it is not true in general that its interior is connected.-/
theorem exercise_2_57 {X : Type*} [TopologicalSpace X] : ∃ (S : Set X), IsConnected S ∧ ¬ IsConnected (interior S):= sorry
X : Type u_1 inst✝ : TopologicalSpace X ⊢ ∃ S, IsConnected S ∧ ¬IsConnected (interior S)
import Mathlib open Filter Real Function open scoped Topology
Show that if $S$ is connected, it is not true in general that its interior is connected.
open Filter Real Function open scoped Topology
exercise_2_126
valid
/-- Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.-/
theorem exercise_2_126 {E : Set ℝ} (hE : ¬ Set.Countable E) : ∃ (p : ℝ), ClusterPt p (𝓟 E):= sorry
E : Set ℝ hE : ¬E.Countable ⊢ ∃ p, ClusterPt p (𝓟 E)
import Mathlib open Filter Real Function open scoped Topology
Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.
open Filter Real Function open scoped Topology
exercise_3_4
valid
/-- Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.-/
theorem exercise_3_4 (n : ℕ) : Tendsto (λ n => (sqrt (n + 1) - sqrt n)) atTop (𝓝 0):= sorry
n : ℕ ⊢ Tendsto (fun n => √(n + 1) - √n) atTop (𝓝 0)
import Mathlib open Filter Real Function open scoped Topology
Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.
open Filter Real Function open scoped Topology
exercise_3_63b
valid
/-- Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.-/
theorem exercise_3_63b (p : ℝ) (f : ℕ → ℝ) (hp : p ≤ 1) (h : f = λ (k : ℕ) => (1 : ℝ) / (k * (log k) ^ p)) : ¬ ∃ l, Tendsto f atTop (𝓝 l):= sorry
p : ℝ f : ℕ → ℝ hp : p ≤ 1 h : f = fun k => 1 / (↑k * (↑k).log ^ p) ⊢ ¬∃ l, Tendsto f atTop (𝓝 l)
import Mathlib open Filter Real Function open scoped Topology
Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.
open Filter Real Function open scoped Topology
exercise_2_2_9
valid
/-- Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.-/
theorem exercise_2_2_9 {G : Type} [Group G] {a b : G} (h : a * b = b * a) : ∀ x y : closure {x| x = a ∨ x = b}, x * y = y * x:= sorry
G : Type inst✝ : Group G a b : G h : a * b = b * a ⊢ ∀ (x y : ↥(Subgroup.closure {x | x = a ∨ x = b})), x * y = y * x
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_2_4_19
valid
/-- Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.-/
theorem exercise_2_4_19 {G : Type*} [Group G] {x : G} (hx : orderOf x = 2) (hx1 : ∀ y, orderOf y = 2 → y = x) : x ∈ center G:= sorry
G : Type u_1 inst✝ : Group G x : G hx : orderOf x = 2 hx1 : ∀ (y : G), orderOf y = 2 → y = x ⊢ x ∈ center G
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_2_11_3
valid
/-- Prove that a group of even order contains an element of order $2 .$-/
theorem exercise_2_11_3 {G : Type*} [Group G] [Fintype G](hG : Even (card G)) : ∃ x : G, orderOf x = 2:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : Even (card G) ⊢ ∃ x, orderOf x = 2
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that a group of even order contains an element of order $2 .$
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_3_5_6
valid
/-- Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.-/
theorem exercise_3_5_6 {K V : Type*} [Field K] [AddCommGroup V] [Module K V] {S : Set V} (hS : Set.Countable S) (hS1 : span K S = ⊤) {ι : Type*} (R : ι → V) (hR : LinearIndependent K R) : Countable ι:= sorry
K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set V hS : S.Countable hS1 : Submodule.span K S = ⊤ ι : Type u_3 R : ι → V hR : LinearIndependent K R ⊢ Countable ι
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_6_1_14
valid
/-- Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$.-/
theorem exercise_6_1_14 (G : Type*) [Group G] (hG : IsCyclic $ G ⧸ (center G)) : center G = ⊤:= sorry
G : Type u_1 inst✝ : Group G hG : IsCyclic (G ⧸ center G) ⊢ center G = ⊤
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_6_4_3
valid
/-- Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.-/
theorem exercise_6_4_3 {G : Type*} [Group G] [Fintype G] {p q : ℕ} (hp : Prime p) (hq : Prime q) (hG : card G = p^2 *q) : IsSimpleGroup G → false:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G p q : ℕ hp : Prime p hq : Prime q hG : card G = p ^ 2 * q ⊢ IsSimpleGroup G → false = true
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_6_8_1
valid
/-- Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$.-/
theorem exercise_6_8_1 {G : Type*} [Group G] (a b : G) : closure ({a, b} : Set G) = Subgroup.closure {b*a*b^2, b*a*b^3}:= sorry
G : Type u_1 inst✝ : Group G a b : G ⊢ Subgroup.closure {a, b} = Subgroup.closure {b * a * b ^ 2, b * a * b ^ 3}
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_10_2_4
valid
/-- Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.-/
theorem exercise_10_2_4 : span ({2} : Set $ Polynomial ℤ) ⊓ (span {X}) = span ({2 * X} : Set $ Polynomial ℤ):= sorry
⊢ Ideal.span {2} ⊓ Ideal.span {X} = Ideal.span {2 * X}
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_10_4_6
valid
/-- Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent.-/
theorem exercise_10_4_6 {R : Type*} [CommRing R] [NoZeroDivisors R] (I J : Ideal R) (x : ↑(I ⊓ J)) : IsNilpotent ((Ideal.Quotient.mk (I*J)) x):= sorry
R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroDivisors R I J : Ideal R x : ↥(I ⊓ J) ⊢ IsNilpotent ((Ideal.Quotient.mk (I * J)) ↑x)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_10_7_10
valid
/-- Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.-/
theorem exercise_10_7_10 {R : Type*} [Ring R] (M : Ideal R) (hM : ∀ (x : R), x ∉ M → IsUnit x) (hProper : ∃ x : R, x ∉ M) : IsMaximal M ∧ ∀ (N : Ideal R), IsMaximal N → N = M:= sorry
R : Type u_1 inst✝ : Ring R M : Ideal R hM : ∀ x ∉ M, IsUnit x hProper : ∃ x, x ∉ M ⊢ M.IsMaximal ∧ ∀ (N : Ideal R), N.IsMaximal → N = M
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_11_4_1b
valid
/-- Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.-/
theorem exercise_11_4_1b {F : Type*} [Field F] [Fintype F] (hF : card F = 2) : Irreducible (12 + 6 * X + X ^ 3 : Polynomial F):= sorry
F : Type u_1 inst✝¹ : Field F inst✝ : Fintype F hF : card F = 2 ⊢ Irreducible (12 + 6 * X + X ^ 3)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_11_4_6b
valid
/-- Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$-/
theorem exercise_11_4_6b {F : Type*} [Field F] [Fintype F] (hF : card F = 31) : Irreducible (X ^ 3 - 9 : Polynomial F):= sorry
F : Type u_1 inst✝¹ : Field F inst✝ : Fintype F hF : card F = 31 ⊢ Irreducible (X ^ 3 - 9)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_11_4_8
valid
/-- Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$.-/
theorem exercise_11_4_8 (p : ℕ) (hp : Prime p) (n : ℕ) : -- p ∈ ℕ can be written as p ∈ ℚ[X] Irreducible (X ^ n - (p : Polynomial ℚ) : Polynomial ℚ):= sorry
p : ℕ hp : Prime p n : ℕ ⊢ Irreducible (X ^ n - ↑p)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_13_4_10
valid
/-- Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.-/
theorem exercise_13_4_10 {p : ℕ} {hp : Nat.Prime p} (h : ∃ r : ℕ, p = 2 ^ r + 1) : ∃ (k : ℕ), p = 2 ^ (2 ^ k) + 1:= sorry
p : ℕ hp : p.Prime h : ∃ r, p = 2 ^ r + 1 ⊢ ∃ k, p = 2 ^ 2 ^ k + 1
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
exercise_1_3
valid
/-- Prove that $-(-v) = v$ for every $v \in V$.-/
theorem exercise_1_3 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {v : V} : -(-v) = v:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V v : V ⊢ - -v = v
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that $-(-v) = v$ for every $v \in V$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_1_6
valid
/-- Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$.-/
theorem exercise_1_6 : ∃ U : Set (ℝ × ℝ), (U ≠ ∅) ∧ (∀ (u v : ℝ × ℝ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧ (∀ (u : ℝ × ℝ), u ∈ U → -u ∈ U) ∧ (∀ U' : Submodule ℝ (ℝ × ℝ), U ≠ ↑U'):= sorry
⊢ ∃ U, U ≠ ∅ ∧ (∀ (u v : ℝ × ℝ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧ (∀ u ∈ U, -u ∈ U) ∧ ∀ (U' : Submodule ℝ (ℝ × ℝ)), U ≠ ↑U'
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_1_8
valid
/-- Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.-/
theorem exercise_1_8 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {ι : Type*} (u : ι → Submodule F V) : ∃ U : Submodule F V, (⋂ (i : ι), (u i).carrier) = ↑U:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V ι : Type u_3 u : ι → Submodule F V ⊢ ∃ U, ⋂ i, (u i).carrier = ↑U
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_3_1
valid
/-- Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$.-/
theorem exercise_3_1 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V] (T : V →ₗ[F] V) (hT : finrank F V = 1) : ∃ c : F, ∀ v : V, T v = c • v:= sorry
F : Type u_1 V : Type u_2 inst✝³ : AddCommGroup V inst✝² : Field F inst✝¹ : Module F V inst✝ : FiniteDimensional F V T : V →ₗ[F] V hT : finrank F V = 1 ⊢ ∃ c, ∀ (v : V), T v = c • v
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_4_4
valid
/-- Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\prime}$ have no roots in common.-/
theorem exercise_4_4 (p : Polynomial ℂ) : p.degree = @card (rootSet p ℂ) (rootSetFintype p ℂ) ↔ Disjoint (@card (rootSet (derivative p) ℂ) (rootSetFintype (derivative p) ℂ)) (@card (rootSet p ℂ) (rootSetFintype p ℂ)):= sorry
p : ℂ[X] ⊢ p.degree = ↑(card ↑(p.rootSet ℂ)) ↔ Disjoint (card ↑((derivative p).rootSet ℂ)) (card ↑(p.rootSet ℂ))
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\prime}$ have no roots in common.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_5_4
valid
/-- Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.-/
theorem exercise_5_4 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] (S T : V →ₗ[F] V) (hST : S ∘ T = T ∘ S) (c : F): Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id):= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V S T : V →ₗ[F] V hST : ⇑S ∘ ⇑T = ⇑T ∘ ⇑S c : F ⊢ Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_5_12
valid
/-- Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.-/
theorem exercise_5_12 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {S : End F V} (hS : ∀ v : V, ∃ c : F, v ∈ eigenspace S c) : ∃ c : F, S = c • LinearMap.id:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V S : End F V hS : ∀ (v : V), ∃ c, v ∈ S.eigenspace c ⊢ ∃ c, S = c • LinearMap.id
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_5_20
valid
/-- Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.-/
theorem exercise_5_20 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V] {S T : End F V} (h1 : card (T.Eigenvalues) = finrank F V) (h2 : ∀ v : V, ∃ c : F, v ∈ eigenspace S c ↔ ∃ c : F, v ∈ eigenspace T c) : S * T = T * S:= sorry
F : Type u_1 V : Type u_2 inst✝³ : AddCommGroup V inst✝² : Field F inst✝¹ : Module F V inst✝ : FiniteDimensional F V S T : End F V h1 : card T.Eigenvalues = finrank F V h2 : ∀ (v : V), ∃ c, v ∈ S.eigenspace c ↔ ∃ c, v ∈ T.eigenspace c ⊢ S * T = T * S
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_6_16
valid
/-- Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$-/
theorem exercise_6_16 {K V : Type*} [RCLike K] [NormedAddCommGroup V] [InnerProductSpace K V] {U : Submodule K V} : U.orthogonal = ⊥ ↔ U = ⊤:= sorry
K : Type u_1 V : Type u_2 inst✝² : RCLike K inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace K V U : Submodule K V ⊢ Uᗮ = ⊥ ↔ U = ⊤
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_7_6
valid
/-- Prove that if $T \in \mathcal{L}(V)$ is normal, then $\operatorname{range} T=\operatorname{range} T^{*}.$-/
theorem exercise_7_6 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℂ V] [FiniteDimensional ℂ V] (T : End ℂ V) (hT : T * adjoint T = adjoint T * T) : range T = range (adjoint T):= sorry
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℂ V inst✝ : FiniteDimensional ℂ V T : End ℂ V hT : T * adjoint T = adjoint T * T ⊢ range T = range (adjoint T)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that if $T \in \mathcal{L}(V)$ is normal, then $\operatorname{range} T=\operatorname{range} T^{*}.$
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_7_10
valid
/-- Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.-/
theorem exercise_7_10 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℂ V] [FiniteDimensional ℂ V] (T : End ℂ V) (hT : T * adjoint T = adjoint T * T) (hT1 : T^9 = T^8) : IsSelfAdjoint T ∧ T^2 = T:= sorry
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℂ V inst✝ : FiniteDimensional ℂ V T : End ℂ V hT : T * adjoint T = adjoint T * T hT1 : T ^ 9 = T ^ 8 ⊢ IsSelfAdjoint T ∧ T ^ 2 = T
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_7_14
valid
/-- Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\epsilon,$ then $T$ has an eigenvalue $\lambda^{\prime}$ such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$.-/
theorem exercise_7_14 {𝕜 V : Type*} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] {T : Module.End 𝕜 V} (hT : IsSelfAdjoint T) {l : 𝕜} {ε : ℝ} (he : ε > 0) : ∃ v : V, ‖v‖= 1 ∧ (‖T v - l • v‖ < ε → (∃ l' : T.Eigenvalues, ‖l - l'‖ < ε)):= sorry
𝕜 : Type u_1 V : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace 𝕜 V inst✝ : FiniteDimensional 𝕜 V T : End 𝕜 V hT : IsSelfAdjoint T l : 𝕜 ε : ℝ he : ε > 0 ⊢ ∃ v, ‖v‖ = 1 ∧ (‖T v - l • v‖ < ε → ∃ l', ‖l - ↑T l'‖ < ε)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\epsilon,$ then $T$ has an eigenvalue $\lambda^{\prime}$ such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$.
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
exercise_1_1_3
valid
/-- Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative.-/
theorem exercise_1_1_3 (n : ℤ) : ∀ (a b c : ℤ), (a+b)+c ≡ a+(b+c) [ZMOD n]:= sorry
n : ℤ ⊢ ∀ (a b c : ℤ), a + b + c ≡ a + (b + c) [ZMOD n]
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_5
valid
/-- Prove that for all $n>1$ that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.-/
theorem exercise_1_1_5 (n : ℕ) (hn : 1 < n) : IsEmpty (Group (ZMod n)):= sorry
n : ℕ hn : 1 < n ⊢ IsEmpty (Group (ZMod n))
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that for all $n>1$ that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_16
valid
/-- Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.-/
theorem exercise_1_1_16 {G : Type*} [Group G] (x : G) (hx : x ^ 2 = 1) : orderOf x = 1 ∨ orderOf x = 2:= sorry
G : Type u_1 inst✝ : Group G x : G hx : x ^ 2 = 1 ⊢ orderOf x = 1 ∨ orderOf x = 2
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_18
valid
/-- Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$.-/
theorem exercise_1_1_18 {G : Type*} [Group G] (x y : G) : (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ (x⁻¹ * y⁻¹ * x * y = 1):= sorry
G : Type u_1 inst✝ : Group G x y : G ⊢ (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ x⁻¹ * y⁻¹ * x * y = 1
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_22a
valid
/-- If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$.-/
theorem exercise_1_1_22a {G : Type*} [Group G] (x g : G) : orderOf x = orderOf (g⁻¹ * x * g):= sorry
G : Type u_1 inst✝ : Group G x g : G ⊢ orderOf x = orderOf (g⁻¹ * x * g)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_25
valid
/-- Prove that if $x^{2}=1$ for all $x \in G$ then $G$ is abelian.-/
theorem exercise_1_1_25 {G : Type*} [Group G] (h : ∀ x : G, x ^ 2 = 1) : ∀ a b : G, a*b = b*a:= sorry
G : Type u_1 inst✝ : Group G h : ∀ (x : G), x ^ 2 = 1 ⊢ ∀ (a b : G), a * b = b * a
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $x^{2}=1$ for all $x \in G$ then $G$ is abelian.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_34
valid
/-- If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct.-/
theorem exercise_1_1_34 {G : Type*} [Group G] {x : G} (hx_inf : orderOf x = 0) (n m : ℤ) : x ^ n ≠ x ^ m:= sorry
G : Type u_1 inst✝ : Group G x : G hx_inf : orderOf x = 0 n m : ℤ ⊢ x ^ n ≠ x ^ m
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

ProofNet Lean4 v3

This dataset is based on proofnet-v2-lean4 but removes any entries that caused Lean 4 syntax/parse errors. We also introduce a new field header_no_import that removes "import Mathlib".

Splits: validation and test.

Enjoy!

Downloads last month
0