index
int64
0
0
repo_id
stringlengths
21
232
file_path
stringlengths
34
259
content
stringlengths
1
14.1M
__index_level_0__
int64
0
10k
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/_samples/TFX_pipeline.ipynb
# Put your KFP cluster endpoint URL here if working from GCP notebooks (or local notebooks). ('https://xxxxx.notebooks.googleusercontent.com/') kfp_endpoint='https://XXXXX.notebooks.googleusercontent.com/'input_data_uri = 'gs://ml-pipeline-playground/tensorflow-tfx-repo/tfx/components/testdata/external/csv' #Only S3/GCS is supported for now. module_file = 'gs://ml-pipeline-playground/tensorflow-tfx-repo/v0.21.4/tfx/examples/chicago_taxi_pipeline/taxi_utils.py'import kfpimport json from kfp.components import load_component_from_url download_from_gcs_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/d013b8535666641ca5a5be6ce67e69e044bbf076/components/google-cloud/storage/download/component.yaml') CsvExampleGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/ExampleGen/CsvExampleGen/component.yaml') StatisticsGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/StatisticsGen/component.yaml') SchemaGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/SchemaGen/component.yaml') ExampleValidator_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/ExampleValidator/component.yaml') Transform_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/Transform/component.yaml') Trainer_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/Trainer/component.yaml') Evaluator_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/8c545b62/components/tfx/Evaluator/component.yaml') def tfx_pipeline( input_data_uri, ): download_task = download_from_gcs_op( input_data_uri, ) examples_task = CsvExampleGen_op( input=download_task.output, input_config=json.dumps({ "splits": [ {'name': 'data', 'pattern': '*.csv'}, ] }), output_config=json.dumps({ "splitConfig": { "splits": [ {'name': 'train', 'hash_buckets': 2}, {'name': 'eval', 'hash_buckets': 1}, ] } }), ) statistics_task = StatisticsGen_op( examples=examples_task.outputs['examples'], ) schema_task = SchemaGen_op( statistics=statistics_task.outputs['statistics'], ) # Performs anomaly detection based on statistics and data schema. validator_task = ExampleValidator_op( statistics=statistics_task.outputs['statistics'], schema=schema_task.outputs['schema'], ) # Performs transformations and feature engineering in training and serving. transform_task = Transform_op( examples=examples_task.outputs['examples'], schema=schema_task.outputs['schema'], module_file=module_file, ) trainer_task = Trainer_op( module_file=module_file, examples=transform_task.outputs['transformed_examples'], schema=schema_task.outputs['schema'], transform_graph=transform_task.outputs['transform_graph'], train_args=json.dumps({'num_steps': 10000}), eval_args=json.dumps({'num_steps': 5000}), ) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator_op( examples=examples_task.outputs['examples'], model=trainer_task.outputs['model'], feature_slicing_spec=json.dumps({ 'specs': [ {'column_for_slicing': ['trip_start_hour']}, ], }), ) kfp.Client(host=kfp_endpoint).create_run_from_pipeline_func( tfx_pipeline, arguments=dict( input_data_uri=input_data_uri, ), )
8,100
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/_samples/TFX_Dataflow_pipeline.ipynb
# Put your KFP cluster endpoint URL here if working from GCP notebooks (or local notebooks). ('https://xxxxx.notebooks.googleusercontent.com/') kfp_endpoint='https://XXXXX.notebooks.googleusercontent.com/' # Replace with your GCS bucket, project ID and GCP region root_output_uri = '<your gcs bucket>' project_id = '<your project id>' gcp_region = '<your gcp region>' beam_pipeline_args = [ '--runner=DataflowRunner', '--experiments=shuffle_mode=auto', '--project=' + project_id, '--temp_location=' + root_output_uri + '/tmp', '--region=' + gcp_region, '--disk_size_gb=50', ] input_data_uri = 'gs://ml-pipeline-playground/tensorflow-tfx-repo/tfx/components/testdata/external/csv' #Only S3/GCS is supported for now. module_file = 'gs://ml-pipeline-playground/tensorflow-tfx-repo/v0.21.4/tfx/examples/chicago_taxi_pipeline/taxi_utils.py'import kfpimport json from kfp.components import load_component_from_url CsvExampleGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/ExampleGen/CsvExampleGen/with_URI_IO/component.yaml') StatisticsGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/StatisticsGen/with_URI_IO/component.yaml') SchemaGen_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/SchemaGen/with_URI_IO/component.yaml') ExampleValidator_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/ExampleValidator/with_URI_IO/component.yaml') Transform_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/Transform/with_URI_IO/component.yaml') Trainer_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/Trainer/with_URI_IO/component.yaml') Evaluator_op = load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/0cc4bbd4/components/tfx/Evaluator/with_URI_IO/component.yaml') def tfx_pipeline( input_data_uri, root_output_uri, ): generated_output_uri = root_output_uri + kfp.dsl.EXECUTION_ID_PLACEHOLDER examples_task = CsvExampleGen_op( input_uri=input_data_uri, input_config=json.dumps({ "splits": [ {'name': 'data', 'pattern': '*.csv'}, ] }), output_config=json.dumps({ "splitConfig": { "splits": [ {'name': 'train', 'hash_buckets': 2}, {'name': 'eval', 'hash_buckets': 1}, ] } }), beam_pipeline_args=beam_pipeline_args, output_examples_uri=generated_output_uri, ) statistics_task = StatisticsGen_op( examples_uri=examples_task.outputs['examples_uri'], beam_pipeline_args=beam_pipeline_args, output_statistics_uri=generated_output_uri, ) schema_task = SchemaGen_op( statistics_uri=statistics_task.outputs['statistics_uri'], beam_pipeline_args=beam_pipeline_args, output_schema_uri=generated_output_uri, ) # Performs anomaly detection based on statistics and data schema. validator_task = ExampleValidator_op( statistics_uri=statistics_task.outputs['statistics_uri'], schema_uri=schema_task.outputs['schema_uri'], beam_pipeline_args=beam_pipeline_args, output_anomalies_uri=generated_output_uri, ) # Performs transformations and feature engineering in training and serving. transform_task = Transform_op( examples_uri=examples_task.outputs['examples_uri'], schema_uri=schema_task.outputs['schema_uri'], module_file=module_file, beam_pipeline_args=beam_pipeline_args, output_transform_graph_uri=generated_output_uri + '/transform_graph', output_transformed_examples_uri=generated_output_uri + '/transformed_examples', ) trainer_task = Trainer_op( module_file=module_file, examples_uri=transform_task.outputs['transformed_examples_uri'], schema_uri=schema_task.outputs['schema_uri'], transform_graph_uri=transform_task.outputs['transform_graph_uri'], train_args=json.dumps({'num_steps': 10000}), eval_args=json.dumps({'num_steps': 5000}), beam_pipeline_args=beam_pipeline_args, output_model_uri=generated_output_uri, ) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator_op( examples_uri=examples_task.outputs['examples_uri'], model_uri=trainer_task.outputs['model_uri'], feature_slicing_spec=json.dumps({ 'specs': [ {'column_for_slicing': ['trip_start_hour']}, ], }), beam_pipeline_args=beam_pipeline_args, output_evaluation_uri=generated_output_uri + '/evaluation', output_blessing_uri=generated_output_uri + '/blessing', ) kfp.Client(host=kfp_endpoint).create_run_from_pipeline_func( tfx_pipeline, arguments=dict( input_data_uri=input_data_uri, root_output_uri=root_output_uri, ), )
8,101
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator/component.py
# flake8: noqa TODO from kfp.components import InputPath, OutputPath def Evaluator( evaluation_path: OutputPath('ModelEvaluation'), examples_path: InputPath('Examples'), model_path: InputPath('Model'), baseline_model_path: InputPath('Model') = None, schema_path: InputPath('Schema') = None, feature_slicing_spec: {'JsonObject': {'data_type': 'proto:tfx.components.evaluator.FeatureSlicingSpec'}} = None, # TODO: Replace feature_slicing_spec with eval_config eval_config: {'JsonObject': {'data_type': 'proto:tensorflow_model_analysis.EvalConfig'}} = None, fairness_indicator_thresholds: list = None, # List[str] #blessing_path: OutputPath('ModelBlessing') = None, # Optional outputs are not supported yet ): """ A TFX component to evaluate models trained by a TFX Trainer component. The Evaluator component performs model evaluations in the TFX pipeline and the resultant metrics can be viewed in a Jupyter notebook. It uses the input examples generated from the [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen) component to evaluate the models. Specifically, it can provide: - metrics computed on entire training and eval dataset - tracking metrics over time - model quality performance on different feature slices ## Exporting the EvalSavedModel in Trainer In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be exported during training, which is a special SavedModel containing annotations for the metrics, features, labels, and so on in your model. Evaluator uses this EvalSavedModel to compute metrics. As part of this, the Trainer component creates eval_input_receiver_fn, analogous to the serving_input_receiver_fn, which will extract the features and labels from the input data. As with serving_input_receiver_fn, there are utility functions to help with this. Please see https://www.tensorflow.org/tfx/model_analysis for more details. Args: examples: A Channel of 'Examples' type, usually produced by ExampleGen component. @Ark-kun: Must have the eval split. _required_ model: A Channel of 'Model' type, usually produced by Trainer component. feature_slicing_spec: [evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto) instance that describes how Evaluator should slice the data. Returns: evaluation: Channel of `ModelEvaluation` to store the evaluation results. Either `model_exports` or `model` must be present in the input arguments. """ from tfx.components.evaluator.component import Evaluator as component_class #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get(name + '_path', None) if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) if __name__ == '__main__': import kfp kfp.components.func_to_container_op( Evaluator, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )
8,102
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator/component.yaml
name: Evaluator description: |- A TFX component to evaluate models trained by a TFX Trainer component. The Evaluator component performs model evaluations in the TFX pipeline and the resultant metrics can be viewed in a Jupyter notebook. It uses the input examples generated from the [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen) component to evaluate the models. Specifically, it can provide: - metrics computed on entire training and eval dataset - tracking metrics over time - model quality performance on different feature slices ## Exporting the EvalSavedModel in Trainer In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be exported during training, which is a special SavedModel containing annotations for the metrics, features, labels, and so on in your model. Evaluator uses this EvalSavedModel to compute metrics. As part of this, the Trainer component creates eval_input_receiver_fn, analogous to the serving_input_receiver_fn, which will extract the features and labels from the input data. As with serving_input_receiver_fn, there are utility functions to help with this. Please see https://www.tensorflow.org/tfx/model_analysis for more details. Args: examples: A Channel of 'Examples' type, usually produced by ExampleGen component. @Ark-kun: Must have the eval split. _required_ model: A Channel of 'Model' type, usually produced by Trainer component. feature_slicing_spec: [evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto) instance that describes how Evaluator should slice the data. Returns: evaluation: Channel of `ModelEvaluation` to store the evaluation results. Either `model_exports` or `model` must be present in the input arguments. inputs: - {name: examples, type: Examples} - {name: model, type: Model} - {name: baseline_model, type: Model, optional: true} - {name: schema, type: Schema, optional: true} - name: feature_slicing_spec type: JsonObject: {data_type: 'proto:tfx.components.evaluator.FeatureSlicingSpec'} optional: true - name: eval_config type: JsonObject: {data_type: 'proto:tensorflow_model_analysis.EvalConfig'} optional: true - {name: fairness_indicator_thresholds, type: JsonArray, optional: true} outputs: - {name: evaluation, type: ModelEvaluation} implementation: container: image: tensorflow/tfx:0.21.4 command: - python3 - -u - -c - | def _make_parent_dirs_and_return_path(file_path: str): import os os.makedirs(os.path.dirname(file_path), exist_ok=True) return file_path def Evaluator( evaluation_path , examples_path , model_path , baseline_model_path = None, schema_path = None, feature_slicing_spec = None, # TODO: Replace feature_slicing_spec with eval_config eval_config = None, fairness_indicator_thresholds = None, # List[str] #blessing_path: OutputPath('ModelBlessing') = None, # Optional outputs are not supported yet ): """ A TFX component to evaluate models trained by a TFX Trainer component. The Evaluator component performs model evaluations in the TFX pipeline and the resultant metrics can be viewed in a Jupyter notebook. It uses the input examples generated from the [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen) component to evaluate the models. Specifically, it can provide: - metrics computed on entire training and eval dataset - tracking metrics over time - model quality performance on different feature slices ## Exporting the EvalSavedModel in Trainer In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be exported during training, which is a special SavedModel containing annotations for the metrics, features, labels, and so on in your model. Evaluator uses this EvalSavedModel to compute metrics. As part of this, the Trainer component creates eval_input_receiver_fn, analogous to the serving_input_receiver_fn, which will extract the features and labels from the input data. As with serving_input_receiver_fn, there are utility functions to help with this. Please see https://www.tensorflow.org/tfx/model_analysis for more details. Args: examples: A Channel of 'Examples' type, usually produced by ExampleGen component. @Ark-kun: Must have the eval split. _required_ model: A Channel of 'Model' type, usually produced by Trainer component. feature_slicing_spec: [evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto) instance that describes how Evaluator should slice the data. Returns: evaluation: Channel of `ModelEvaluation` to store the evaluation results. Either `model_exports` or `model` must be present in the input arguments. """ from tfx.components.evaluator.component import Evaluator as component_class #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get(name + '_path', None) if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) import json import argparse _parser = argparse.ArgumentParser(prog='Evaluator', description="A TFX component to evaluate models trained by a TFX Trainer component.\n\n The Evaluator component performs model evaluations in the TFX pipeline and\n the resultant metrics can be viewed in a Jupyter notebook. It uses the\n input examples generated from the\n [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)\n component to evaluate the models.\n\n Specifically, it can provide:\n - metrics computed on entire training and eval dataset\n - tracking metrics over time\n - model quality performance on different feature slices\n\n ## Exporting the EvalSavedModel in Trainer\n\n In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be\n exported during training, which is a special SavedModel containing\n annotations for the metrics, features, labels, and so on in your model.\n Evaluator uses this EvalSavedModel to compute metrics.\n\n As part of this, the Trainer component creates eval_input_receiver_fn,\n analogous to the serving_input_receiver_fn, which will extract the features\n and labels from the input data. As with serving_input_receiver_fn, there are\n utility functions to help with this.\n\n Please see https://www.tensorflow.org/tfx/model_analysis for more details.\n\n Args:\n examples: A Channel of 'Examples' type, usually produced by ExampleGen\n component. @Ark-kun: Must have the eval split. _required_\n model: A Channel of 'Model' type, usually produced by\n Trainer component.\n feature_slicing_spec:\n [evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto)\n instance that describes how Evaluator should slice the data.\n Returns:\n evaluation: Channel of `ModelEvaluation` to store the evaluation results.\n\n Either `model_exports` or `model` must be present in the input arguments.") _parser.add_argument("--examples", dest="examples_path", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--model", dest="model_path", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--baseline-model", dest="baseline_model_path", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--schema", dest="schema_path", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--feature-slicing-spec", dest="feature_slicing_spec", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--eval-config", dest="eval_config", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--fairness-indicator-thresholds", dest="fairness_indicator_thresholds", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("--evaluation", dest="evaluation_path", type=_make_parent_dirs_and_return_path, required=True, default=argparse.SUPPRESS) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = Evaluator(**_parsed_args) _output_serializers = [ ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --examples - {inputPath: examples} - --model - {inputPath: model} - if: cond: {isPresent: baseline_model} then: - --baseline-model - {inputPath: baseline_model} - if: cond: {isPresent: schema} then: - --schema - {inputPath: schema} - if: cond: {isPresent: feature_slicing_spec} then: - --feature-slicing-spec - {inputValue: feature_slicing_spec} - if: cond: {isPresent: eval_config} then: - --eval-config - {inputValue: eval_config} - if: cond: {isPresent: fairness_indicator_thresholds} then: - --fairness-indicator-thresholds - {inputValue: fairness_indicator_thresholds} - --evaluation - {outputPath: evaluation}
8,103
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator/with_URI_IO/component.py
# flake8: noqa from typing import NamedTuple def Evaluator( examples_uri: 'ExamplesUri', model_uri: 'ModelUri', output_evaluation_uri: 'ModelEvaluationUri', output_blessing_uri: 'ModelBlessingUri', baseline_model_uri: 'ModelUri' = None, schema_uri: 'SchemaUri' = None, eval_config: {'JsonObject': {'data_type': 'proto:tensorflow_model_analysis.EvalConfig'}} = None, feature_slicing_spec: {'JsonObject': {'data_type': 'proto:tfx.components.evaluator.FeatureSlicingSpec'}} = None, fairness_indicator_thresholds: list = None, beam_pipeline_args: list = None, ) -> NamedTuple('Outputs', [ ('evaluation_uri', 'ModelEvaluationUri'), ('blessing_uri', 'ModelBlessingUri'), ]): from tfx.components import Evaluator as component_class #Generated code import json import os import tempfile import tensorflow from google.protobuf import json_format, message from tfx.types import channel_utils, artifact_utils from tfx.components.base import base_executor arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) else: argument_value_obj = argument_value component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path') if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) # Workaround for https://github.com/tensorflow/tensorflow/issues/39167 subdirs = [subdir.rstrip('/') for subdir in subdirs] artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all()) output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all()) exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path') if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) # Workaround for a TFX+Beam bug to make DataflowRunner work. # Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df import tfx tfx.version.__version__ += 'dev' executor_context = base_executor.BaseExecutor.Context( beam_pipeline_args=beam_pipeline_args, tmp_dir=tempfile.gettempdir(), unique_id='tfx_component', ) executor = component_class_instance.executor_spec.executor_class(executor_context) executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) return (output_evaluation_uri, output_blessing_uri, ) if __name__ == '__main__': import kfp kfp.components.create_component_from_func( Evaluator, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )
8,104
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Evaluator/with_URI_IO/component.yaml
name: Evaluator inputs: - {name: examples_uri, type: ExamplesUri} - {name: model_uri, type: ModelUri} - {name: output_evaluation_uri, type: ModelEvaluationUri} - {name: output_blessing_uri, type: ModelBlessingUri} - {name: baseline_model_uri, type: ModelUri, optional: true} - {name: schema_uri, type: SchemaUri, optional: true} - name: eval_config type: JsonObject: {data_type: 'proto:tensorflow_model_analysis.EvalConfig'} optional: true - name: feature_slicing_spec type: JsonObject: {data_type: 'proto:tfx.components.evaluator.FeatureSlicingSpec'} optional: true - {name: fairness_indicator_thresholds, type: JsonArray, optional: true} - {name: beam_pipeline_args, type: JsonArray, optional: true} outputs: - {name: evaluation_uri, type: ModelEvaluationUri} - {name: blessing_uri, type: ModelBlessingUri} implementation: container: image: tensorflow/tfx:0.21.4 command: - python3 - -u - -c - | def Evaluator( examples_uri, model_uri, output_evaluation_uri, output_blessing_uri, baseline_model_uri = None, schema_uri = None, eval_config = None, feature_slicing_spec = None, fairness_indicator_thresholds = None, beam_pipeline_args = None, ): from tfx.components import Evaluator as component_class #Generated code import json import os import tempfile import tensorflow from google.protobuf import json_format, message from tfx.types import channel_utils, artifact_utils from tfx.components.base import base_executor arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) else: argument_value_obj = argument_value component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path') if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) # Workaround for https://github.com/tensorflow/tensorflow/issues/39167 subdirs = [subdir.rstrip('/') for subdir in subdirs] artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all()) output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all()) exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path') if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) # Workaround for a TFX+Beam bug to make DataflowRunner work. # Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df import tfx tfx.version.__version__ += 'dev' executor_context = base_executor.BaseExecutor.Context( beam_pipeline_args=beam_pipeline_args, tmp_dir=tempfile.gettempdir(), unique_id='tfx_component', ) executor = component_class_instance.executor_spec.executor_class(executor_context) executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) return (output_evaluation_uri, output_blessing_uri, ) import json import argparse _parser = argparse.ArgumentParser(prog='Evaluator', description='') _parser.add_argument("--examples-uri", dest="examples_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--model-uri", dest="model_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--output-evaluation-uri", dest="output_evaluation_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--output-blessing-uri", dest="output_blessing_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--baseline-model-uri", dest="baseline_model_uri", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--schema-uri", dest="schema_uri", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--eval-config", dest="eval_config", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--feature-slicing-spec", dest="feature_slicing_spec", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--fairness-indicator-thresholds", dest="fairness_indicator_thresholds", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("--beam-pipeline-args", dest="beam_pipeline_args", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=2) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = Evaluator(**_parsed_args) _output_serializers = [ str, str, ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --examples-uri - {inputValue: examples_uri} - --model-uri - {inputValue: model_uri} - --output-evaluation-uri - {inputValue: output_evaluation_uri} - --output-blessing-uri - {inputValue: output_blessing_uri} - if: cond: {isPresent: baseline_model_uri} then: - --baseline-model-uri - {inputValue: baseline_model_uri} - if: cond: {isPresent: schema_uri} then: - --schema-uri - {inputValue: schema_uri} - if: cond: {isPresent: eval_config} then: - --eval-config - {inputValue: eval_config} - if: cond: {isPresent: feature_slicing_spec} then: - --feature-slicing-spec - {inputValue: feature_slicing_spec} - if: cond: {isPresent: fairness_indicator_thresholds} then: - --fairness-indicator-thresholds - {inputValue: fairness_indicator_thresholds} - if: cond: {isPresent: beam_pipeline_args} then: - --beam-pipeline-args - {inputValue: beam_pipeline_args} - '----output-paths' - {outputPath: evaluation_uri} - {outputPath: blessing_uri}
8,105
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform/component.py
# flake8: noqa TODO from kfp.components import InputPath, OutputPath def Transform( examples_path: InputPath('Examples'), schema_path: InputPath('Schema'), transform_graph_path: OutputPath('TransformGraph'), transformed_examples_path: OutputPath('Examples'), module_file: str = None, preprocessing_fn: str = None, custom_config: dict = None, ): """A TFX component to transform the input examples. The Transform component wraps TensorFlow Transform (tf.Transform) to preprocess data in a TFX pipeline. This component will load the preprocessing_fn from input module file, preprocess both 'train' and 'eval' splits of input examples, generate the `tf.Transform` output, and save both transform function and transformed examples to orchestrator desired locations. ## Providing a preprocessing function The TFX executor will use the estimator provided in the `module_file` file to train the model. The Transform executor will look specifically for the `preprocessing_fn()` function within that file. An example of `preprocessing_fn()` can be found in the [user-supplied code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py)) of the TFX Chicago Taxi pipeline example. Args: examples: A Channel of 'Examples' type (required). This should contain the two splits 'train' and 'eval'. schema: A Channel of 'SchemaPath' type. This should contain a single schema artifact. module_file: The file path to a python module file, from which the 'preprocessing_fn' function will be loaded. The function must have the following signature. def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]: ... where the values of input and returned Dict are either tf.Tensor or tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. preprocessing_fn: The path to python function that implements a 'preprocessing_fn'. See 'module_file' for expected signature of the function. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. Returns: transform_graph: Optional output 'TransformPath' channel for output of 'tf.Transform', which includes an exported Tensorflow graph suitable for both training and serving; transformed_examples: Optional output 'ExamplesPath' channel for materialized transformed examples, which includes both 'train' and 'eval' splits. Raises: ValueError: When both or neither of 'module_file' and 'preprocessing_fn' is supplied. """ from tfx.components.transform.component import Transform component_class = Transform #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments[name + '_path'] # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) if __name__ == '__main__': import kfp kfp.components.func_to_container_op( Transform, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )
8,106
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform/component.yaml
name: Transform description: |- A TFX component to transform the input examples. The Transform component wraps TensorFlow Transform (tf.Transform) to preprocess data in a TFX pipeline. This component will load the preprocessing_fn from input module file, preprocess both 'train' and 'eval' splits of input examples, generate the `tf.Transform` output, and save both transform function and transformed examples to orchestrator desired locations. ## Providing a preprocessing function The TFX executor will use the estimator provided in the `module_file` file to train the model. The Transform executor will look specifically for the `preprocessing_fn()` function within that file. An example of `preprocessing_fn()` can be found in the [user-supplied code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py)) of the TFX Chicago Taxi pipeline example. Args: examples: A Channel of 'Examples' type (required). This should contain the two splits 'train' and 'eval'. schema: A Channel of 'SchemaPath' type. This should contain a single schema artifact. module_file: The file path to a python module file, from which the 'preprocessing_fn' function will be loaded. The function must have the following signature. def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]: ... where the values of input and returned Dict are either tf.Tensor or tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. preprocessing_fn: The path to python function that implements a 'preprocessing_fn'. See 'module_file' for expected signature of the function. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. Returns: transform_graph: Optional output 'TransformPath' channel for output of 'tf.Transform', which includes an exported Tensorflow graph suitable for both training and serving; transformed_examples: Optional output 'ExamplesPath' channel for materialized transformed examples, which includes both 'train' and 'eval' splits. Raises: ValueError: When both or neither of 'module_file' and 'preprocessing_fn' is supplied. inputs: - {name: examples, type: Examples} - {name: schema, type: Schema} - {name: module_file, type: String, optional: true} - {name: preprocessing_fn, type: String, optional: true} - {name: custom_config, type: JsonObject, optional: true} outputs: - {name: transform_graph, type: TransformGraph} - {name: transformed_examples, type: Examples} implementation: container: image: tensorflow/tfx:0.21.4 command: - python3 - -u - -c - | def _make_parent_dirs_and_return_path(file_path: str): import os os.makedirs(os.path.dirname(file_path), exist_ok=True) return file_path def Transform( examples_path , schema_path , transform_graph_path , transformed_examples_path , module_file = None, preprocessing_fn = None, custom_config = None, ): """A TFX component to transform the input examples. The Transform component wraps TensorFlow Transform (tf.Transform) to preprocess data in a TFX pipeline. This component will load the preprocessing_fn from input module file, preprocess both 'train' and 'eval' splits of input examples, generate the `tf.Transform` output, and save both transform function and transformed examples to orchestrator desired locations. ## Providing a preprocessing function The TFX executor will use the estimator provided in the `module_file` file to train the model. The Transform executor will look specifically for the `preprocessing_fn()` function within that file. An example of `preprocessing_fn()` can be found in the [user-supplied code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py)) of the TFX Chicago Taxi pipeline example. Args: examples: A Channel of 'Examples' type (required). This should contain the two splits 'train' and 'eval'. schema: A Channel of 'SchemaPath' type. This should contain a single schema artifact. module_file: The file path to a python module file, from which the 'preprocessing_fn' function will be loaded. The function must have the following signature. def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]: ... where the values of input and returned Dict are either tf.Tensor or tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. preprocessing_fn: The path to python function that implements a 'preprocessing_fn'. See 'module_file' for expected signature of the function. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. Returns: transform_graph: Optional output 'TransformPath' channel for output of 'tf.Transform', which includes an exported Tensorflow graph suitable for both training and serving; transformed_examples: Optional output 'ExamplesPath' channel for materialized transformed examples, which includes both 'train' and 'eval' splits. Raises: ValueError: When both or neither of 'module_file' and 'preprocessing_fn' is supplied. """ from tfx.components.transform.component import Transform component_class = Transform #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments[name + '_path'] # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) import json import argparse _parser = argparse.ArgumentParser(prog='Transform', description="A TFX component to transform the input examples.\n\n The Transform component wraps TensorFlow Transform (tf.Transform) to\n preprocess data in a TFX pipeline. This component will load the\n preprocessing_fn from input module file, preprocess both 'train' and 'eval'\n splits of input examples, generate the `tf.Transform` output, and save both\n transform function and transformed examples to orchestrator desired locations.\n\n ## Providing a preprocessing function\n The TFX executor will use the estimator provided in the `module_file` file\n to train the model. The Transform executor will look specifically for the\n `preprocessing_fn()` function within that file.\n\n An example of `preprocessing_fn()` can be found in the [user-supplied\n code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py))\n of the TFX Chicago Taxi pipeline example.\n\n Args:\n examples: A Channel of 'Examples' type (required). This should\n contain the two splits 'train' and 'eval'.\n schema: A Channel of 'SchemaPath' type. This should contain a single\n schema artifact.\n module_file: The file path to a python module file, from which the\n 'preprocessing_fn' function will be loaded. The function must have the\n following signature.\n\n def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]:\n ...\n\n where the values of input and returned Dict are either tf.Tensor or\n tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn'\n must be supplied.\n preprocessing_fn: The path to python function that implements a\n 'preprocessing_fn'. See 'module_file' for expected signature of the\n function. Exactly one of 'module_file' or 'preprocessing_fn' must\n be supplied.\n\n Returns:\n transform_graph: Optional output 'TransformPath' channel for output of\n 'tf.Transform', which includes an exported Tensorflow graph suitable for\n both training and serving;\n transformed_examples: Optional output 'ExamplesPath' channel for\n materialized transformed examples, which includes both 'train' and\n 'eval' splits.\n\n Raises:\n ValueError: When both or neither of 'module_file' and 'preprocessing_fn'\n is supplied.") _parser.add_argument("--examples", dest="examples_path", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--schema", dest="schema_path", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--module-file", dest="module_file", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--preprocessing-fn", dest="preprocessing_fn", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--custom-config", dest="custom_config", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("--transform-graph", dest="transform_graph_path", type=_make_parent_dirs_and_return_path, required=True, default=argparse.SUPPRESS) _parser.add_argument("--transformed-examples", dest="transformed_examples_path", type=_make_parent_dirs_and_return_path, required=True, default=argparse.SUPPRESS) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = Transform(**_parsed_args) _output_serializers = [ ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --examples - {inputPath: examples} - --schema - {inputPath: schema} - if: cond: {isPresent: module_file} then: - --module-file - {inputValue: module_file} - if: cond: {isPresent: preprocessing_fn} then: - --preprocessing-fn - {inputValue: preprocessing_fn} - if: cond: {isPresent: custom_config} then: - --custom-config - {inputValue: custom_config} - --transform-graph - {outputPath: transform_graph} - --transformed-examples - {outputPath: transformed_examples}
8,107
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform/with_URI_IO/component.py
# flake8: noqa from typing import NamedTuple def Transform( examples_uri: 'ExamplesUri', schema_uri: 'SchemaUri', output_transform_graph_uri: 'TransformGraphUri', output_transformed_examples_uri: 'ExamplesUri', module_file: str = None, preprocessing_fn: str = None, custom_config: dict = None, beam_pipeline_args: list = None, ) -> NamedTuple('Outputs', [ ('transform_graph_uri', 'TransformGraphUri'), ('transformed_examples_uri', 'ExamplesUri'), ]): from tfx.components import Transform as component_class #Generated code import json import os import tempfile import tensorflow from google.protobuf import json_format, message from tfx.types import channel_utils, artifact_utils from tfx.components.base import base_executor arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) else: argument_value_obj = argument_value component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path') if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) # Workaround for https://github.com/tensorflow/tensorflow/issues/39167 subdirs = [subdir.rstrip('/') for subdir in subdirs] artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all()) output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all()) exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path') if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) # Workaround for a TFX+Beam bug to make DataflowRunner work. # Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df import tfx tfx.version.__version__ += 'dev' executor_context = base_executor.BaseExecutor.Context( beam_pipeline_args=beam_pipeline_args, tmp_dir=tempfile.gettempdir(), unique_id='tfx_component', ) executor = component_class_instance.executor_spec.executor_class(executor_context) executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) return (output_transform_graph_uri, output_transformed_examples_uri, ) if __name__ == '__main__': import kfp kfp.components.create_component_from_func( Transform, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )
8,108
0
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform
kubeflow_public_repos/kfp-tekton-backend/components/tfx/Transform/with_URI_IO/component.yaml
name: Transform inputs: - {name: examples_uri, type: ExamplesUri} - {name: schema_uri, type: SchemaUri} - {name: output_transform_graph_uri, type: TransformGraphUri} - {name: output_transformed_examples_uri, type: ExamplesUri} - {name: module_file, type: String, optional: true} - {name: preprocessing_fn, type: String, optional: true} - {name: custom_config, type: JsonObject, optional: true} - {name: beam_pipeline_args, type: JsonArray, optional: true} outputs: - {name: transform_graph_uri, type: TransformGraphUri} - {name: transformed_examples_uri, type: ExamplesUri} implementation: container: image: tensorflow/tfx:0.21.4 command: - python3 - -u - -c - | def Transform( examples_uri, schema_uri, output_transform_graph_uri, output_transformed_examples_uri, module_file = None, preprocessing_fn = None, custom_config = None, beam_pipeline_args = None, ): from tfx.components import Transform as component_class #Generated code import json import os import tempfile import tensorflow from google.protobuf import json_format, message from tfx.types import channel_utils, artifact_utils from tfx.components.base import base_executor arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) else: argument_value_obj = argument_value component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path') if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) # Workaround for https://github.com/tensorflow/tensorflow/issues/39167 subdirs = [subdir.rstrip('/') for subdir in subdirs] artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all()) output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all()) exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path') if base_artifact_path: # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) # Workaround for a TFX+Beam bug to make DataflowRunner work. # Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df import tfx tfx.version.__version__ += 'dev' executor_context = base_executor.BaseExecutor.Context( beam_pipeline_args=beam_pipeline_args, tmp_dir=tempfile.gettempdir(), unique_id='tfx_component', ) executor = component_class_instance.executor_spec.executor_class(executor_context) executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) return (output_transform_graph_uri, output_transformed_examples_uri, ) import json import argparse _parser = argparse.ArgumentParser(prog='Transform', description='') _parser.add_argument("--examples-uri", dest="examples_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--schema-uri", dest="schema_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--output-transform-graph-uri", dest="output_transform_graph_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--output-transformed-examples-uri", dest="output_transformed_examples_uri", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--module-file", dest="module_file", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--preprocessing-fn", dest="preprocessing_fn", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--custom-config", dest="custom_config", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("--beam-pipeline-args", dest="beam_pipeline_args", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=2) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = Transform(**_parsed_args) _output_serializers = [ str, str, ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --examples-uri - {inputValue: examples_uri} - --schema-uri - {inputValue: schema_uri} - --output-transform-graph-uri - {inputValue: output_transform_graph_uri} - --output-transformed-examples-uri - {inputValue: output_transformed_examples_uri} - if: cond: {isPresent: module_file} then: - --module-file - {inputValue: module_file} - if: cond: {isPresent: preprocessing_fn} then: - --preprocessing-fn - {inputValue: preprocessing_fn} - if: cond: {isPresent: custom_config} then: - --custom-config - {inputValue: custom_config} - if: cond: {isPresent: beam_pipeline_args} then: - --beam-pipeline-args - {inputValue: beam_pipeline_args} - '----output-paths' - {outputPath: transform_graph_uri} - {outputPath: transformed_examples_uri}
8,109
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/README.md
# Seldon Core - Serve PyTorch Model ## Intended Use Serve PyTorch Models remotely as web service using Seldon Core ## Run-Time Parameters: Name | Description :--- | :---------- model_id | Required. Model training_id from Fabric for Deep Learning deployment_name | Required. Deployment name for the seldon service model_class_name | PyTorch model class name', default: 'ModelClass' model_class_file | File that contains the PyTorch model class', default: 'model_class.py' serving_image | Model serving images', default: 'aipipeline/seldon-pytorch:0.1 ## Output: Name | Description :--- | :---------- output | Model Serving status ## Sample Note: the sample code below works in both IPython notebook or python code directly. ### Set sample parameters ```python # Parameters model_id = 'Model training_id' deployment_name = 'Deployment name for the seldon service' model_class_name = 'PyTorch model class name' model_class_file = 'File that contains the PyTorch model class' serving_image = 'aipipeline/seldon-pytorch:0.1' ``` ```python # Additional Parameters EXPERIMENT_NAME = 'Seldon Core - Serve PyTorch Model' COMPONENT_SPEC_URI = 'https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/serve/component.yaml' ``` ### Install KFP SDK Install the SDK (Uncomment the code if the SDK is not installed before) ```python #KFP_PACKAGE = 'https://storage.googleapis.com/ml-pipeline/release/0.1.12/kfp.tar.gz' #!pip3 install $KFP_PACKAGE --upgrade ``` ### Load component definitions ```python import kfp.components as comp ffdl_serve_op = comp.load_component_from_url(COMPONENT_SPEC_URI) display(ffdl_serve_op) ``` ### Here is an illustrative pipeline that uses the component ```python import kfp.dsl as dsl import ai_pipeline_params as params import json @dsl.pipeline( name='FfDL Serve Pipeline', description='FfDL Serve pipeline leveraging Sledon' ) def ffdl_train_pipeline( model_id, deployment_name, model_class_name, model_class_file, serving_image ): ffdl_serve_op(model_id, deployment_name,model_class_name,model_class_file,serving_image).apply(params.use_ai_pipeline_params('kfp-creds')) ``` ### Compile the pipeline ```python pipeline_func = ffdl_serve_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) ``` ### Submit the pipeline for execution ```python #Specify pipeline argument values arguments = {} #Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment(EXPERIMENT_NAME) #Submit a pipeline run run_name = pipeline_func.__name__ + ' run' run_result = client.run_pipeline(experiment.id, run_name, pipeline_filename, arguments) ```
8,110
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Serve PyTorch Model - Seldon Core' description: | Serve PyTorch Models remotely as web service using Seldon Core metadata: annotations: {platform: 'OpenSource'} inputs: - {name: model_id, description: 'Required. Model training_id from Fabric for Deep Learning'} - {name: deployment_name, description: 'Required. Deployment name for the seldon service'} - {name: model_class_name, description: 'PyTorch model class name', default: 'ModelClass'} - {name: model_class_file, description: 'File that contains the PyTorch model class', default: 'model_class.py'} - {name: serving_image, description: 'Model serving images', default: 'aipipeline/seldon-pytorch:0.1'} outputs: - {name: output, description: 'Model Serving status'} implementation: container: image: docker.io/aipipeline/ffdl-serve:latest command: ['python'] args: [ -u, serve.py, --model_id, {inputValue: model_id}, --deployment_name, {inputValue: deployment_name}, --model_class_name, {inputValue: model_class_name}, --model_class_file, {inputValue: model_class_file}, --serving_image, {inputValue: serving_image} ] fileOutputs: output: /tmp/deployment_result.txt
8,111
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/Dockerfile
FROM python:3.6-slim RUN pip install kubernetes Flask flask-cors requests ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME ENTRYPOINT ["python", "serve.py"]
8,112
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/src/app.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import logging import re import requests import sys import traceback from flask import Flask, request, abort from flask_cors import CORS app = Flask(__name__) CORS(app) # Setup Logging logging.basicConfig(level="INFO", format='%(levelname)s: %(message)s') LOG = logging.getLogger("deploy_seldon") def apply_oid_token_monkey_patch(): LOG.warning("applying monkey-patch for https://github.com/kubernetes-client/python/issues/525") import base64 import json import kubernetes from datetime import datetime, timezone from kubernetes.config.kube_config import _is_expired def load_oid_token_patched(self, provider): if 'auth-provider' not in self._user: return provider = self._user['auth-provider'] if 'name' not in provider or 'config' not in provider or provider['name'] != 'oidc': return parts = provider['config']['id-token'].split('.') if len(parts) != 3: # Not a valid JWT return None padding = (4 - len(parts[1]) % 4) * '=' jwt_attributes = json.loads(base64.b64decode(parts[1] + padding).decode('utf-8')) expire = jwt_attributes.get('exp') if (expire is not None) and _is_expired(datetime.fromtimestamp(expire, tz=timezone.utc)): self._refresh_oidc(provider) if self._config_persister: self._config_persister(self._config.value) self.token = "Bearer %s" % provider['config']['id-token'] return self.token kubernetes.config.kube_config.KubeConfigLoader._load_oid_token = load_oid_token_patched def load_kube_config(params): # from six import PY3 # PY3 = sys.version_info.major == 3 # # # apply monkey-patch for kubernetes client OIDC authentication issue 525 ("binascii.Error: Incorrect padding") # # before importing client and config from kubernetes # if PY3: # apply_oid_token_monkey_patch() from kubernetes import config # kube_config_file = "kube/%s/kube-config.yml" % params["public_ip"] config.load_incluster_config() def get_api_client_v1(): import kubernetes api_client_v1 = kubernetes.client.CoreV1Api() return api_client_v1 def get_custom_objects_api_client(): import kubernetes api_client = kubernetes.client.CustomObjectsApi() return api_client def get_seldon_spec(params): with open("kube/seldon.json") as f: spec = json.load(f) # override the 'SELDON_DEPLOYMENT_ID' and the kubernetes service name with the 'deployment_name' from the parameters deployment_name = get_deployment_name(params) spec["metadata"]["name"] = deployment_name # 'fashion-deployment-id' ... SELDON_DEPLOYMENT_ID spec["spec"]["name"] = deployment_name # 'fashion-service-name' return spec def update_seldon_spec(params): spec = get_seldon_spec(params) if "container_image" in params: spec["spec"]["predictors"][0]["componentSpecs"][0]["spec"]["containers"][0]["image"] = params["container_image"] env_list = spec["spec"]["predictors"][0]["componentSpecs"][0]["spec"]["containers"][0]["env"] env_dict = {var["name"]: var["value"] for var in env_list} env_dict["MODEL_FILE_NAME"] = params["model_file_name"] env_dict["TRAINING_ID"] = params["training_id"] env_dict["BUCKET_NAME"] = params["training_results_bucket"] env_dict["BUCKET_ENDPOINT_URL"] = params["aws_endpoint_url"] env_dict["BUCKET_KEY"] = params['aws_access_key_id'] env_dict["BUCKET_SECRET"] = params['aws_secret_access_key'] env_dict["MODEL_CLASS_NAME"] = params['model_class_name'] env_dict["MODEL_CLASS_FILE"] = params['model_class_file'] env_updated = [{"name": key, "value": value} for key, value in env_dict.items()] spec["spec"]["predictors"][0]["componentSpecs"][0]["spec"]["containers"][0]["env"] = env_updated return spec def deploy_seldon_spec(spec): name = spec["metadata"]["name"] namespace = "default" # TODO: the namespace should be configured or be figured out dynamically plural = spec["kind"].lower()+"s" # TODO: verify the "rule" for constructing plural group, version = spec["apiVersion"].split("/") api_client = get_custom_objects_api_client() api_response = api_client.list_namespaced_custom_object(group, version, namespace, plural) if name in [deployment["metadata"]["name"] for deployment in api_response["items"]]: api_response = api_client.patch_namespaced_custom_object(group, version, namespace, plural, name, spec) else: api_response = api_client.create_namespaced_custom_object(group, version, namespace, plural, spec) # api_response_filtered = {key: api_response[key] for key in ["apiVersion", "kind"]} LOG.info("%s ..." % str(api_response)[:160]) return api_response def delete_deployment(params): from kubernetes.client import V1DeleteOptions spec = get_seldon_spec(params) name = get_deployment_name(params) # spec["metadata"]["name"] namespace = "default" # TODO: the namespace should be configured or be figured out dynamically plural = spec["kind"].lower()+"s" # TODO: verify the "rule" for constructing plural group, version = spec["apiVersion"].split("/") del_opts = V1DeleteOptions() api_client = get_custom_objects_api_client() api_response = api_client.list_namespaced_custom_object(group, version, namespace, plural) if name in [deployment["metadata"]["name"] for deployment in api_response["items"]]: api_response = api_client.delete_namespaced_custom_object(group, version, namespace, plural, name, del_opts) else: LOG.error("Could not find the Seldon deployment '%s'" % name) return { "status": "Error", "details": "Could not find a Seldon deployment with name '%s'" % name } # api_response_filtered = {key: api_response[key] for key in ["apiVersion", "kind"]} LOG.info("%s ..." % str(api_response)[:160]) return api_response def get_service_name(params): # 'SELDON_DEPLOYMENT_ID': 'fashion-mnist' # 'PREDICTOR_ID': 'single-model' # 'PREDICTIVE_UNIT_ID': 'classifier' seldon_spec = get_seldon_spec(params) spec_name = get_deployment_name(params) # seldon_spec["spec"]["name"]) # 'fashion-mnist' predictor_name = seldon_spec["spec"]["predictors"][0]["name"] # 'single-model' graph_name = seldon_spec["spec"]["predictors"][0]["graph"]["name"] # 'classifier' (== containers[0].name) pod_name_prefix = "%s-%s-%s" % (spec_name, predictor_name, graph_name) return pod_name_prefix # 'fashion-mnist-single-model-classifier' def get_pods(params): api_client_v1 = get_api_client_v1() pods = api_client_v1.list_namespaced_pod(namespace="default", watch=False) pod_name_prefix = get_service_name(params) # 'fashion-mnist-single-model-classifier' deployment_name = get_deployment_name(params) training_id = params["training_id"] def match_seldon_deployment(pod): if not pod.metadata.name.startswith(pod_name_prefix): return False env = {var.name: var.value for var in pod.spec.containers[0].env} return env["SELDON_DEPLOYMENT_ID"] == deployment_name and \ env["TRAINING_ID"] == training_id return list(filter(match_seldon_deployment, pods.items)) def get_deployment_status(params): # AVAILABLE (classifier URL actually available) # READY (pod status, not url availability) # UNKNOWN (no pods) # ERROR (CrashLoopBackOff, Succeeded - if pod terminated, will not be restarted, this should not happen) # PENDING (Creating..., ContainerCreating, ContainersReady, PodScheduled, Pending, Initialized, Running) pods = get_pods(params) if not pods: status = get_deployment_state(params) or "Unknown" else: status_conditions = sorted(pods[0].status.conditions, key=lambda status: status.last_transition_time, reverse=True) status = status_conditions[0].type if status in ["Creating...", "ContainerCreating", "ContainersReady", "PodScheduled", "Initialized", "Running"]: status = "Pending" if status in ["CrashLoopBackOff", "Unschedulable", "Failed", "Succeeded"]: status = "Error" if status == "Ready": status = "Available" return status.upper() def get_deployment_state(params): deployment_name = get_deployment_name(params) spec = get_seldon_spec(params) group, version = spec["apiVersion"].split("/") namespace = "default" # TODO: the namespace should be configured or be figured out dynamically plural = spec["kind"].lower() + "s" # TODO: verify the "rule" for constructing plural api_client = get_custom_objects_api_client() api_response = api_client.list_namespaced_custom_object(group, version, namespace, plural) if deployment_name in [deployment["metadata"]["name"] for deployment in api_response["items"]]: deployed_spec = api_client.get_namespaced_custom_object(group, version, namespace, plural, deployment_name) env_list = deployed_spec["spec"]["predictors"][0]["componentSpecs"][0]["spec"]["containers"][0]["env"] env_dict = {var["name"]: var["value"] for var in env_list} deployed_training_id = env_dict["TRAINING_ID"] if params["training_id"] == deployed_training_id and "status" in deployed_spec: return deployed_spec["status"]["state"].upper() # "CREATING...", "FAILED", ... else: LOG.info("Could not find a Seldon deployment with name '%s'" % deployment_name) return None def get_ambassador_port(): from kubernetes.client.rest import ApiException api_client_v1 = get_api_client_v1() try: svc = api_client_v1.read_namespaced_service(namespace="default", name="seldon-core-ambassador") except ApiException: svc = api_client_v1.read_namespaced_service(namespace="default", name="ambassador") port = svc.spec.ports[0].node_port return port def get_deployment_name(params): # DNS-1123 sub-domain must consist of lower case alphanumeric characters (or Seldon will raise an exception) regex = r'^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$' deployment_name = params["deployment_name"] if not re.match(regex, deployment_name): LOG.error("deployment name '%s' does not pass Seldon regex filter '%s'" % (deployment_name, regex)) params["deployment_name"] = deployment_name\ .replace("_", "-")\ .replace(" ", "-")\ .lower() return params["deployment_name"] def get_deployment_url(params): # "http://${PUBLIC_IP}:${SELDON_AMBASSADOR_PORT}/seldon/${deployment_name}/api/v0.1/predictions" ip = params["public_ip"] port = get_ambassador_port() name = get_deployment_name(params) url = "http://%s:%s/seldon/%s/api/v0.1/predictions" % (ip, port, name) return url def is_deployment_available(params): url = get_deployment_url(params) response = requests.options(url) return response.status_code == 200 def get_http_method(params): # GET get deployment status # POST create or patch existing deployment # PUT patch existing deployment # PATCH patch existing deployment # DELETE delete deployment # return params.get("__ow_method", "POST").upper() # TODO: default for local testing only, remove if params.get("check_status_only", False): return "GET" if params.get("delete_deployment", False): return "DELETE" return params.get("__ow_method", "POST").upper() def run_safe(params, method): try: load_kube_config(params) # method = get_http_method(params) if method in ("POST", "PATCH", "PUT"): # if set(deployment_parameters).issubset(params.keys()): LOG.info("deploying '%s' on cluster '%s'" % (params["deployment_name"], params["public_ip"])) spec = update_seldon_spec(params) deploy_result = deploy_seldon_spec(spec) deployment_url = get_deployment_url(params) deployment_state = deploy_result["status"]["state"].upper() if "status" in deploy_result \ else get_deployment_status(params) result = { "deployment_status": deployment_state, "deployment_url": deployment_url, "details": deploy_result } elif method == "GET": LOG.info("get deployment status of '%s' on cluster '%s'" % (params["deployment_name"], params["public_ip"])) deployment_url = get_deployment_url(params) deployment_state = get_deployment_status(params) result = { "deployment_status": deployment_state, # "Error" "Creating Container" "CrashLoopBackOff" "Pending" "deployment_url": deployment_url } elif method == "DELETE": LOG.info("deleting deployment for '%s' on cluster '%s'" % (params["deployment_name"], params["public_ip"])) delete_result = delete_deployment(params) result = { "status": delete_result["status"], "details": delete_result["details"] } else: result = { "status": "Failed", "message": "could not identify HTTP request method" } result["status"] = result.get("status", "Success") return result except Exception as e: LOG.exception('%s: %s' % (e.__class__.__name__, str(e))) return { "status": "Error", "details": { "error": e.__class__.__name__, "message": str(e), "trace": traceback.format_exc() } } @app.route('/', methods=['POST']) def deployment_api_post(): if not request.json: abort(400) return json.dumps(run_safe(request.json,"POST")) @app.route('/', methods=['GET']) def deployment_api_get(): return json.dumps(run_safe(json.loads(json.dumps(request.args)),"GET")) @app.route('/', methods=['DELETE']) def deployment_api_delete(): return json.dumps(run_safe(json.loads(json.dumps(request.args)),"DELETE")) @app.route('/', methods=['OPTIONS']) def deployment_api_options(): return "200" if __name__ == "__main__": app.run(debug=True,host='0.0.0.0',port=int(os.environ.get('PORT', 8080)))
8,113
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/src/serve.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import argparse from app import run_safe if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_id', type=str, help='Training model id') parser.add_argument('--deployment_name', type=str, help='Deployment name for the seldon service') parser.add_argument('--model_class_name', type=str, help='PyTorch model class name', default='ModelClass') parser.add_argument('--model_class_file', type=str, help='File that contains the PyTorch model class', default='model_class.py') parser.add_argument('--serving_image', type=str, help='Model serving images', default='aipipeline/seldon-pytorch:0.1') args = parser.parse_args() with open("/app/secrets/s3_url", 'r') as f: s3_url = f.readline().strip('\'') f.close() with open("/app/secrets/result_bucket", 'r') as f: bucket_name = f.readline().strip('\'') f.close() with open("/app/secrets/s3_access_key_id", 'r') as f: s3_access_key_id = f.readline().strip('\'') f.close() with open("/app/secrets/s3_secret_access_key", 'r') as f: s3_secret_access_key = f.readline().strip('\'') f.close() with open("/app/secrets/k8s_public_nodeport_ip", 'r') as f: seldon_ip = f.readline().strip('\'') f.close() model_id = args.model_id deployment_name = args.deployment_name model_class_name = args.model_class_name model_class_file = args.model_class_file serving_image = args.serving_image formData = { "public_ip": seldon_ip, "aws_endpoint_url": s3_url, "aws_access_key_id": s3_access_key_id, "aws_secret_access_key": s3_secret_access_key, "training_results_bucket": bucket_name, "model_file_name": "model.pt", "deployment_name": deployment_name, "training_id": model_id, "container_image": serving_image, "check_status_only": False, "model_class_name": model_class_name, "model_class_file": model_class_file } metrics = run_safe(formData, "POST") print(metrics) with open('/tmp/deployment_result.txt', "w") as report: report.write(json.dumps(metrics)) print('\nThe Model is running at ' + metrics['deployment_url'])
8,114
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/src
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/serve/src/kube/seldon.json
{ "apiVersion": "machinelearning.seldon.io/v1alpha2", "kind": "SeldonDeployment", "metadata": { "labels": { "app": "seldon" }, "name": "deployment-id" }, "spec": { "annotations": { "project_name": "pytorch-classifier", "deployment_version": "v1" }, "name": "pytorch-classifier", "oauth_key": "oauth-key", "oauth_secret": "oauth-secret", "predictors": [ { "componentSpecs": [{ "spec": { "containers": [ { "image": "aipipeline/seldon-pytorch:0.1", "imagePullPolicy": "IfNotPresent", "name": "classifier", "resources": { "requests": { "memory": "1Mi" } }, "env": [ { "name": "MODEL_FILE_NAME", "value": "model.pt" }, { "name": "TRAINING_ID", "value": "training-abcde1234" }, { "name": "BUCKET_NAME", "value": "training-results" }, { "name": "BUCKET_ENDPOINT_URL", "value": "https://s3-api.us-geo.objectstorage.softlayer.net" }, { "name": "BUCKET_KEY", "value": "" }, { "name": "BUCKET_SECRET", "value": "" }, { "name": "MODEL_CLASS_NAME", "value": "ModelClass" }, { "name": "MODEL_CLASS_FILE", "value": "model_class.py" } ] } ], "terminationGracePeriodSeconds": 20 } }], "graph": { "children": [], "name": "classifier", "endpoint": { "type": "REST" }, "type": "MODEL" }, "name": "single-model", "replicas": 1, "annotations": { "predictor_version": "v1" } } ] } }
8,115
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/train/README.md
# Fabric for Deep Learning - Train Model ## Intended Use Train Machine Learning and Deep Learning Models remotely using Fabric for Deep Learning ## Run-Time Parameters: Name | Description :--- | :---------- model_def_file_path | Required. Path for model training code in object storage manifest_file_path | Required. Path for model manifest definition in object storage ## Output: Name | Description :--- | :---------- output | Model training_id ## Sample Note: the sample code below works in both IPython notebook or python code directly. ### Set sample parameters ```python # Required Parameters MODEL_DEF_FILE_PATH = '<Please put your path for model training code in the object storage bucket>' MANIFEST_FILE_PATH = '<Please put your path for model manifest definition in the object storage bucket>' ``` ```python # Optional Parameters EXPERIMENT_NAME = 'Fabric for Deep Learning - Train Model' COMPONENT_SPEC_URI = 'https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/train/component.yaml' ``` ### Install KFP SDK Install the SDK (Uncomment the code if the SDK is not installed before) ```python #KFP_PACKAGE = 'https://storage.googleapis.com/ml-pipeline/release/0.1.12/kfp.tar.gz' #!pip3 install $KFP_PACKAGE --upgrade ``` ### Load component definitions ```python import kfp.components as comp ffdl_train_op = comp.load_component_from_url(COMPONENT_SPEC_URI) display(ffdl_train_op) ``` ### Here is an illustrative pipeline that uses the component ```python import kfp.dsl as dsl import ai_pipeline_params as params import json @dsl.pipeline( name='FfDL train pipeline', description='FfDL train pipeline' ) def ffdl_train_pipeline( model_def_file_path=MODEL_DEF_FILE_PATH, manifest_file_path=MANIFEST_FILE_PATH ): ffdl_train_op(model_def_file_path, manifest_file_path).apply(params.use_ai_pipeline_params('kfp-creds')) ``` ### Compile the pipeline ```python pipeline_func = ffdl_train_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) ``` ### Submit the pipeline for execution ```python #Specify pipeline argument values arguments = {} #Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment(EXPERIMENT_NAME) #Submit a pipeline run run_name = pipeline_func.__name__ + ' run' run_result = client.run_pipeline(experiment.id, run_name, pipeline_filename, arguments) ```
8,116
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/train/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Train Model - FfDL' description: | Train Machine Learning and Deep Learning Models remotely using Fabric for Deep Learning metadata: annotations: {platform: 'OpenSource'} inputs: - {name: model_def_file_path, description: 'Required. Path for model training code in object storage'} - {name: manifest_file_path, description: 'Required. Path for model manifest definition in object storage'} outputs: - {name: output, description: 'Model training_id'} implementation: container: image: docker.io/aipipeline/ffdl-train:latest command: ['python'] args: [ -u, train.py, --model_def_file_path, {inputValue: model_def_file_path}, --manifest_file_path, {inputValue: manifest_file_path} ] fileOutputs: output: /tmp/training_id.txt
8,117
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/train/Dockerfile
FROM python:3.6-slim RUN pip install boto3 ruamel.yaml requests ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME ENTRYPOINT ["python", "train.py"]
8,118
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/train
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/ffdl/train/src/train.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import boto3 import botocore import requests import argparse import time from ruamel.yaml import YAML import subprocess import os ''' global initialization ''' yaml = YAML(typ='safe') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_def_file_path', type=str, help='Object storage bucket file path for the training model definition') parser.add_argument('--manifest_file_path', type=str, help='Object storage bucket file path for the FfDL manifest') args = parser.parse_args() with open("/app/secrets/s3_url", 'r') as f: s3_url = f.readline().strip('\'') f.close() with open("/app/secrets/training_bucket", 'r') as f: data_bucket_name = f.readline().strip('\'') f.close() with open("/app/secrets/result_bucket", 'r') as f: result_bucket_name = f.readline().strip('\'') f.close() with open("/app/secrets/s3_access_key_id", 'r') as f: s3_access_key_id = f.readline().strip('\'') f.close() with open("/app/secrets/s3_secret_access_key", 'r') as f: s3_secret_access_key = f.readline().strip('\'') f.close() with open("/app/secrets/ffdl_rest", 'r') as f: ffdl_rest = f.readline().strip('\'') f.close() model_def_file_path = args.model_def_file_path manifest_file_path = args.manifest_file_path ''' Download FfDL CLI for log streaming ''' res = requests.get('https://github.com/IBM/FfDL/raw/master/cli/bin/ffdl-linux', allow_redirects=True) open('ffdl', 'wb').write(res.content) subprocess.call(['chmod', '755', 'ffdl']) ''' Download the training model definition and FfDL manifest ''' client = boto3.resource( 's3', endpoint_url=s3_url, aws_access_key_id=s3_access_key_id, aws_secret_access_key=s3_secret_access_key, ) try: client.Bucket(data_bucket_name).download_file(model_def_file_path, 'model.zip') client.Bucket(data_bucket_name).download_file(manifest_file_path, 'manifest.yml') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise ''' Update FfDL manifest with the corresponding object storage credentials ''' f = open('manifest.yml', 'r') manifest = yaml.safe_load(f.read()) f.close() manifest['data_stores'][0]['connection']['auth_url'] = s3_url manifest['data_stores'][0]['connection']['user_name'] = s3_access_key_id manifest['data_stores'][0]['connection']['password'] = s3_secret_access_key manifest['data_stores'][0]['training_data']['container'] = data_bucket_name manifest['data_stores'][0]['training_results']['container'] = result_bucket_name f = open('manifest.yml', 'w') yaml.default_flow_style = False yaml.dump(manifest, f) f.close() ''' Submit Training job to FfDL and monitor its status ''' files = { 'manifest': open('manifest.yml', 'rb'), 'model_definition': open('model.zip', 'rb') } headers = { 'accept': 'application/json', 'Authorization': 'test', 'X-Watson-Userinfo': 'bluemix-instance-id=test-user' } response = requests.post(ffdl_rest + '/v1/models?version=2017-02-13', files=files, headers=headers) print(response.json()) id = response.json()['model_id'] print('Training job has started, please visit the FfDL UI for more details') training_status = 'PENDING' os.environ['DLAAS_PASSWORD'] = 'test' os.environ['DLAAS_USERNAME'] = 'test-user' os.environ['DLAAS_URL'] = ffdl_rest while training_status != 'COMPLETED': response = requests.get(ffdl_rest + '/v1/models/' + id + '?version=2017-02-13', headers=headers) training_status = response.json()['training']['training_status']['status'] print('Training Status: ' + training_status) if training_status == 'COMPLETED': with open('/tmp/training_id.txt', "w") as report: report.write(json.dumps(id)) exit(0) if training_status == 'FAILED': print('Training failed. Exiting...') exit(1) if training_status == 'PROCESSING': counter = 0 process = subprocess.Popen(['./ffdl', 'logs', id, '--follow'], stdout=subprocess.PIPE) while True: output = process.stdout.readline() if output: print(output.strip()) elif process.poll() is not None: break else: counter += 1 time.sleep(5) if counter > 5: break time.sleep(10)
8,119
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/store/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Store model - Watson Machine Learning' description: | Store and persistent trained model on Watson Machine Learning. metadata: annotations: {platform: 'IBM Watson Machine Learning'} inputs: - {name: run_uid, description: 'Required. UID for the Watson Machine Learning training-runs'} - {name: model_name, description: 'Required. Model Name to store on Watson Machine Learning'} - {name: framework, description: 'ML/DL Model Framework', default: 'tensorflow'} - {name: framework_version, description: 'Model Framework version', default: '1.14'} - {name: runtime_version, description: 'Model Code runtime version', default: '3.6'} outputs: - {name: model_uid, description: 'UID for the stored model on Watson Machine Learning'} implementation: container: image: docker.io/aipipeline/wml-store:latest command: ['python3'] args: [ -u, /app/wml-store.py, --run-uid, {inputValue: run_uid}, --model-name, {inputValue: model_name}, --framework, {inputValue: framework}, --framework-version, {inputValue: framework_version}, --runtime-version, {inputValue: runtime_version}, --output-model-uid-path, {outputPath: model_uid} ]
8,120
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/store/Dockerfile
FROM python:3.6-slim # Directories for model codes and secrets RUN mkdir /app RUN mkdir /app/secrets # Watson studio and machine learning python client RUN pip install watson-machine-learning-client-V4 minio # Python functions with endpoints to Watson Machine Learning COPY src/wml-store.py /app
8,121
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/store
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/store/src/wml-store.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # define the function to store the model def getSecret(secret): with open(secret, 'r') as f: res = f.readline().strip('\'') f.close() return res def store(wml_model_name, run_uid, framework, framework_version, runtime_version, output_model_uid_path): from watson_machine_learning_client import WatsonMachineLearningAPIClient from pathlib import Path # retrieve credentials wml_url = getSecret("/app/secrets/wml_url") wml_instance_id = getSecret("/app/secrets/wml_instance_id") wml_apikey = getSecret("/app/secrets/wml_apikey") runtime_uid = framework + '_' + framework_version + '-py' + runtime_version runtime_type = framework + '_' + framework_version print("runtime_uid:", runtime_uid) print("runtime_type:", runtime_type) # set up the WML client wml_credentials = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } client = WatsonMachineLearningAPIClient(wml_credentials) # store the model meta_props_tf = { client.repository.ModelMetaNames.NAME: wml_model_name, client.repository.ModelMetaNames.RUNTIME_UID: runtime_uid, client.repository.ModelMetaNames.TYPE: runtime_type } model_details = client.repository.store_model(run_uid, meta_props=meta_props_tf) model_uid = client.repository.get_model_uid(model_details) print("model_uid: ", model_uid) Path(output_model_uid_path).parent.mkdir(parents=True, exist_ok=True) Path(output_model_uid_path).write_text(model_uid) import time time.sleep(120) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--model-name', type=str, required=True) parser.add_argument('--run-uid', type=str, required=True) parser.add_argument('--framework', type=str, required=True) parser.add_argument('--framework-version', type=str, required=True) parser.add_argument('--runtime-version', type=str, required=True) parser.add_argument('--output-model-uid-path', type=str, default='/tmp/model_uid') args = parser.parse_args() store(args.model_name, args.run_uid, args.framework, args.framework_version, args.runtime_version, args.output_model_uid_path)
8,122
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/subscribe/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Subscribe - Watson OpenScale' description: | Binding deployed models and subscribe them to Watson OpenScale service. metadata: annotations: {platform: 'IBM Watson OpenScale'} inputs: - {name: model_name, description: 'Deployed model name.', default: 'AIOS Spark German Risk Model - Final'} - {name: model_uid, description: 'Deployed model uid.', default: 'dummy uid'} - {name: aios_schema, description: 'OpenScale Schema Name', default: 'data_mart_credit_risk'} - {name: label_column, description: 'Model label column name.', default: 'Risk'} - {name: aios_manifest_path, description: 'Object storage file path for the aios manifest file', default: ''} - {name: bucket_name, description: 'Object storage bucket name', default: 'dummy-bucket-name'} - {name: problem_type, description: 'Model problem type', default: 'BINARY_CLASSIFICATION'} outputs: - {name: model_name, description: 'Deployed model name.'} implementation: container: image: docker.io/aipipeline/subscribe:latest command: ['python'] args: [ -u, subscribe.py, --model_name, {inputValue: model_name}, --model_uid, {inputValue: model_uid}, --aios_schema, {inputValue: aios_schema}, --label_column, {inputValue: label_column}, --aios_manifest_path, {inputValue: aios_manifest_path}, --bucket_name, {inputValue: bucket_name}, --problem_type, {inputValue: problem_type} ] fileOutputs: model_name: /tmp/model_name
8,123
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/subscribe/Dockerfile
FROM python:3.6.8-stretch RUN pip install --upgrade pip RUN pip install --upgrade watson-machine-learning-client ibm-ai-openscale Minio --no-cache | tail -n 1 RUN pip install psycopg2-binary | tail -n 1 ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME ENTRYPOINT ["python"] CMD ["subscribe.py"]
8,124
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/subscribe
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/subscribe/src/subscribe.py
import json import argparse import re from ibm_ai_openscale import APIClient from ibm_ai_openscale.engines import * from ibm_ai_openscale.utils import * from ibm_ai_openscale.supporting_classes import PayloadRecord, Feature from ibm_ai_openscale.supporting_classes.enums import * from watson_machine_learning_client import WatsonMachineLearningAPIClient from minio import Minio def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--aios_schema', type=str, help='AI OpenScale Schema Name', default="data_mart_credit_risk") parser.add_argument('--model_name', type=str, help='Deployed model name', default="AIOS Spark German Risk Model - Final") parser.add_argument('--model_uid', type=str, help='Deployed model uid', default="dummy uid") parser.add_argument('--label_column', type=str, help='Model label column name', default="Risk") parser.add_argument('--aios_manifest_path', type=str, help='Object storage file path for the aios manifest file', default="") parser.add_argument('--bucket_name', type=str, help='Object storage bucket name', default="dummy-bucket-name") parser.add_argument('--problem_type', type=str, help='Model problem type', default="BINARY_CLASSIFICATION") args = parser.parse_args() aios_schema = args.aios_schema model_name = args.model_name model_uid = args.model_uid label_column = args.label_column aios_manifest_path = args.aios_manifest_path cos_bucket_name = args.bucket_name problem_type = args.problem_type wml_url = get_secret_creds("/app/secrets/wml_url") wml_instance_id = get_secret_creds("/app/secrets/wml_instance_id") wml_apikey = get_secret_creds("/app/secrets/wml_apikey") aios_guid = get_secret_creds("/app/secrets/aios_guid") cloud_api_key = get_secret_creds("/app/secrets/cloud_api_key") postgres_uri = get_secret_creds("/app/secrets/postgres_uri") cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") ''' Make sure http scheme is not exist for Minio ''' url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) WML_CREDENTIALS = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } AIOS_CREDENTIALS = { "instance_guid": aios_guid, "apikey": cloud_api_key, "url": "https://api.aiopenscale.cloud.ibm.com" } if postgres_uri == '': POSTGRES_CREDENTIALS = None else: POSTGRES_CREDENTIALS = { "uri": postgres_uri } wml_client = WatsonMachineLearningAPIClient(WML_CREDENTIALS) ai_client = APIClient(aios_credentials=AIOS_CREDENTIALS) print('AIOS client version:' + ai_client.version) ''' Setup Postgres SQL and AIOS binding ''' SCHEMA_NAME = aios_schema try: data_mart_details = ai_client.data_mart.get_details() if 'internal_database' in data_mart_details['database_configuration'] and data_mart_details['database_configuration']['internal_database']: if POSTGRES_CREDENTIALS: print('Using existing internal datamart') else: print('Switching to external datamart') ai_client.data_mart.delete(force=True) create_postgres_schema(postgres_credentials=POSTGRES_CREDENTIALS, schema_name=SCHEMA_NAME) ai_client.data_mart.setup(db_credentials=POSTGRES_CREDENTIALS, schema=SCHEMA_NAME) else: print('Using existing external datamart') except: if POSTGRES_CREDENTIALS: print('Setting up internal datamart') ai_client.data_mart.setup(internal_db=True) else: print('Setting up external datamart') create_postgres_schema(postgres_credentials=POSTGRES_CREDENTIALS, schema_name=SCHEMA_NAME) ai_client.data_mart.setup(db_credentials=POSTGRES_CREDENTIALS, schema=SCHEMA_NAME) data_mart_details = ai_client.data_mart.get_details() binding_uid = ai_client.data_mart.bindings.add('WML instance', WatsonMachineLearningInstance(WML_CREDENTIALS)) if binding_uid is None: binding_uid = ai_client.data_mart.bindings.get_details()['service_bindings'][0]['metadata']['guid'] bindings_details = ai_client.data_mart.bindings.get_details() print('\nWML binding ID is ' + binding_uid + '\n') ''' Create subscriptions ''' subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for subscription in subscriptions_uids: sub_name = ai_client.data_mart.subscriptions.get_details(subscription)['entity']['asset']['name'] if sub_name == model_name: ai_client.data_mart.subscriptions.delete(subscription) print('Deleted existing subscription for', model_name) ''' Obtain feature and categorical columns ''' # Download aios manifest file cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) cos.fget_object(cos_bucket_name, aios_manifest_path, aios_manifest_path) # Extract necessary column names feature_columns = [] categorical_columns = [] with open(aios_manifest_path) as f: aios_manifest = json.load(f) OUTPUT_DATA_SCHEMA = {'fields': aios_manifest['model_schema'], 'type': 'struct'} for column in aios_manifest['model_schema']: if column['metadata'].get('modeling_role', '') == 'feature': feature_columns.append(column['name']) if column['metadata'].get('measure', '') == 'discrete': categorical_columns.append(column['name']) f.close() PROBLEMTYPE = ProblemType.BINARY_CLASSIFICATION if problem_type == 'BINARY_CLASSIFICATION': PROBLEMTYPE = ProblemType.BINARY_CLASSIFICATION elif problem_type == 'MULTICLASS_CLASSIFICATION': PROBLEMTYPE = ProblemType.MULTICLASS_CLASSIFICATION elif problem_type == 'REGRESSION': PROBLEMTYPE = ProblemType.REGRESSION subscription = ai_client.data_mart.subscriptions.add(WatsonMachineLearningAsset( model_uid, label_column=label_column, input_data_type=InputDataType.STRUCTURED, problem_type=PROBLEMTYPE, prediction_column='predictedLabel', probability_column='probability', feature_columns=feature_columns, categorical_columns=categorical_columns )) if subscription is None: print('Exists already') # subscription already exists; get the existing one subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for sub in subscriptions_uids: if ai_client.data_mart.subscriptions.get_details(sub)['entity']['asset']['name'] == model_name: subscription = ai_client.data_mart.subscriptions.get(sub) subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() print(subscription.get_details()) ''' Scoring the model and make sure the subscriptions are setup properly ''' credit_risk_scoring_endpoint = None deployment_uid = subscription.get_deployment_uids()[0] print('\n' + deployment_uid + '\n') for deployment in wml_client.deployments.get_details()['resources']: if deployment_uid in deployment['metadata']['guid']: credit_risk_scoring_endpoint = deployment['entity']['scoring_url'] print('Scoring endpoint is: ' + credit_risk_scoring_endpoint + '\n') with open("/tmp/model_name", "w") as report: report.write(model_name)
8,125
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_fairness/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Monitor Fairness - Watson OpenScale' description: | Enable model fairness monitoring on Watson OpenScale. metadata: annotations: {platform: 'IBM Watson OpenScale'} inputs: - {name: model_name, description: 'Deployed model name on OpenScale.', default: 'AIOS Spark German Risk Model - Final'} - {name: fairness_threshold, description: 'Amount of threshold for fairness monitoring.', default: '0.95'} - {name: fairness_min_records, description: 'Minimum amount of records for performing a fairness monitor.', default: '5'} - {name: aios_manifest_path, description: 'Object storage file path for the aios manifest file.', default: 'aios.json'} - {name: cos_bucket_name, description: 'Object storage bucket name.', default: 'bucket-name'} - {name: data_filename, description: 'Name of the data binary', default: ''} implementation: container: image: docker.io/aipipeline/monitor_fairness:latest command: ['python'] args: [ -u, monitor_fairness.py, --model_name, {inputValue: model_name}, --fairness_threshold, {inputValue: fairness_threshold}, --fairness_min_records, {inputValue: fairness_min_records}, --aios_manifest_path, {inputValue: aios_manifest_path}, --cos_bucket_name, {inputValue: cos_bucket_name}, --data_filename, {inputValue: data_filename} ]
8,126
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_fairness/Dockerfile
FROM python:3.6.8-stretch RUN pip install --upgrade pip RUN pip install --upgrade watson-machine-learning-client ibm-ai-openscale Minio pandas --no-cache | tail -n 1 RUN pip install psycopg2-binary | tail -n 1 ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME ENTRYPOINT ["python"] CMD ["monitor_fairness.py"]
8,127
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_fairness
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_fairness/src/monitor_fairness.py
import json import argparse import re from ibm_ai_openscale import APIClient from ibm_ai_openscale.engines import * from ibm_ai_openscale.utils import * from ibm_ai_openscale.supporting_classes import PayloadRecord, Feature from ibm_ai_openscale.supporting_classes.enums import * from minio import Minio import pandas as pd def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_name', type=str, help='Deployed model name', default='AIOS Spark German Risk Model - Final') parser.add_argument('--fairness_threshold', type=float, help='Amount of threshold for fairness monitoring', default=0.95) parser.add_argument('--fairness_min_records', type=int, help='Minimum amount of records for performing a fairness monitor', default=5) parser.add_argument('--aios_manifest_path', type=str, help='Object storage file path for the aios manifest file', default='aios.json') parser.add_argument('--cos_bucket_name', type=str, help='Object storage bucket name', default='bucket-name') parser.add_argument('--data_filename', type=str, help='Name of the data binary', default="") args = parser.parse_args() model_name = args.model_name fairness_threshold = args.fairness_threshold fairness_min_records = args.fairness_min_records cos_bucket_name = args.cos_bucket_name aios_manifest_path = args.aios_manifest_path data_filename = args.data_filename aios_guid = get_secret_creds("/app/secrets/aios_guid") cloud_api_key = get_secret_creds("/app/secrets/cloud_api_key") cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") ''' Remove possible http scheme for Minio ''' url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) ''' Upload data to Cloud object storage ''' cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) cos.fget_object(cos_bucket_name, aios_manifest_path, 'aios.json') print('Fairness definition file ' + aios_manifest_path + ' is downloaded') cos.fget_object(cos_bucket_name, data_filename, data_filename) pd_data = pd.read_csv(data_filename, sep=",", header=0, engine='python') print('training data ' + data_filename + ' is downloaded and loaded') """ Load manifest JSON file """ with open('aios.json') as f: aios_manifest = json.load(f) """ Initiate AIOS client """ AIOS_CREDENTIALS = { "instance_guid": aios_guid, "apikey": cloud_api_key, "url": "https://api.aiopenscale.cloud.ibm.com" } ai_client = APIClient(aios_credentials=AIOS_CREDENTIALS) print('AIOS client version:' + ai_client.version) ''' Setup fairness monitoring ''' subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for sub in subscriptions_uids: if ai_client.data_mart.subscriptions.get_details(sub)['entity']['asset']['name'] == model_name: subscription = ai_client.data_mart.subscriptions.get(sub) feature_list = [] for feature in aios_manifest['fairness_features']: feature_list.append(Feature(feature['feature_name'], majority=feature['majority'], minority=feature['minority'], threshold=feature['threshold'])) subscription.fairness_monitoring.enable( features=feature_list, favourable_classes=aios_manifest['fairness_favourable_classes'], unfavourable_classes=aios_manifest['fairness_unfavourable_classes'], min_records=fairness_min_records, training_data=pd_data ) run_details = subscription.fairness_monitoring.run() print('Fairness monitoring is enabled.')
8,128
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_quality/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Monitor quality - Watson OpenScale' description: | Enable model quality monitoring on Watson OpenScale. metadata: annotations: {platform: 'IBM Watson OpenScale'} inputs: - {name: model_name, description: 'Deployed model name on OpenScale.', default: 'AIOS Spark German Risk Model - Final'} - {name: quality_threshold, description: 'Amount of threshold for quality monitoring', default: '0.7'} - {name: quality_min_records, description: 'Minimum amount of records for performing a quality monitor.', default: '5'} implementation: container: image: docker.io/aipipeline/monitor_quality:latest command: ['python'] args: [ -u, monitor_quality.py, --model_name, {inputValue: model_name}, --quality_threshold, {inputValue: quality_threshold}, --quality_min_records, {inputValue: quality_min_records} ]
8,129
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_quality/Dockerfile
FROM python:3.6.8-stretch RUN pip install --upgrade pip RUN pip install --upgrade watson-machine-learning-client ibm-ai-openscale --no-cache | tail -n 1 RUN pip install psycopg2-binary | tail -n 1 ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME ENTRYPOINT ["python"] CMD ["monitor_quality.py"]
8,130
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_quality
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/manage/monitor_quality/src/monitor_quality.py
import json import argparse from ibm_ai_openscale import APIClient from ibm_ai_openscale.engines import * from ibm_ai_openscale.utils import * from ibm_ai_openscale.supporting_classes import PayloadRecord, Feature from ibm_ai_openscale.supporting_classes.enums import * def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_name', type=str, help='Deployed model name', default="AIOS Spark German Risk Model - Final") parser.add_argument('--quality_threshold', type=float, help='Amount of threshold for quality monitoring', default=0.7) parser.add_argument('--quality_min_records', type=int, help='Minimum amount of records for performing a quality monitor', default=5) args = parser.parse_args() model_name = args.model_name quality_threshold = args.quality_threshold quality_min_records = args.quality_min_records aios_guid = get_secret_creds("/app/secrets/aios_guid") cloud_api_key = get_secret_creds("/app/secrets/cloud_api_key") AIOS_CREDENTIALS = { "instance_guid": aios_guid, "apikey": cloud_api_key, "url": "https://api.aiopenscale.cloud.ibm.com" } ai_client = APIClient(aios_credentials=AIOS_CREDENTIALS) print('AIOS client version:' + ai_client.version) ''' Setup quality monitoring ''' subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for sub in subscriptions_uids: if ai_client.data_mart.subscriptions.get_details(sub)['entity']['asset']['name'] == model_name: subscription = ai_client.data_mart.subscriptions.get(sub) subscription.quality_monitoring.enable(threshold=quality_threshold, min_records=quality_min_records) # Runs need to post the minial payload records in order to trigger the monitoring run. # run_details = subscription.quality_monitoring.run() print('Quality monitoring is enabled.')
8,131
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/train/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Train Model - Watson Machine Learning' description: | Train Machine Learning and Deep Learning Models in the Cloud using Watson Machine Learning metadata: annotations: {platform: 'IBM Watson Machine Learning'} inputs: - {name: train_code, description: 'Required. Code for training ML/DL models'} - {name: execution_command, description: 'Required. Execution command to start the model training.'} - {name: config, description: 'Credential configfile is properly created.', default: 'secret_name'} - {name: framework, description: 'ML/DL Model Framework', default: 'tensorflow'} - {name: framework_version, description: 'Model Framework version', default: '1.14'} - {name: runtime, description: 'Model Code runtime language', default: 'python'} - {name: runtime_version, description: 'Model Code runtime version', default: '3.6'} - {name: run_definition, description: 'Name for the Watson Machine Learning training definition', default: 'python-tensorflow-definition'} - {name: run_name, description: 'Name for the Watson Machine Learning training-runs', default: 'python-tensorflow-run'} - {name: author_name, description: 'Name of this training job author', default: 'default-author'} - {name: compute_name, description: 'Name of the compute tiers, in WML is the gpu count', default: 'k80'} - {name: compute_nodes, description: 'Number of compute machine', default: '1'} outputs: - {name: run_uid, description: 'UID for the Watson Machine Learning training-runs'} - {name: training_uid, description: 'Training Location UID for the Watson Machine Learning training-runs'} implementation: container: image: docker.io/aipipeline/wml-train:latest command: ['python3'] args: [ -u, /app/wml-train.py, --config, {inputValue: config}, --train-code, {inputValue: train_code}, --execution-command, {inputValue: execution_command}, --framework, {inputValue: framework}, --framework-version, {inputValue: framework_version}, --runtime, {inputValue: runtime}, --runtime-version, {inputValue: runtime_version}, --run-definition, {inputValue: run_definition}, --run-name, {inputValue: run_name}, --author-name, {inputValue: author_name}, --compute-name, {inputValue: compute_name}, --compute-nodes,{inputValue: compute_nodes}, --output-run-uid-path, {outputPath: run_uid}, --output-training-uid-path, {outputPath: training_uid} ]
8,132
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/train/Dockerfile
FROM python:3.6-slim # Directories for model codes and secrets RUN mkdir /app RUN mkdir /app/secrets # Watson studio and machine learning python client RUN pip install watson-machine-learning-client-V4 minio # Python functions with endpoints to Watson Machine Learning COPY src/wml-train.py /app
8,133
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/train
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/train/src/wml-train.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # define the function to train a model on wml def getSecret(secret): with open(secret, 'r') as f: res = f.readline().strip('\'') f.close() return res def train(args): from watson_machine_learning_client import WatsonMachineLearningAPIClient from minio import Minio from urllib.parse import urlsplit from pathlib import Path import os,time wml_train_code = args.train_code wml_execution_command = args.execution_command.strip('\'') wml_framework_name = args.framework if args.framework else 'tensorflow' wml_framework_version = args.framework_version if args.framework_version else '1.14' wml_runtime_name = args.runtime if args.runtime else 'python' wml_runtime_version = args.runtime_version if args.runtime_version else '3.6' wml_run_definition = args.run_definition if args.run_definition else 'python-tensorflow-definition' wml_run_name = args.run_name if args.run_name else 'python-tensorflow-run' wml_author_name = args.author_name if args.author_name else 'default-author' wml_compute_name = args.compute_name if args.compute_name else 'k80' wml_compute_nodes = args.compute_nodes if args.compute_nodes else '1' wml_runtime_version_v4 = wml_framework_version + '-py' + wml_runtime_version wml_compute_nodes_v4 = int(wml_compute_nodes) # retrieve credentials wml_url = getSecret("/app/secrets/wml_url") wml_apikey = getSecret("/app/secrets/wml_apikey") wml_instance_id = getSecret("/app/secrets/wml_instance_id") wml_data_source_type = getSecret("/app/secrets/wml_data_source_type") cos_endpoint = getSecret("/app/secrets/cos_endpoint") cos_endpoint_parts = urlsplit(cos_endpoint) if bool(cos_endpoint_parts.scheme): cos_endpoint_hostname = cos_endpoint_parts.hostname else: cos_endpoint_hostname = cos_endpoint cos_endpoint = 'https://' + cos_endpoint cos_access_key = getSecret("/app/secrets/cos_access_key") cos_secret_key = getSecret("/app/secrets/cos_secret_key") cos_input_bucket = getSecret("/app/secrets/cos_input_bucket") cos_output_bucket = getSecret("/app/secrets/cos_output_bucket") # download model code model_code = os.path.join('/app', wml_train_code) cos = Minio(cos_endpoint_hostname, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) cos.fget_object(cos_input_bucket, wml_train_code, model_code) # set up the WML client wml_credentials = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } client = WatsonMachineLearningAPIClient(wml_credentials) # define the model lib_meta = { client.runtimes.LibraryMetaNames.NAME: wml_run_definition, client.runtimes.LibraryMetaNames.VERSION: wml_framework_version, client.runtimes.LibraryMetaNames.FILEPATH: model_code, client.runtimes.LibraryMetaNames.PLATFORM: {"name": wml_framework_name, "versions": [wml_framework_version]} } # check exisiting library library_details = client.runtimes.get_library_details() for library_detail in library_details['resources']: if library_detail['entity']['name'] == wml_run_definition: # Delete library if exist because we cannot update model_code uid = client.runtimes.get_library_uid(library_detail) client.repository.delete(uid) break custom_library_details = client.runtimes.store_library(lib_meta) custom_library_uid = client.runtimes.get_library_uid(custom_library_details) # create a pipeline with the model definitions included doc = { "doc_type": "pipeline", "version": "2.0", "primary_pipeline": wml_framework_name, "pipelines": [{ "id": wml_framework_name, "runtime_ref": "hybrid", "nodes": [{ "id": "training", "type": "model_node", "op": "dl_train", "runtime_ref": wml_run_name, "inputs": [], "outputs": [], "parameters": { "name": "tf-mnist", "description": wml_run_definition, "command": wml_execution_command, "training_lib_href": "/v4/libraries/"+custom_library_uid, "compute": { "name": wml_compute_name, "nodes": wml_compute_nodes_v4 } } }] }], "runtimes": [{ "id": wml_run_name, "name": wml_framework_name, "version": wml_runtime_version_v4 }] } metadata = { client.repository.PipelineMetaNames.NAME: wml_run_name, client.repository.PipelineMetaNames.DOCUMENT: doc } pipeline_id = client.pipelines.get_uid(client.repository.store_pipeline(meta_props=metadata)) client.pipelines.get_details(pipeline_id) # start the training run for v4 metadata = { client.training.ConfigurationMetaNames.TRAINING_RESULTS_REFERENCE: { "name": "training-results-reference_name", "connection": { "endpoint_url": cos_endpoint, "access_key_id": cos_access_key, "secret_access_key": cos_secret_key }, "location": { "bucket": cos_output_bucket }, "type": wml_data_source_type }, client.training.ConfigurationMetaNames.TRAINING_DATA_REFERENCES:[{ "name": "training_input_data", "type": wml_data_source_type, "connection": { "endpoint_url": cos_endpoint, "access_key_id": cos_access_key, "secret_access_key": cos_secret_key }, "location": { "bucket": cos_input_bucket } }], client.training.ConfigurationMetaNames.PIPELINE_UID: pipeline_id } training_id = client.training.get_uid(client.training.run(meta_props=metadata)) print("training_id", client.training.get_details(training_id)) print("get status", client.training.get_status(training_id)) # for v4 run_details = client.training.get_details(training_id) run_uid = training_id # print logs client.training.monitor_logs(run_uid) client.training.monitor_metrics(run_uid) # checking the result status = client.training.get_status(run_uid) print("status: ", status) while status['state'] != 'completed': time.sleep(20) status = client.training.get_status(run_uid) print(status) Path(args.output_run_uid_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_run_uid_path).write_text(run_uid) # Get training details training_details = client.training.get_details(run_uid) print("training_details", training_details) training_uid = training_details['entity']['results_reference']['location']['training'] Path(args.output_training_uid_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_training_uid_path).write_text(training_uid) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--train-code', type=str, required=True) parser.add_argument('--execution-command', type=str, required=True) parser.add_argument('--framework', type=str) parser.add_argument('--framework-version', type=str) parser.add_argument('--runtime', type=str) parser.add_argument('--runtime-version', type=str) parser.add_argument('--run-definition', type=str) parser.add_argument('--run-name', type=str) parser.add_argument('--author-name', type=str) parser.add_argument('--config', type=str, default="secret_name") parser.add_argument('--compute-name', type=str) parser.add_argument('--compute-nodes', type=str) parser.add_argument('--output-run-uid-path', type=str, default="/tmp/run_uid") parser.add_argument('--output-training-uid-path', type=str, default="/tmp/training_uid") args = parser.parse_args() # Check secret name is not empty if (not args.config): print("Secret for this pipeline is not properly created, exiting with status 1...") exit(1) train(args)
8,134
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/deploy/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Deploy Model - Watson Machine Learning' description: | Deploy stored model on Watson Machine Learning as a web service. metadata: annotations: {platform: 'IBM Watson Machine Learning'} inputs: - {name: model_uid, description: 'Required. UID for the stored model on Watson Machine Learning'} - {name: model_name, description: 'Required. Model Name on Watson Machine Learning'} - {name: scoring_payload, description: 'Sample Payload file name in the object storage', default: ''} - {name: deployment_name, description: 'Deployment Name on Watson Machine Learning', default: ''} outputs: - {name: scoring_endpoint, description: 'Link to the deployed model web service'} - {name: model_uid, description: 'UID for the stored model on Watson Machine Learning'} implementation: container: image: docker.io/aipipeline/wml-deploy:latest command: ['python'] args: [ -u, /app/wml-deploy.py, --model-uid, {inputValue: model_uid}, --model-name, {inputValue: model_name}, --scoring-payload, {inputValue: scoring_payload}, --deployment-name, {inputValue: deployment_name}, --output-scoring-endpoint-path, {outputPath: scoring_endpoint}, --output-model-uid-path, {outputPath: model_uid} ]
8,135
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/deploy/Dockerfile
FROM python:3.6-slim # Directories for model codes and secrets RUN mkdir /app RUN mkdir /app/secrets # Watson studio and machine learning python client RUN pip install watson-machine-learning-client-V4 minio # Python functions with endpoints to Watson Machine Learning COPY src/wml-deploy.py /app
8,136
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/deploy
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/watson/deploy/src/wml-deploy.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # define the function to deploy the model def getSecret(secret): with open(secret, 'r') as f: res = f.readline().strip('\'') f.close() return res def deploy(args): from watson_machine_learning_client import WatsonMachineLearningAPIClient from minio import Minio from pathlib import Path import os import re wml_model_name = args.model_name model_uid = args.model_uid wml_scoring_payload = args.scoring_payload if args.scoring_payload else '' deployment_name = args.deployment_name if args.deployment_name else wml_model_name # retrieve credentials wml_url = getSecret("/app/secrets/wml_url") wml_instance_id = getSecret("/app/secrets/wml_instance_id") wml_apikey = getSecret("/app/secrets/wml_apikey") # set up the WML client wml_credentials = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } client = WatsonMachineLearningAPIClient(wml_credentials) client.deployments.list() # deploy the model meta_props = { client.deployments.ConfigurationMetaNames.NAME: deployment_name, client.deployments.ConfigurationMetaNames.ONLINE: {} } deployment_details = client.deployments.create(model_uid, meta_props) scoring_endpoint = client.deployments.get_scoring_href(deployment_details) deployment_uid = client.deployments.get_uid(deployment_details) print("deployment_uid: ", deployment_uid) if wml_scoring_payload: # download scoring payload if exist cos_endpoint = getSecret("/app/secrets/cos_endpoint") cos_access_key = getSecret("/app/secrets/cos_access_key") cos_secret_key = getSecret("/app/secrets/cos_secret_key") cos_input_bucket = getSecret("/app/secrets/cos_input_bucket") # Make sure http scheme is not exist for Minio url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) payload_file = os.path.join('/app', wml_scoring_payload) cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key) cos.fget_object(cos_input_bucket, wml_scoring_payload, payload_file) # scoring the deployment import json with open(payload_file) as data_file: test_data = json.load(data_file) payload = {client.deployments.ScoringMetaNames.INPUT_DATA: [test_data['payload']]} data_file.close() print("Scoring result: ") result = client.deployments.score(deployment_uid, payload) else: result = 'Scoring payload is not provided' print(result) Path(args.output_scoring_endpoint_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_scoring_endpoint_path).write_text(scoring_endpoint) Path(args.output_model_uid_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_model_uid_path).write_text(model_uid) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--model-name', type=str, required=True) parser.add_argument('--model-uid', type=str, required=True) parser.add_argument('--deployment-name', type=str) parser.add_argument('--scoring-payload', type=str) parser.add_argument('--output-scoring-endpoint-path', type=str, default='/tmp/scoring_endpoint') parser.add_argument('--output-model-uid-path', type=str, default='/tmp/model_uid') args = parser.parse_args() deploy(args)
8,137
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Train Spark Model - IBM Cloud' description: | Train a Spark Model using IBM Cloud Spark Service metadata: annotations: {platform: 'IBM Cloud Spark Service'} inputs: - {name: bucket_name, description: 'Required. Object storage bucket name'} - {name: data_filename, description: 'Required. Name of the data binary'} - {name: model_filename, description: 'Required. Name of the training model file'} - {name: spark_entrypoint, description: 'Required. Entrypoint command for training the spark model'} outputs: - {name: model_filepath, description: 'Spark Model binary filepath'} - {name: train_data_filepath, description: 'Spark training data filepath'} implementation: container: image: docker.io/aipipeline/train_spark:latest command: ['python'] args: [ -u, train_spark.py, --bucket_name, {inputValue: bucket_name}, --data_filename, {inputValue: data_filename}, --model_filename, {inputValue: model_filename}, --spark_entrypoint, {inputValue: spark_entrypoint} ] fileOutputs: model_filepath: /tmp/model_filepath train_data_filepath: /tmp/train_data_filepath
8,138
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark/Dockerfile
FROM python:3.6.8-stretch ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME
8,139
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark/src/spark-submit.sh
#!/usr/bin/env bash # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ############################################################################### # # This script performs the following steps: # 1. Uploads local files to the cluster host (i.e. '--master'). # The files it uploads are specified in the following parameters: # --files # --jars # --py-files # The application JAR file or python file # If you want to use files already on the spark cluster, you can disable # the uploading of files by setting operating system environment variables # described below. Uploaded files will be placed on the cluster at # <TENANT_ID>/data/<generated-UUID>/ # 2. Re-writes paths for files uploaded to the cluster. The re-written paths # are used when calling submit REST API. # 3. Gets returning spark-submit's submission ID and periodically polls for status # of the job using the submission ID. # 4. When the job is FINISHED, downloads 'stdout' and 'stderr' from the # cluster. # 5. Delete the job workspace folder <TENANT_ID>/data/<generated-UUID>/ on the cluster # # Before running this script, operating system variables must be set. # Optional: # SS_APP_MAIN_UPLOAD=<true|false> # Default: 'true' application jar file is uploaded. # SS_FILES_UPLOAD=<true|false> # Default: 'true'. '--files' and "--py-files" files are uploaded. # SS_JARS_UPLOAD=<true|false> # Default: 'true'. '--jars' files are uploaded. # SS_LOG_ENABLE=<true|false> # Default: 'true'. Execution log is created. # # VCAP information needs to be made available to this program in the '--vcap' # parameter. The VCAP information is obtained from your BlueMix application. # Here is one way to create a file from your VCAP: # cat <<EOT > ~/vcap.json # { # "credentials": { # "tenant_id": "xxxxxx", # "tenant_id_full": "xxxxxx", # "cluster_master_url": "https://x.x.x.x", # "instance_id": "xxxxxx", # "tenant_secret": "xxxxx", # "plan": "ibm.SparkService.PayGoPersonal" # } # } # } # EOT # # Example command to run: # # ./spark-submit.sh \ # --vcap ~/vcap.json \ # --deploy-mode cluster \ # --class com.ibm.sparkservice.App \ # --master https://x.x.x.x\ # --jars /path/to/mock-library-1.0.jar,/path/to/mock-utils-1.0.jar \ # ~/mock-app-1.0.jar # # ############################################################################### invokeCommand="$(basename $0) $@" # -- User-modifiable variables ------------------------------------------------ # To modify, set the operating system environment variable to the desired value. if [ -z ${SS_LOG_ENABLE} ]; then SS_LOG_ENABLE=true; fi # Enable detailed logging if [ -z ${SS_APP_MAIN_UPLOAD} ]; then SS_APP_MAIN_UPLOAD=true; fi # If true, copy the local application JAR or python file to the spark cluster if [ -z ${SS_JARS_UPLOAD} ]; then SS_JARS_UPLOAD=true; fi # If true, copy the local JAR files listed in "--jars" to the spark cluster. if [ -z ${SS_FILES_UPLOAD} ]; then SS_FILES_UPLOAD=true; fi # If true, copy the local files listed in "--files" and "--py-files" to the spark cluster. if [ -z ${SS_POLL_INTERVAL} ]; then SS_POLL_INTERVAL=10; fi # Number of seconds until script polls spark cluster again. if [ -z ${SS_SPARK_WORK_DIR} ]; then SS_SPARK_WORK_DIR="workdir"; fi # Work directory on spark cluster if [ -z ${SS_DEBUG} ]; then SS_DEBUG=false; fi # Detailed debugging # -- Set working environment variables ---------------------------------------- if [ "${SS_DEBUG}" = "true" ] then set -x fi EXECUTION_TIMESTAMP="$(date +'%s%N')" APP_MAIN= app_parms= FILES= JARS= PY_FILES= CLASS= APP_NAME= DEPLOY_MODE= LOG_FILE=spark-submit_${EXECUTION_TIMESTAMP}.log MASTER= INSTANCE_ID= TENANT_ID= TENANT_SECRET= CLUSTER_MASTER_URL= SPARK_VERSION= submissionId= declare -a CONF_KEY declare -a CONF_VAL confI=0 CHECK_STATUS=false KILL_JOB=false PY_APP=false IS_JOB_ERROR=false HEADER_REQUESTED_WITH=spark-submit VERSION="1.0.11" # Determine which sha command to use for UUID calculation SHASUM_CMD="" if hash shasum 2>/dev/null; then SHASUM_CMD="shasum -a 1" elif hash sha1sum 2>/dev/null; then SHASUM_CMD="sha1sum" else printf "\nCould not find \"sha1sum\" or equivalent command on system. Aborting.\n" exit -1 fi # UUID=$(openssl rand -base64 64 | ${SHASUM_CMD} | awk '{print $1}') SERVER_SUB_DIR="${SS_SPARK_WORK_DIR}/tmp" uploadList=" " # ============================================================================= # -- Functions ---------------------------------------------------------------- # ============================================================================= printUsage() { printf "\nUsage:" printf "\n spark-submit.sh --vcap <vcap-file> [options] <app jar | python file> [app arguments]" printf "\n spark-submit.sh --master [cluster-master-url] --conf 'PROP=VALUE' [options] <app jar | python file> [app arguments]" printf "\n spark-submit.sh --vcap <vcap-file> --kill [submission ID] " printf "\n spark-submit.sh --vcap <vcap-file> --status [submission ID] " printf "\n spark-submit.sh --kill [submission ID] --master [cluster-master-url] --conf 'PROP=VALUE' " printf "\n spark-submit.sh --status [submission ID] --master [cluster-master-url] --conf 'PROP=VALUE' " printf "\n spark-submit.sh --help " printf "\n spark-submit.sh --version " printf "\n\n vcap-file: json format file that contains spark service credentials, " printf "\n including cluster_master_url, tenant_id, instance_id, and tenant_secret" printf "\n cluster_master_url: The value of 'cluster_master_url' on the service credentials page" printf "\n\n options:" printf "\n --help Print out usage information." printf "\n --version Print out the version of spark-submit.sh" printf "\n --master MASTER_URL MASTER_URL is the value of 'cluster-master-url' from spark service instance credentials" printf "\n --deploy-mode DEPLOY_MODE DEPLOY_MODE must be 'cluster'" printf "\n --class CLASS_NAME Your application's main class (for Java / Scala apps)." printf "\n --name NAME A name of your application." printf "\n --jars JARS Comma-separated list of local jars to include on the driver and executor classpaths." printf "\n --files FILES Comma-separated list of files to be placed in the working directory of each executor." printf "\n --conf PROP=VALUE Arbitrary Spark configuration property. The values of tenant_id, instance_id, tenant_secret, and spark_version can be passed" printf "\n --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps." printf "\n\n --kill SUBMISSION_ID If given, kills the driver specified." printf "\n --status SUBMISSION_ID If given, requests the status of the driver specified." printf "\n" exit 0 } printVersion() { printf "spark-submit.sh VERSION : '${VERSION}'\n" exit 0 } logMessage() { if [ "${SS_LOG_ENABLE}" = "true" ] then printf "$1" >> ${LOG_FILE} else printf "$1" fi } logFile() { logMessage "\nContents of $1:\n" if [ "${SS_LOG_ENABLE}" = "true" ] then cat "$1" >> ${LOG_FILE} else cat "$1" fi } console() { local output_line=$1 printf "${output_line}" logMessage "${output_line}" } endScript() { console "\nSubmission complete.\n" console "spark-submit log file: ${LOG_FILE}\n" } endScriptWithCommands() { if [ -n "${submissionId}" ] then console "Job may still be running.\n" console "To poll for job status, run the following command:\n" if [ ! -z "${VCAP_FILE}" ] then console "\"spark-submit.sh --status ${submissionId} --vcap ${VCAP_FILE} \" \n" else console "\"spark-submit.sh --status ${submissionId} --master ${MASTER} --conf 'spark.service.tenant_id=${TENANT_ID}' --conf 'spark.service.tenant_secret=${TENANT_SECRET}' --conf 'spark.service.instance_id=${INSTANCE_ID}'\" \n" fi console "After the job is done, run the following command to download stderr and stdout of the job to local:\n" console "\"curl ${SS_CURL_OPTIONS} -X GET $(get_http_authentication) -H '$(get_http_instance_id)' https://${HOSTNAME}/tenant/data/${SS_SPARK_WORK_DIR}/${submissionId}/stdout > stdout\" \n" console "\"curl ${SS_CURL_OPTIONS} -X GET $(get_http_authentication) -H '$(get_http_instance_id)' https://${HOSTNAME}/tenant/data/${SS_SPARK_WORK_DIR}/${submissionId}/stderr > stderr\" \n" # console "\"curl ${SS_CURL_OPTIONS} -X GET $(get_http_authentication) -H '$(get_http_instance_id)' https://${HOSTNAME}/tenant/data/${SS_SPARK_WORK_DIR}/${submissionId}/model.zip > model.zip\" \n" if [ "${SS_APP_MAIN_UPLOAD}" = "true" ] || [ "${SS_JARS_UPLOAD}" = "true" ] || [ "${SS_FILES_UPLOAD}" = "true" ] then console "After the job is done, we recommend to run the following command to clean the job workspace: \n" console "\"curl ${SS_CURL_OPTIONS} -X DELETE $(get_http_authentication) -H '$(get_http_instance_id)' https://${HOSTNAME}/tenant/data/${SERVER_SUB_DIR}\" \n" fi fi console "spark-submit log file: ${LOG_FILE}\n" } base64Encoder() { encoded="`printf $1 | base64`" echo "${encoded}" } get_from_vcap() { local vcapFilePath=$1 local vcapKey=$2 # Handle dos2unix issues. local ctrl_m=$(printf '\015') echo `grep ${vcapKey}\" ${vcapFilePath} | awk '{print $2}' | sed 's/\"//g' | sed 's/\,//g' | sed "s/${ctrl_m}//g"` } get_hostname_from_url() { local url=$1 echo ${url} | sed -n 's/[^:]*:\/\/\([^:]*\)[:]*.*/\1/p' } get_http_authentication() { echo "-u ${TENANT_ID}:${TENANT_SECRET}" } get_http_instance_id() { echo "X-Spark-service-instance-id: ${INSTANCE_ID}" } get_requested_with_header() { echo "X-Requested-With: ${HEADER_REQUESTED_WITH}" } display_master_url_err_msg() { console "ERROR: master URL is missing. Use either --master or --vcap option. Run with --help for usage information.\n" } display_err_msg() { console "ERROR: $1 is missing. Use either --vcap or --conf option. Run with --help for usage information.\n" } display_err_msg_spark_version() { console "ERROR: Spark service configuration \"spark.service.spark_version\" is missing. Specify the Spark version using --conf option as \"--conf spark.service.spark_version=<spark version>\". Run with --help for usage information.\n" } get_conf_options() { logMessage "\nValues passed with --conf option...\n\n" for ((i=0; i<${#CONF_KEY[@]}; ++i)) do conf_key=${CONF_KEY[${i}]} conf_val=${CONF_VAL[${i}]} logMessage "\t${conf_key} : ${conf_val} \n" if [[ "${conf_key}" == "spark.service.tenant_id" ]]; then if [[ -z "${TENANT_ID}" ]]; then TENANT_ID="${conf_val}" elif [[ "${conf_val}" != "${TENANT_ID}" ]]; then #if tenant_id is specified in vcap file and in --conf option, and they are not same, then use the one from --conf option. TENANT_ID="${conf_val}" logMessage "WARN: configuration \"${conf_key}\" : \"${conf_val}\" does not match with tenant_id in ${VCAP_FILE} file. Using \"${conf_key}\"'s value.\n" fi fi if [[ "${conf_key}" == "spark.service.instance_id" ]]; then if [[ -z "${INSTANCE_ID}" ]]; then INSTANCE_ID="${conf_val}" elif [[ "${conf_val}" != "${INSTANCE_ID}" ]]; then #if instance_id is specified in vcap file and in --conf option, and they are not same, then use the one from --conf option. INSTANCE_ID="${conf_val}" logMessage "WARN: configuration \"${conf_key}\" : \"${conf_val}\" does not match with instance_id in ${VCAP_FILE} file. Using \"${conf_key}\"'s value. \n" fi fi if [[ "${conf_key}" == "spark.service.tenant_secret" ]]; then if [[ -z "${TENANT_SECRET}" ]]; then TENANT_SECRET="${conf_val}" elif [[ "${conf_val}" != "${TENANT_SECRET}" ]]; then #if tenant_secret is specified in vcap file and in --conf option, and they are not same, then use the one from --conf option. TENANT_SECRET="${conf_val}" logMessage "WARN: configuration \"${conf_key}\" : \"${conf_val}\" does not match with tenant_secret in ${VCAP_FILE} file. Using \"${conf_key}\"'s value. \n" fi fi if [[ "${conf_key}" == "spark.service.spark_version" ]]; then SPARK_VERSION="${conf_val}" fi done } local2server() { local localPath=$1 local serverPath=$2 local cmd="curl ${SS_CURL_OPTIONS} -X PUT $(get_http_authentication) -H '$(get_http_instance_id)' --data-binary '@${localPath}' https://${HOSTNAME}/tenant/data/${serverPath}" console "\nUploading ${localPath}\n" logMessage "local2server command: ${cmd}\n" local result=$(eval "${cmd}") uploadList+="$(fileNameFromPath ${localPath})" logMessage "local2server result: ${result}\n" } deleteFolderOnServer() { local serverDir=$1 local cmd="curl ${SS_CURL_OPTIONS} -X DELETE $(get_http_authentication) -H '$(get_http_instance_id)' https://${HOSTNAME}/tenant/data/${serverDir}" console "\nDeleting workspace on server\n" logMessage "deleteFolderOnServer command: ${cmd}\n" local result=$(eval "${cmd}") logMessage "deleteFolderOnServer result: ${result}\n" } local2server_list() { local localFiles=$1 local files=$2 OIFS=${IFS} IFS="," localFileArray=(${localFiles}) fileArray=(${files}) IFS=${OIFS} for ((i=0; i<${#localFileArray[@]}; ++i)) do local2server ${localFileArray[${i}]} ${fileArray[${i}]} done } fileNameFromPath() { local path=$1 local fileName="`echo ${path} | awk 'BEGIN{FS="/"}{print $NF}'`" echo "${fileName}" } fileNameFromPath_list() { local paths=$1 OIFS=${IFS} IFS="," pathArray=(${paths}) IFS=${OIFS} local fileNames= for ((i=0; i<${#pathArray[@]}; ++i)) do local fileName=$(fileNameFromPath ${pathArray[${i}]}) if [ -z "${fileNames}" ] then fileNames="${fileName}" else fileNames="${fileNames},${fileName}" fi done echo "${fileNames}" } convert2serverPath() { local fileName=$(fileNameFromPath $1) local serverFile="${SERVER_SUB_DIR}/${fileName}" echo "${serverFile}" } convert2serverPath_list() { local localFiles=$1 OIFS=${IFS} IFS="," localFileArray=(${localFiles}) IFS=${OIFS} local serverFiles= for ((i=0; i<${#localFileArray[@]}; ++i)) do local serverFile=$(convert2serverPath ${localFileArray[${i}]}) if [ -z "${serverFiles}" ] then serverFiles="${serverFile}" else serverFiles="${serverFiles},${serverFile}" fi done echo "${serverFiles}" } convert2submitPath() { local serverFile=$1 echo "${PREFIX_SERVER_PATH}/${serverFile}" } convert2submitPath_list() { local serverFiles=$1 OIFS=${IFS} IFS="," serverFileArray=(${serverFiles}) IFS=${OIFS} local submitPaths= for ((i=0; i<${#serverFileArray[@]}; ++i)) do local submitPath=$(convert2submitPath ${serverFileArray[${i}]}) if [ -z "${submitPaths}" ] then submitPaths="${submitPath}" else submitPaths="${submitPaths},${submitPath}" fi done echo "${submitPaths}" } server2local() { local serverPath=$1 local localPath=$2 local cmd="curl ${SS_CURL_OPTIONS} -X GET $(get_http_authentication) -H '$(get_http_instance_id)' -D '${localPath}.header' https://${HOSTNAME}/tenant/data/${serverPath}" console "\nDownloading ${localPath}\n" logMessage "server2local command: ${cmd}\n" local result=$(eval "${cmd}") fileExist="`cat "${localPath}.header" | grep "404 NOT FOUND" | wc -l`" if [ "${fileExist}" ] then echo "${result}" > ${localPath} fi rm -f ${localPath}.header return ${fileExist} } terminate_spark() { if [ -n "${submissionId}" ] then logMessage "WARN: Terminate signal received. Stop spark job: ${submissionId}\n" local result=$(call_kill_REST) logMessage "Terminate result : ${result}\n" # Give it some time before polling for status sleep ${SS_POLL_INTERVAL} local resultStatus=$(call_status_REST) driverStatus="`echo ${resultStatus} | sed -n 's/.*\"driverState\" : \"\([^\"]*\)\",.*/\1/p'`" echo "Job kill: ${submissionId} status is ${driverStatus}" fi endScript } ctrlc_handle() { while true do read -p "Terminate submitted job? (y/n)" isCancel case $isCancel in [Yy]* ) isCancel=true; break;; [Nn]* ) isCancel=false; break;; * ) echo "Please answer yes or no";; esac done if [[ "$isCancel" = "true" ]]; then terminate_spark exit 1 fi while true do read -p "Continue polling for job status? (y/n)" isPolling case $isPolling in [Yy]* ) isPolling=true; break;; [Nn]* ) isPolling=false; break;; * ) echo "Please answer yes or no";; esac done if [[ "$isPolling" = "false" ]]; then endScriptWithCommands exit 0 fi } substituteArg() { local arg=$1 local fileName="`echo ${arg} | sed -n 's/.*file:\/\/\([^\"]*\)\"/\1/p'`" local newArg=${arg} if [ -n "${fileName}" ] then if [[ "${uploadList}" =~ "${fileName}" ]]; then newArg="\"file://${SERVER_SUB_DIR}/${fileName}\"" fi fi echo "${newArg}" } parsing_appArgs() { local argString=$1 OIFS=${IFS} IFS="," local argArray=(${argString}) IFS=${OIFS} local resultArgs= for ((i=0; i<${#argArray[@]}; ++i)) do local arg=$(substituteArg ${argArray[${i}]}) if [ -z "${resultArgs}" ] then resultArgs="${arg}" else resultArgs="${resultArgs},${arg}" fi done echo "${resultArgs}" } isSparkServiceConf() { local conf_key="$1" local spark_service_confs="spark.service.tenant_id spark.service.instance_id spark.service.tenant_secret" [[ $spark_service_confs =~ $conf_key ]] && echo "true" || echo "false" } submit_REST_json() { local appArgs1="$1" local appResource="$2" local mainClass="$3" local sparkJars="$4" local sparkFiles="$5" local sparkPYFiles="$6" local appArgs=$(parsing_appArgs "${appArgs1}") local reqJson="{" reqJson+=" \"action\" : \"CreateSubmissionRequest\", " if [ "${PY_APP}" = "true" ] then local appResourceFileName=$(fileNameFromPath ${appResource}) if [ -n "${sparkPYFiles}" ] then local sparkPYFileNames=$(fileNameFromPath_list ${sparkPYFiles}) if [ -n "${appArgs}" ] then appArgs="\"--primary-py-file\",\"${appResourceFileName}\",\"--py-files\",\"${sparkPYFileNames}\",${appArgs}" else appArgs="\"--primary-py-file\",\"${appResourceFileName}\",\"--py-files\",\"${sparkPYFileNames}\"" fi else if [ -n "${appArgs}" ] then appArgs="\"--primary-py-file\",\"${appResourceFileName}\",${appArgs}" else appArgs="\"--primary-py-file\",\"${appResourceFileName}\"" fi fi fi reqJson+=" \"appArgs\" : [ ${appArgs} ], " reqJson+=" \"appResource\" : \"${appResource}\"," reqJson+=" \"clientSparkVersion\" : \"${SPARK_VERSION}\"," reqJson+=" \"mainClass\" : \"${mainClass}\", " reqJson+=" \"sparkProperties\" : { " ##### properties: spark.app.name reqJson+=" \"spark.app.name\" : \"${APP_NAME}\", " ##### properties: spark.jars - add appResource to jars list if this is java application if [ -n "${sparkJars}" ] then if [ "${PY_APP}" = "false" ] then sparkJars+=",${appResource}" fi else if [ "${PY_APP}" = "false" ] then sparkJars=${appResource} fi fi if [ -n "${sparkJars}" ] then reqJson+=" \"spark.jars\" : \"${sparkJars}\", " fi ##### properties: spark.files - add appResource to files list if this is python application if [ -n "${sparkFiles}" ] then if [ -n "${sparkPYFiles}" ] then sparkFiles+=",${appResource},${sparkPYFFiles}" elif [ "${PY_APP}" == "true" ] then sparkFiles+=",${appResource}" fi else if [ -n "${sparkPYFiles}" ] then sparkFiles="${appResource},${sparkPYFiles}" elif [ "${PY_APP}" == "true" ] then sparkFiles="${appResource}" fi fi if [ -n "${sparkFiles}" ] then reqJson+=" \"spark.files\" : \"${sparkFiles}\", " fi ##### properties: spark.submit.pyFiles if [ -n "${sparkPYFiles}" ] then reqJson+=" \"spark.submit.pyFiles\" : \"${sparkPYFiles}\", " fi for ((i=0; i<${#CONF_KEY[@]}; ++i)) do if [[ $(isSparkServiceConf ${CONF_KEY[${i}]}) == "false" ]]; then reqJson+=" \"${CONF_KEY[${i}]}\" : \"${CONF_VAL[${i}]}\", " fi done ##### properties: spark.service.* : all properties specific for spark service reqJson+=" \"spark.service.tenant_id\" : \"${TENANT_ID}\", " reqJson+=" \"spark.service.instance_id\" : \"${INSTANCE_ID}\", " reqJson+=" \"spark.service.tenant_secret\" : \"${TENANT_SECRET}\" " reqJson+="}" reqJson+="}" echo ${reqJson} } status_kill_REST_json() { reqJson="{" reqJson+=" \"sparkProperties\" : { " reqJson+=" \"spark.service.tenant_id\" : \"${TENANT_ID}\", " reqJson+=" \"spark.service.instance_id\" : \"${INSTANCE_ID}\", " reqJson+=" \"spark.service.tenant_secret\" : \"${TENANT_SECRET}\", " reqJson+=" \"spark.service.spark_version\" : \"${SPARK_VERSION}\" " reqJson+="}" reqJson+="}" echo ${reqJson} } call_status_REST() { local requestBody=$(status_kill_REST_json) local cmd="curl ${SS_CURL_OPTIONS} -X GET -H '$(get_requested_with_header)' -i --data-binary '${requestBody}' https://${HOSTNAME}/v1/submissions/status/${submissionId}" console "\nGetting status\n" logMessage "call_status_REST command: ${cmd}\n" local statusRequest=$(eval "${cmd}") logMessage "call_status_REST result: ${statusRequest}\n" echo "${statusRequest}" } call_kill_REST() { local requestBody=$(status_kill_REST_json) local cmd="curl ${SS_CURL_OPTIONS} -X POST -H '$(get_requested_with_header)' -i --data-binary '${requestBody}' https://${HOSTNAME}/v1/submissions/kill/${submissionId}" console "\nKilling submission\n" logMessage "call_kill_REST command: ${cmd}\n" local killRequest=$(eval "${cmd}") logMessage "call_kill_REST result: ${killRequest}\n" echo "${killRequest}" } # ============================================================================= # -- Main --------------------------------------------------------------------- # ============================================================================= trap ctrlc_handle SIGINT # -- Parse command line arguments --------------------------------------------- if [[ $# == 0 ]] then printUsage exit 1 fi while [[ $# > 0 ]] do key="$1" case $key in --help) printUsage ;; --version) printVersion ;; --master) MASTER="$2" HOSTNAME=$(get_hostname_from_url ${MASTER}) logMessage "MASTER HOSTNAME: ${HOSTNAME}\n" shift shift ;; --jars) JARS="$2" shift shift ;; --files) FILES="$2" shift shift ;; --class) CLASS="$2" shift shift ;; --conf) aconf="$2" CONF_KEY[${confI}]="`echo ${aconf} | sed -n 's/\([^=].*\)=\(.*\)/\1/p'`" CONF_VAL[${confI}]="`echo ${aconf} | sed -n 's/\([^=].*\)=\(.*\)/\2/p'`" ((confI++)) shift shift ;; --vcap) VCAP_FILE="$2" shift shift ;; --status) CHECK_STATUS=true submissionId="$2" shift shift ;; --kill) KILL_JOB=true submissionId="$2" shift shift ;; --name) APP_NAME="$2" shift shift ;; --py-files) PY_FILES="$2" PY_APP=true shift shift ;; --deploy-mode) DEPLOY_MODE="$2" shift shift ;; *) if [[ "${key}" =~ ^--.* ]] && [[ -z "${APP_MAIN}" ]]; then printf "Error: Unrecognized option: ${key} \n" printUsage exit 1 else if [ -z "${APP_MAIN}" ] then APP_MAIN="${key}" shift else if [ -z "${app_parms}" ] then app_parms=" \"${key}\" " else app_parms="${app_parms}, \"${key}\" " fi shift fi fi ;; esac done # -- Initialize log file ------------------------------------------------------ if [ "${SS_LOG_ENABLE}" = "true" ] then rm -f ${LOG_FILE} console "To see the log, in another terminal window run the following command:\n" console "tail -f ${LOG_FILE}\n\n" logMessage "Timestamp: ${EXECUTION_TIMESTAMP}\n" logMessage "Date: $(date +'%Y-%m-%d %H:%M:%S')\n" logMessage "VERSION: ${VERSION}\n" logMessage "\nCommand invocation: ${invokeCommand}\n" fi # -- Check variables ---------------------------------------------------------- # Check if both vcap file and --master option are not specified,if so raise error if [[ -z "${VCAP_FILE}" ]] && [[ -z "${MASTER}" ]]; then display_master_url_err_msg exit 1 fi # -- Pull values from VCAP ---------------------------------------------------- if [ ! -z "${VCAP_FILE}" ] then logFile ${VCAP_FILE} INSTANCE_ID=$(get_from_vcap ${VCAP_FILE} "instance_id") TENANT_ID=$(get_from_vcap ${VCAP_FILE} "tenant_id") TENANT_SECRET=$(get_from_vcap ${VCAP_FILE} "tenant_secret") CLUSTER_MASTER_URL=$(get_from_vcap ${VCAP_FILE} "cluster_master_url") fi # -- Check variables ---------------------------------------------------------- # Check if vcap file doesnt contain master url and --master option is not specified, if so raise error. if [[ -z "${CLUSTER_MASTER_URL}" ]] && [[ -z "${MASTER}" ]] then display_master_url_err_msg exit 1 fi vcap_hostname=$(get_hostname_from_url ${CLUSTER_MASTER_URL}) if [ ! -z "${MASTER}" ] then if [ "${HOSTNAME}" != "${vcap_hostname}" ] # if both the --master option and vcap are specified and they are not same, use the master url from --master option. then logMessage "WARN: The URL specified in '--master ${MASTER}' option does not match with the URL in 'cluster_master_url ${CLUSTER_MASTER_URL}' in '--vcap' ${VCAP_FILE}. Using ${MASTER} url.\n" fi else HOSTNAME="${vcap_hostname}" #If --master option is not specified, then use the master url from vcap. fi # If IP address (i.e. not a FQDN), then add "--insecure" curl option. if [[ "${HOSTNAME}" =~ ^[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$ ]]; then SS_CURL_OPTIONS="${SS_CURL_OPTIONS} --insecure" fi # -- Get values from --conf option -------------------------------------------- if [ ! -z "${aconf}" ] then get_conf_options fi # -- Check variables ---------------------------------------------------------- if [[ -z "${TENANT_ID}" ]]; then display_err_msg "TENANT_ID" exit 1 elif [[ -z "${TENANT_SECRET}" ]]; then display_err_msg "TENANT_SECRET" exit 1 elif [[ -z "${INSTANCE_ID}" ]]; then display_err_msg "INSTANCE_ID" exit 1 fi if [[ -z "${SPARK_VERSION}" ]]; then display_err_msg_spark_version exit 1 fi # -- Handle request for status or cancel ------------------------------------- if [ "${CHECK_STATUS}" = "true" ] then if [ -n "${submissionId}" ] then console "$(call_status_REST)\n" exit 0 else console "ERROR: You need to specify submission ID after --status option. Run with --help for usage information.\n" exit 1 fi fi if [ "${KILL_JOB}" = "true" ] then if [ -n "${submissionId}" ] then console "$(call_kill_REST)\n" exit 0 else console "ERROR: You need to specify submission ID after --kill option. Run with --help for usage information.\n" exit 1 fi fi # -- Handle request for submit ----------------------------------------------- if [ -z "${DEPLOY_MODE}" ] || [ "${DEPLOY_MODE}" != "cluster" ] then console "ERROR: '--deploy-mode' must be set to 'cluster'.\n" exit 1 fi if [ -z "${APP_MAIN}" ] then console "ERROR: The main application file is not specified correctly. Run with --help for usage information.\n" exit 1 fi if [[ "${APP_MAIN}" =~ .*\.py ]]; then PY_APP=true fi if [ -z "${APP_NAME}" ] then if [ -z "${CLASS}" ] then APP_NAME=${APP_MAIN} else APP_NAME=${CLASS} fi fi if [[ "${PY_APP}" = "false" ]] && [[ -z ${CLASS} ]]; then console "ERROR: Missing option --class \n" exit 1 fi # -- Synthesize variables ----------------------------------------------------- if [ -z ${PREFIX_SERVER_PATH} ]; then PREFIX_SERVER_PATH="/gpfs/fs01/user/${TENANT_ID}/data"; fi # -- Prepare remote path and upload files to the remote path ------------------ posixJars= if [ "${JARS}" ] then if [ "${SS_JARS_UPLOAD}" = "true" ] then posixJars=$(convert2serverPath_list ${JARS}) local2server_list ${JARS} ${posixJars} #posixJars=$(convert2submitPath_list ${posixJars}) else posixJars="${JARS}" fi fi posixFiles= if [ "${FILES}" ] then if [ "${SS_FILES_UPLOAD}" = "true" ] then posixFiles=$(convert2serverPath_list ${FILES}) local2server_list ${FILES} ${posixFiles} else posixFiles="${FILES}" fi fi posixPYFiles= if [ "${PY_FILES}" ] then if [ "${SS_FILES_UPLOAD}" = "true" ] then posixPYFiles=$(convert2serverPath_list ${PY_FILES}) local2server_list ${PY_FILES} ${posixPYFiles} else posixPYFiles="${PY_FILES}" fi fi if [ "${SS_APP_MAIN_UPLOAD}" = "true" ] then app_server_path=$(convert2serverPath ${APP_MAIN}) local2server ${APP_MAIN} ${app_server_path} #app_server_path=$(convert2submitPath ${app_server_path}) else app_server_path=${APP_MAIN} fi # -- Compose spark-submit command --------------------------------------------- mainClass=${CLASS} if [ "${PY_APP}" = "true" ] then mainClass="org.apache.spark.deploy.PythonRunner" fi requestBody=$(submit_REST_json "${app_parms}" "${app_server_path}" "${mainClass}" "${posixJars}" "${posixFiles}" "${posixPYFiles}") # -- Call spark-submit REST to submit the job to spark cluster --------------------- cmd="curl ${SS_CURL_OPTIONS} -X POST -H '$(get_requested_with_header)' --data-binary '${requestBody}' https://${HOSTNAME}/v1/submissions/create" console "\nSubmitting Job\n" logMessage "Submit job command: ${cmd}\n" resultSubmit=$(eval "${cmd}") logMessage "Submit job result: ${resultSubmit}\n" # -- Parse submit job output to find 'submissionId' value --------------------- submissionId="`echo ${resultSubmit} | sed -n 's/.*\"submissionId\" : \"\([^\"]*\)\",.*/\1/p'`" logMessage "\nSubmission ID: ${submissionId}\n" if [ -z "${submissionId}" ] then logMessage "ERROR: Problem submitting job. Exit\n" endScript exit 1 fi console "\nJob submitted : ${submissionId}\n" # -- Periodically poll job status --------------------------------------------- driverStatus="NULL" jobFinished=false jobFailed=false try=1 while [[ "${jobFinished}" == false ]] do console "\nPolling job status. Poll #${try}.\n" resultStatus=$(call_status_REST) ((try++)) driverStatus="`echo ${resultStatus} | sed -n 's/.*\"driverState\" : \"\([^\"]*\)\",.*/\1/p'`" console "driverStatus is ${driverStatus}\n" case ${driverStatus} in FINISHED) console "\nJob finished\n" jobFinished=true ;; RUNNING|SUBMITTED) console "Next poll in ${SS_POLL_INTERVAL} seconds.\n" sleep ${SS_POLL_INTERVAL} jobFinished=false ;; *) IS_JOB_ERROR=true logMessage "\n\n==== Failed Status output =====================================================\n" logMessage "${resultStatus}\n" logMessage "===============================================================================\n\n" jobFinished=true jobFailed=true ;; esac done # -- Download stdout and stderr files ----------------------------------------- logMessage="" if [ -n "${submissionId}" ] then LOCAL_STDOUT_FILENAME="stdout" LOCAL_STDERR_FILENAME="stderr" # MODEL_FILENAME="model.zip" stdout_server_path="${SS_SPARK_WORK_DIR}/${submissionId}/stdout" server2local ${stdout_server_path} ${LOCAL_STDOUT_FILENAME} if [ "$?" != 0 ] then console "Failed to download from ${stdout_server_path} to ${LOCAL_STDOUT_FILENAME}\n" else logMessage="View job's stdout log at ${LOCAL_STDOUT_FILENAME}\n" fi stderr_server_path="${SS_SPARK_WORK_DIR}/${submissionId}/stderr" server2local ${stderr_server_path} ${LOCAL_STDERR_FILENAME} if [ "$?" != 0 ] then console "Failed to download from ${stderr_server_path} to ${LOCAL_STDERR_FILENAME}\n" else logMessage="${logMessage}View job's stderr log at ${LOCAL_STDERR_FILENAME}\n" fi # model_path="${SS_SPARK_WORK_DIR}/${submissionId}/model.zip" # server2local ${model_path} ${MODEL_FILENAME} # if [ "$?" != 0 ] # then # console "Failed to download from ${model_path} to ${MODEL_FILENAME}\n" # else # logMessage="${logMessage}View job's stderr log at ${MODEL_FILENAME}\n" # fi fi # -- Delete transient files on spark cluster ---------------------------------- if [ "${SS_APP_MAIN_UPLOAD}" = "true" ] || [ "${SS_JARS_UPLOAD}" = "true" ] || [ "${SS_FILES_UPLOAD}" = "true" ] then if [ "${jobFinished}" = "true" ] then deleteFolderOnServer ${SERVER_SUB_DIR} fi fi # -- Epilog ------------------------------------------------------------------- if [ "${IS_JOB_ERROR}" = "true" ] then console "\nERROR: Job failed.\n" console "spark-submit log file: ${LOG_FILE}\n" console "${logMessage}" exit 1 else endScript console "${logMessage}" fi # -- --------------------------------------------------------------------------
8,140
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark/src/wrapper.py
import os from shutil import copyfile import sys import json import re os.system('pip install Minio --user') from minio import Minio # Load Credential file copyfile('../tmp/creds.json', './creds.json') with open('creds.json') as f: creds = json.load(f) f.close() # Remove possible http scheme for Minio url = re.compile(r"https?://") cos_endpoint = url.sub('', creds['cos_endpoint']) # Download the data and model file from the object storage. cos = Minio(cos_endpoint, access_key=creds['cos_access_key'], secret_key=creds['cos_secret_key'], secure=True) cos.fget_object(creds['bucket_name'], creds['data_filename'], creds['data_filename']) cos.fget_object(creds['bucket_name'], creds['model_filename'], creds['model_filename']) os.system('chmod 755 %s' % creds['model_filename']) os.system(creds['spark_entrypoint']) os.system('zip -r model.zip model') os.system('zip -r train_data.zip train_data') cos.fput_object(creds['bucket_name'], 'model.zip', 'model.zip') cos.fput_object(creds['bucket_name'], 'train_data.zip', 'train_data.zip') cos.fput_object(creds['bucket_name'], 'evaluation.json', 'evaluation.json') print('Trained model and train_data are uploaded.')
8,141
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/train_spark/src/train_spark.py
import os import argparse import json def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--bucket_name', type=str, help='Object storage bucket name', default="dummy-bucket-name") parser.add_argument('--data_filename', type=str, help='Name of the data binary', default="") parser.add_argument('--model_filename', type=str, help='Name of the training model file', default="model.py") parser.add_argument('--spark_entrypoint', type=str, help='Entrypoint command for training the spark model', default="python model.py") args = parser.parse_args() cos_bucket_name = args.bucket_name data_filename = args.data_filename model_filename = args.model_filename spark_entrypoint = args.spark_entrypoint cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") tenant_id = get_secret_creds("/app/secrets/spark_tenant_id") cluster_master_url = get_secret_creds("/app/secrets/spark_cluster_master_url") tenant_secret = get_secret_creds("/app/secrets/spark_tenant_secret") instance_id = get_secret_creds("/app/secrets/spark_instance_id") ''' Create credentials and vcap files for spark submit''' creds = { "cos_endpoint": cos_endpoint, "cos_access_key": cos_access_key, "cos_secret_key": cos_secret_key, "bucket_name": cos_bucket_name, "data_filename": data_filename, "model_filename": model_filename, "spark_entrypoint": spark_entrypoint } with open('creds.json', 'w') as f: json.dump(creds, f) f.close() spark_vcap = { "tenant_id": tenant_id, "cluster_master_url": cluster_master_url, "tenant_secret": tenant_secret, "instance_id": instance_id } with open('vcap.json', 'w') as f: json.dump(spark_vcap, f, indent=2) f.close() os.system('chmod 777 spark-submit.sh') os.system('./spark-submit.sh --vcap ./vcap.json --deploy-mode cluster --conf spark.service.spark_version=2.1 --files creds.json wrapper.py') os.system('cat stdout') with open("/tmp/model_filepath", "w") as report: report.write("model.zip") with open("/tmp/train_data_filepath", "w") as report: report.write("train_data.zip")
8,142
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/store_spark_model/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Store Spark Model - Watson Machine Learning' description: | Store any trained Spark Model using IBM Watson Machine Learning Service metadata: annotations: {platform: 'IBM Watson Machine Learning Service'} inputs: - {name: bucket_name, description: 'Required. Object storage bucket name'} - {name: aios_manifest_path, description: 'Required. Object storage file path for the aios manifest file'} - {name: problem_type, description: 'Required. Model problem type'} - {name: model_name, description: 'Required. Model name for the trained model'} - {name: deployment_name, description: 'Required. Deployment name for the trained model'} - {name: model_filepath, description: 'Required. Name of the trained model zip'} - {name: train_data_filepath, description: 'Required. Name of the training data zip'} outputs: - {name: model_uid, description: 'Stored model UID'} implementation: container: image: docker.io/aipipeline/store_spark_model:latest command: ['python'] args: [ -u, store_spark_model.py, --bucket_name, {inputValue: bucket_name}, --aios_manifest_path, {inputValue: aios_manifest_path}, --problem_type, {inputValue: problem_type}, --model_name, {inputValue: model_name}, --deployment_name, {inputValue: deployment_name}, --model_filepath, {inputValue: model_filepath}, --train_data_filepath, {inputValue: train_data_filepath} ] fileOutputs: model_uid: /tmp/model_uid
8,143
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/store_spark_model/Dockerfile
FROM aipipeline/pyspark:spark-2.1 RUN pip install --upgrade pip RUN pip install --upgrade watson-machine-learning-client ibm-ai-openscale Minio --no-cache | tail -n 1 RUN pip install psycopg2-binary | tail -n 1 ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME USER root ENTRYPOINT ["python"] CMD ["store_spark_model.py"]
8,144
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/store_spark_model
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/store_spark_model/src/store_spark_model.py
import argparse import json import os import re from pyspark.sql import SparkSession from pyspark.ml.pipeline import PipelineModel from pyspark import SparkConf, SparkContext from pyspark.ml import Pipeline, Model from watson_machine_learning_client import WatsonMachineLearningAPIClient from minio import Minio def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--bucket_name', type=str, help='Object storage bucket name', default="dummy-bucket-name") parser.add_argument('--model_filepath', type=str, help='Name of the trained spark model packaged as zip', default="model.zip") parser.add_argument('--train_data_filepath', type=str, help='Name of the train_data zip', default="train_data.zip") parser.add_argument('--aios_manifest_path', type=str, help='Object storage file path for the aios manifest file', default="") parser.add_argument('--problem_type', type=str, help='Model problem type', default="BINARY_CLASSIFICATION") parser.add_argument('--model_name', type=str, help='model name for the trained model', default="Spark German Risk Model - Final") parser.add_argument('--deployment_name', type=str, help='deployment name for the trained model', default="Spark German Risk Deployment - Final") args = parser.parse_args() cos_bucket_name = args.bucket_name model_filepath = args.model_filepath aios_manifest_path = args.aios_manifest_path train_data_filepath = args.train_data_filepath problem_type = args.problem_type MODEL_NAME = args.model_name DEPLOYMENT_NAME = args.deployment_name wml_url = get_secret_creds("/app/secrets/wml_url") wml_instance_id = get_secret_creds("/app/secrets/wml_instance_id") wml_apikey = get_secret_creds("/app/secrets/wml_apikey") cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") ''' Remove possible http scheme for Minio ''' url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) WML_CREDENTIALS = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } ''' Load Spark model ''' cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) cos.fget_object(cos_bucket_name, model_filepath, model_filepath) cos.fget_object(cos_bucket_name, train_data_filepath, train_data_filepath) cos.fget_object(cos_bucket_name, 'evaluation.json', 'evaluation.json') if aios_manifest_path: cos.fget_object(cos_bucket_name, aios_manifest_path, aios_manifest_path) os.system('unzip %s' % model_filepath) print('model ' + model_filepath + ' is downloaded') os.system('unzip %s' % train_data_filepath) print('train_data ' + train_data_filepath + ' is downloaded') sc = SparkContext() model = PipelineModel.load(model_filepath.split('.')[0]) pipeline = Pipeline(stages=model.stages) spark = SparkSession.builder.getOrCreate() train_data = spark.read.csv(path=train_data_filepath.split('.')[0], sep=",", header=True, inferSchema=True) ''' Remove previous deployed model ''' wml_client = WatsonMachineLearningAPIClient(WML_CREDENTIALS) model_deployment_ids = wml_client.deployments.get_uids() deleted_model_id = None for deployment_id in model_deployment_ids: deployment = wml_client.deployments.get_details(deployment_id) model_id = deployment['entity']['deployable_asset']['guid'] if deployment['entity']['name'] == DEPLOYMENT_NAME: print('Deleting deployment id', deployment_id) wml_client.deployments.delete(deployment_id) print('Deleting model id', model_id) wml_client.repository.delete(model_id) deleted_model_id = model_id wml_client.repository.list_models() ''' Save and Deploy model ''' if aios_manifest_path: with open(aios_manifest_path) as f: aios_manifest = json.load(f) OUTPUT_DATA_SCHEMA = {'fields': aios_manifest['model_schema'], 'type': 'struct'} f.close() else: OUTPUT_DATA_SCHEMA = None with open('evaluation.json') as f: evaluation = json.load(f) f.close() if problem_type == 'BINARY_CLASSIFICATION': EVALUATION_METHOD = 'binary' else: EVALUATION_METHOD = 'multiclass' ''' Define evaluation threshold ''' model_props = { wml_client.repository.ModelMetaNames.NAME: "{}".format(MODEL_NAME), wml_client.repository.ModelMetaNames.EVALUATION_METHOD: EVALUATION_METHOD, wml_client.repository.ModelMetaNames.EVALUATION_METRICS: evaluation['metrics'] } if aios_manifest_path: model_props[wml_client.repository.ModelMetaNames.OUTPUT_DATA_SCHEMA] = OUTPUT_DATA_SCHEMA wml_models = wml_client.repository.get_details() model_uid = None for model_in in wml_models['models']['resources']: if MODEL_NAME == model_in['entity']['name']: model_uid = model_in['metadata']['guid'] break if model_uid is None: print("Storing model ...") published_model_details = wml_client.repository.store_model(model=model, meta_props=model_props, training_data=train_data, pipeline=pipeline) model_uid = wml_client.repository.get_model_uid(published_model_details) print("Done") else: print("Model already exist") with open("/tmp/model_uid", "w") as report: report.write(model_uid)
8,145
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/data_preprocess_spark/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Preprocess Data using Spark - IBM Cloud' description: | Preprocess data using IBM Cloud Spark Service metadata: annotations: {platform: 'IBM Cloud Spark Service'} inputs: - {name: bucket_name, description: 'Required. Object storage bucket name'} - {name: data_url, description: 'Required. URL of the data source'} outputs: - {name: output, description: 'Data Filename'} implementation: container: image: docker.io/aipipeline/data_preprocess_spark:latest command: ['python'] args: [ -u, data_preprocess_spark.py, --bucket_name, {inputValue: bucket_name}, --data_url, {inputValue: data_url} ] fileOutputs: output: /tmp/filename
8,146
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/data_preprocess_spark/Dockerfile
FROM aipipeline/pyspark:spark-2.1 RUN pip install --upgrade pip RUN pip install --upgrade Minio --no-cache | tail -n 1 RUN pip install psycopg2-binary | tail -n 1 ENV APP_HOME /app COPY src $APP_HOME WORKDIR $APP_HOME USER root ENTRYPOINT ["python"] CMD ["data_preprocess_spark.py"]
8,147
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/data_preprocess_spark
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/spark/data_preprocess_spark/src/data_preprocess_spark.py
import argparse import requests from pyspark.sql import SparkSession from minio import Minio from minio.error import ResponseError import re def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--bucket_name', type=str, help='Object storage bucket name', default="dummy-bucket-name") parser.add_argument('--data_url', type=str, help='URL of the data source', required=True) args = parser.parse_args() cos_bucket_name = args.bucket_name data_url = args.data_url cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") ''' Remove possible http scheme for Minio ''' url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) ''' Download data from data source ''' filename = data_url response = requests.get(data_url, allow_redirects=True) if data_url.find('/'): filename = data_url.rsplit('/', 1)[1] open(filename, 'wb').write(response.content) ''' Read data with Spark SQL ''' spark = SparkSession.builder.getOrCreate() df_data = spark.read.csv(path=filename, sep=",", header=True, inferSchema=True) df_data.head() ''' Upload data to Cloud object storage ''' cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) if not cos.bucket_exists(cos_bucket_name): try: cos.make_bucket(cos_bucket_name) except ResponseError as err: print(err) cos.fput_object(cos_bucket_name, filename, filename) print('Data ' + filename + ' is uploaded to bucket at ' + cos_bucket_name) with open("/tmp/filename", "w") as report: report.write(filename) df_data.printSchema() print("Number of records: " + str(df_data.count()))
8,148
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons/config/component.yaml
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: 'Create Secret - Kubernetes Cluster' description: | Create secret to store pipeline credentials on Kubernetes Cluster inputs: - {name: token, description: 'Required. GitHub token for accessing private repository'} - {name: url, description: 'Required. GitHub raw path for accessing the credential file'} - {name: name, description: 'Required. Secret Name to be stored in Kubernetes'} outputs: - {name: secret_name, description: 'Kubernetes secret name'} implementation: container: image: docker.io/aipipeline/wml-config:latest command: ['python3'] args: [ /app/config.py, --token, {inputValue: token}, --url, {inputValue: url}, --name, {inputValue: name}, --output-secret-name-file, {outputPath: secret_name}, ]
8,149
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons/config/Dockerfile
FROM python:3.6-slim # Directories for model codes and secrets RUN mkdir /app # Install curl and kubectl RUN apt-get update RUN apt-get install -y curl gnupg RUN apt-get install -y apt-transport-https RUN curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - RUN echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee -a /etc/apt/sources.list.d/kubernetes.list RUN apt-get update RUN apt-get install -y kubectl # Directory for secrets COPY src/config.py /app
8,150
0
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons/config
kubeflow_public_repos/kfp-tekton-backend/components/ibm-components/commons/config/src/config.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--token', type=str, required=True) parser.add_argument('--url', type=str, required=True) parser.add_argument('--name', type=str) parser.add_argument('--output-secret-name-file', type=str) args = parser.parse_args() access_token = args.token config_file_path = args.url # download config file # the default creds.ini is in the public accesible github repo import subprocess import os config_file = os.path.basename(config_file_path) config_local_path = os.path.join('/tmp', config_file) command = ['curl', '-H', 'Authorization: token %s' % access_token, '-L', '-o', config_local_path, config_file_path] subprocess.run(command, check=True) secret_name = args.name if (not secret_name): secret_name = 'ai-pipeline-' + os.path.splitext(config_file)[0] try: command = ['kubectl', 'delete', 'secret', secret_name] subprocess.run(command, check=True) except Exception as e: print('No previous secret: ' + secret_name + '. Secret deletion is not performed.') # gather all secrets command = ['kubectl', 'create', 'secret', 'generic', secret_name] import configparser config = configparser.ConfigParser() config.read(config_local_path) for section in config.sections(): for key in config[section]: command.append('--from-literal=%s=\'%s\'' % (key, config[section][key])) # create the secret subprocess.run(command, check=True) # verify secret is created subprocess.run(['kubectl', 'describe', 'secret', secret_name], check=True) # indicate that secret is created and pass the secret name forward from pathlib import Path Path(args.output_secret_name_file).parent.mkdir(parents=True, exist_ok=True) Path(args.output_secret_name_file).write_text(secret_name)
8,151
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/confusion_matrix/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../build_image.sh -l ml-pipeline-local-confusion-matrix "$@"
8,152
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/confusion_matrix/component.yaml
name: Confusion matrix description: Calculates confusion matrix inputs: - {name: Predictions, type: GCSPath, description: 'GCS path of prediction file pattern.'} # type: {GCSPath: {data_type: CSV}} - {name: Target lambda, type: String, default: '', description: 'Text of Python lambda function which computes target value. For example, "lambda x: x[''a''] + x[''b'']". If not set, the input must include a "target" column.'} - {name: Output dir, type: GCSPath, description: 'GCS path of the output directory.'} # type: {GCSPath: {path_type: Directory}} outputs: - {name: MLPipeline UI metadata, type: UI metadata} - {name: MLPipeline Metrics, type: Metrics} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:ad9bd5648dd0453005225779f25d8cebebc7ca00 command: [python2, /ml/confusion_matrix.py] args: [ --predictions, {inputValue: Predictions}, --target_lambda, {inputValue: Target lambda}, --output, {inputValue: Output dir}, ] fileOutputs: MLPipeline UI metadata: /mlpipeline-ui-metadata.json MLPipeline Metrics: /mlpipeline-metrics.json
8,153
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/confusion_matrix/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-local-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/confusion_matrix.py"]
8,154
0
kubeflow_public_repos/kfp-tekton-backend/components/local/confusion_matrix
kubeflow_public_repos/kfp-tekton-backend/components/local/confusion_matrix/src/confusion_matrix.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A program to generate confusion matrix data out of prediction results. # Usage: # python confusion_matrix.py \ # --predictions=gs://bradley-playground/sfpd/predictions/part-* \ # --output=gs://bradley-playground/sfpd/cm/ \ # --target=resolution \ # --analysis=gs://bradley-playground/sfpd/analysis \ import argparse import json import os import urlparse import pandas as pd from sklearn.metrics import confusion_matrix, accuracy_score from tensorflow.python.lib.io import file_io def main(argv=None): parser = argparse.ArgumentParser(description='ML Trainer') parser.add_argument('--predictions', type=str, help='GCS path of prediction file pattern.') parser.add_argument('--output', type=str, help='GCS path of the output directory.') parser.add_argument('--target_lambda', type=str, help='a lambda function as a string to compute target.' + 'For example, "lambda x: x[\'a\'] + x[\'b\']"' + 'If not set, the input must include a "target" column.') args = parser.parse_args() storage_service_scheme = urlparse.urlparse(args.output).scheme on_cloud = True if storage_service_scheme else False if not on_cloud and not os.path.exists(args.output): os.makedirs(args.output) schema_file = os.path.join(os.path.dirname(args.predictions), 'schema.json') schema = json.loads(file_io.read_file_to_string(schema_file)) names = [x['name'] for x in schema] dfs = [] files = file_io.get_matching_files(args.predictions) for file in files: with file_io.FileIO(file, 'r') as f: dfs.append(pd.read_csv(f, names=names)) df = pd.concat(dfs) if args.target_lambda: df['target'] = df.apply(eval(args.target_lambda), axis=1) vocab = list(df['target'].unique()) cm = confusion_matrix(df['target'], df['predicted'], labels=vocab) data = [] for target_index, target_row in enumerate(cm): for predicted_index, count in enumerate(target_row): data.append((vocab[target_index], vocab[predicted_index], count)) df_cm = pd.DataFrame(data, columns=['target', 'predicted', 'count']) cm_file = os.path.join(args.output, 'confusion_matrix.csv') with file_io.FileIO(cm_file, 'w') as f: df_cm.to_csv(f, columns=['target', 'predicted', 'count'], header=False, index=False) metadata = { 'outputs' : [{ 'type': 'confusion_matrix', 'format': 'csv', 'schema': [ {'name': 'target', 'type': 'CATEGORY'}, {'name': 'predicted', 'type': 'CATEGORY'}, {'name': 'count', 'type': 'NUMBER'}, ], 'source': cm_file, # Convert vocab to string because for bealean values we want "True|False" to match csv data. 'labels': list(map(str, vocab)), }] } with file_io.FileIO('/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f) accuracy = accuracy_score(df['target'], df['predicted']) metrics = { 'metrics': [{ 'name': 'accuracy-score', 'numberValue': accuracy, 'format': "PERCENTAGE", }] } with file_io.FileIO('/mlpipeline-metrics.json', 'w') as f: json.dump(metrics, f) if __name__== "__main__": main()
8,155
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/base/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. mkdir -p ./build rsync -arvp "../confusion_matrix/src"/ ./build/ rsync -arvp "../roc/src"/ ./build/ cp ../../license.sh ./build cp ../../third_party_licenses.csv ./build docker build -t ml-pipeline-local-base . rm -rf ./build
8,156
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/base/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ubuntu:16.04 RUN apt-get update -y && apt-get install --no-install-recommends -y -q ca-certificates python-dev python-setuptools wget unzip RUN easy_install pip RUN pip install google-api-python-client==1.6.2 RUN pip install pandas==0.18.1 RUN pip install scikit-learn==0.19.1 RUN pip install scipy==1.0.0 RUN pip install tensorflow==1.5 RUN wget -nv https://dl.google.com/dl/cloudsdk/release/google-cloud-sdk.zip && \ unzip -qq google-cloud-sdk.zip -d tools && \ rm google-cloud-sdk.zip && \ tools/google-cloud-sdk/install.sh --usage-reporting=false \ --path-update=false --bash-completion=false \ --disable-installation-options && \ tools/google-cloud-sdk/bin/gcloud -q components update \ gcloud core gsutil && \ tools/google-cloud-sdk/bin/gcloud config set component_manager/disable_update_check true && \ touch /tools/google-cloud-sdk/lib/third_party/google.py ADD build /ml ENV PATH $PATH:/tools/node/bin:/tools/google-cloud-sdk/bin
8,157
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/roc/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../build_image.sh -l ml-pipeline-local-roc "$@"
8,158
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/roc/component.yaml
name: ROC curve description: Calculates Receiver Operating Characteristic curve. See https://en.wikipedia.org/wiki/Receiver_operating_characteristic inputs: - {name: Predictions dir, type: GCSPath, description: 'GCS path of prediction file pattern.'} #TODO: Replace dir data + schema files # type: {GCSPath: {path_type: Directory}} - {name: True class, type: String, default: 'true', description: 'The true class label for the sample. Default is "true".'} - {name: True score column, type: String, default: 'true', description: 'The name of the column for positive probability.'} - {name: Target lambda, type: String, default: '', description: 'Text of Python lambda function which returns boolean value indicating whether the classification result is correct.\nFor example, "lambda x: x[''a''] and x[''b'']". If missing, input must have a "target" column.'} - {name: Output dir, type: GCSPath, description: 'GCS path of the output directory.'} #TODO: Replace dir with single file # type: {GCSPath: {path_type: Directory}} outputs: - {name: MLPipeline UI metadata, type: UI metadata} - {name: MLPipeline Metrics, type: Metrics} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:ad9bd5648dd0453005225779f25d8cebebc7ca00 command: [python2, /ml/roc.py] args: [ --predictions, {inputValue: Predictions dir}, --trueclass, {inputValue: True class}, --true_score_column, {inputValue: True score column}, --target_lambda, {inputValue: Target lambda}, --output, {inputValue: Output dir}, ] fileOutputs: MLPipeline UI metadata: /mlpipeline-ui-metadata.json MLPipeline Metrics: /mlpipeline-metrics.json
8,159
0
kubeflow_public_repos/kfp-tekton-backend/components/local
kubeflow_public_repos/kfp-tekton-backend/components/local/roc/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-local-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/roc.py"]
8,160
0
kubeflow_public_repos/kfp-tekton-backend/components/local/roc
kubeflow_public_repos/kfp-tekton-backend/components/local/roc/src/roc.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A program to generate ROC data out of prediction results. # Usage: # python roc.py \ # --predictions=gs://bradley-playground/sfpd/predictions/part-* \ # --trueclass=ACTION \ # --output=gs://bradley-playground/sfpd/roc/ \ import argparse import json import os import urlparse import pandas as pd from sklearn.metrics import roc_curve, roc_auc_score from tensorflow.python.lib.io import file_io def main(argv=None): parser = argparse.ArgumentParser(description='ML Trainer') parser.add_argument('--predictions', type=str, help='GCS path of prediction file pattern.') parser.add_argument('--trueclass', type=str, default='true', help='The name of the class as true value. If missing, assuming it is ' + 'binary classification and default to "true".') parser.add_argument('--true_score_column', type=str, default='true', help='The name of the column for positive prob. If missing, assuming it is ' + 'binary classification and defaults to "true".') parser.add_argument('--target_lambda', type=str, help='a lambda function as a string to determine positive or negative.' + 'For example, "lambda x: x[\'a\'] and x[\'b\']". If missing, ' + 'input must have a "target" column.') parser.add_argument('--output', type=str, help='GCS path of the output directory.') args = parser.parse_args() storage_service_scheme = urlparse.urlparse(args.output).scheme on_cloud = True if storage_service_scheme else False if not on_cloud and not os.path.exists(args.output): os.makedirs(args.output) schema_file = os.path.join(os.path.dirname(args.predictions), 'schema.json') schema = json.loads(file_io.read_file_to_string(schema_file)) names = [x['name'] for x in schema] if not args.target_lambda and 'target' not in names: raise ValueError('There is no "target" column, and target_lambda is not provided.') if args.true_score_column not in names: raise ValueError('Cannot find column name "%s"' % args.true_score_column) dfs = [] files = file_io.get_matching_files(args.predictions) for file in files: with file_io.FileIO(file, 'r') as f: dfs.append(pd.read_csv(f, names=names)) df = pd.concat(dfs) if args.target_lambda: df['target'] = df.apply(eval(args.target_lambda), axis=1) else: df['target'] = df['target'].apply(lambda x: 1 if x == args.trueclass else 0) fpr, tpr, thresholds = roc_curve(df['target'], df[args.true_score_column]) roc_auc = roc_auc_score(df['target'], df[args.true_score_column]) df_roc = pd.DataFrame({'fpr': fpr, 'tpr': tpr, 'thresholds': thresholds}) roc_file = os.path.join(args.output, 'roc.csv') with file_io.FileIO(roc_file, 'w') as f: df_roc.to_csv(f, columns=['fpr', 'tpr', 'thresholds'], header=False, index=False) metadata = { 'outputs': [{ 'type': 'roc', 'format': 'csv', 'schema': [ {'name': 'fpr', 'type': 'NUMBER'}, {'name': 'tpr', 'type': 'NUMBER'}, {'name': 'thresholds', 'type': 'NUMBER'}, ], 'source': roc_file }] } with file_io.FileIO('/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f) metrics = { 'metrics': [{ 'name': 'roc-auc-score', 'numberValue': roc_auc, }] } with file_io.FileIO('/mlpipeline-metrics.json', 'w') as f: json.dump(metrics, f) if __name__== "__main__": main()
8,161
0
kubeflow_public_repos/kfp-tekton-backend/components/diagnostics
kubeflow_public_repos/kfp-tekton-backend/components/diagnostics/diagnose_me/component.py
# Copyright 2020 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, NamedTuple, Optional def run_diagnose_me( bucket: str, execution_mode: str, project_id: str, target_apis: str, quota_check: list = None, ) -> NamedTuple('Outputs', [('bucket', str), ('project_id', str)]): """ Performs environment verification specific to this pipeline. args: bucket: string name of the bucket to be checked. Must be of the format gs://bucket_root/any/path/here/is/ignored where any path beyond root is ignored. execution_mode: If set to HALT_ON_ERROR will case any error to raise an exception. This is intended to stop the data processing of a pipeline. Can set to False to only report Errors/Warnings. project_id: GCP project ID which is assumed to be the project under which current pod is executing. target_apis: String consisting of a comma separated list of apis to be verified. quota_check: List of entries describing how much quota is required. Each entry has three fields: region, metric and quota_needed. All string-typed. Raises: RuntimeError: If configuration is not setup properly and HALT_ON_ERROR flag is set. """ # Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0' # does not come with pip3 pre-installed. import subprocess subprocess.run([ 'curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py' ], capture_output=True) subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'], capture_output=True) subprocess.run(['python3', 'get-pip.py'], capture_output=True) subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'], capture_output=True) import sys from kfp.cli.diagnose_me import gcp config_error_observed = False quota_list = gcp.get_gcp_configuration( gcp.Commands.GET_QUOTAS, human_readable=False ) if quota_list.has_error: print('Failed to retrieve project quota with error %s\n' % (quota_list.stderr)) config_error_observed = True else: # Check quota. quota_dict = {} # Mapping from region to dict[metric, available] for region_quota in quota_list.json_output: quota_dict[region_quota['name']] = {} for quota in region_quota['quotas']: quota_dict[region_quota['name']][quota['metric'] ] = quota['limit'] - quota['usage'] quota_check = [] or quota_check for single_check in quota_check: if single_check['region'] not in quota_dict: print( 'Regional quota for %s does not exist in current project.\n' % (single_check['region']) ) config_error_observed = True else: if quota_dict[single_check['region']][single_check['metric'] ] < single_check['quota_needed']: print( 'Insufficient quota observed for %s at %s: %s is needed but only %s is available.\n' % ( single_check['metric'], single_check['region'], str(single_check['quota_needed'] ), str(quota_dict[single_check['region']][single_check['metric']]) ) ) config_error_observed = True # Get the project ID # from project configuration project_config = gcp.get_gcp_configuration( gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False ) if not project_config.has_error: auth_project_id = project_config.parsed_output['core']['project'] print( 'GCP credentials are configured with access to project: %s ...\n' % (project_id) ) print('Following account(s) are active under this pipeline:\n') subprocess.run(['gcloud', 'auth', 'list', '--format', 'json']) print('\n') else: print( 'Project configuration is not accessible with error %s\n' % (project_config.stderr), file=sys.stderr ) config_error_observed = True if auth_project_id != project_id: print( 'User provided project ID %s does not match the configuration %s\n' % (project_id, auth_project_id), file=sys.stderr ) config_error_observed = True # Get project buckets get_project_bucket_results = gcp.get_gcp_configuration( gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False ) if get_project_bucket_results.has_error: print( 'could not retrieve project buckets with error: %s' % (get_project_bucket_results.stderr), file=sys.stderr ) config_error_observed = True # Get the root of the user provided bucket i.e. gs://root. bucket_root = '/'.join(bucket.split('/')[0:3]) print( 'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' % (bucket) ) if bucket_root in get_project_bucket_results.json_output: print( 'Provided bucket \n %s\nis accessible within the project\n %s\n' % (bucket, project_id) ) else: print( 'Could not find the bucket %s in project %s' % (bucket, project_id) + 'Please verify that you have provided the correct GCS bucket name.\n' + 'Only the following buckets are visible in this project:\n%s' % (get_project_bucket_results.parsed_output), file=sys.stderr ) config_error_observed = True # Verify APIs that are required are enabled api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS) api_status = {} if api_config_results.has_error: print( 'could not retrieve API status with error: %s' % (api_config_results.stderr), file=sys.stderr ) config_error_observed = True print('Checking APIs status ...') for item in api_config_results.parsed_output: api_status[item['config']['name']] = item['state'] # printing the results in stdout for logging purposes print('%s %s' % (item['config']['name'], item['state'])) # Check if target apis are enabled api_check_results = True for api in target_apis.replace(' ', '').split(','): if 'ENABLED' != api_status.get(api, 'DISABLED'): api_check_results = False print( 'API \"%s\" is not accessible or not enabled. To enable this api go to ' % (api) + 'https://console.cloud.google.com/apis/library/%s?project=%s' % (api, project_id), file=sys.stderr ) config_error_observed = True if 'HALT_ON_ERROR' in execution_mode and config_error_observed: raise RuntimeError( 'There was an error in your environment configuration.\n' + 'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n' + '\n' + 'We highly recommend that you recreate the cluster and check "Allow access ..." \n' + 'checkbox during cluster creation to have the cluster configured automatically.\n' + 'For more information on this and other troubleshooting instructions refer to\n' + 'our troubleshooting guide.\n' + '\n' + 'If you have intentionally modified the cluster configuration, you may\n' + 'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n' ) return (project_id, bucket) if __name__ == '__main__': import kfp.components as comp comp.func_to_container_op( run_diagnose_me, base_image='google/cloud-sdk:279.0.0', output_component_file='component.yaml', )
8,162
0
kubeflow_public_repos/kfp-tekton-backend/components/diagnostics
kubeflow_public_repos/kfp-tekton-backend/components/diagnostics/diagnose_me/component.yaml
name: Run diagnose me description: |- Performs environment verification specific to this pipeline. args: bucket: string name of the bucket to be checked. Must be of the format gs://bucket_root/any/path/here/is/ignored where any path beyond root is ignored. execution_mode: If set to HALT_ON_ERROR will case any error to raise an exception. This is intended to stop the data processing of a pipeline. Can set to False to only report Errors/Warnings. project_id: GCP project ID which is assumed to be the project under which current pod is executing. target_apis: String consisting of a comma separated list of apis to be verified. quota_check: List of entries describing how much quota is required. Each entry has three fields: region, metric and quota_needed. All string-typed. Raises: RuntimeError: If configuration is not setup properly and HALT_ON_ERROR flag is set. inputs: - name: bucket type: String - name: execution_mode type: String - name: project_id type: String - name: target_apis type: String - name: quota_check type: JsonArray optional: true outputs: - name: bucket type: String - name: project_id type: String implementation: container: image: google/cloud-sdk:279.0.0 command: - python3 - -u - -c - | from typing import NamedTuple def run_diagnose_me( bucket: str, execution_mode: str, project_id: str, target_apis: str, quota_check: list = None, ) -> NamedTuple('Outputs', [('bucket', str), ('project_id', str)]): """ Performs environment verification specific to this pipeline. args: bucket: string name of the bucket to be checked. Must be of the format gs://bucket_root/any/path/here/is/ignored where any path beyond root is ignored. execution_mode: If set to HALT_ON_ERROR will case any error to raise an exception. This is intended to stop the data processing of a pipeline. Can set to False to only report Errors/Warnings. project_id: GCP project ID which is assumed to be the project under which current pod is executing. target_apis: String consisting of a comma separated list of apis to be verified. quota_check: List of entries describing how much quota is required. Each entry has three fields: region, metric and quota_needed. All string-typed. Raises: RuntimeError: If configuration is not setup properly and HALT_ON_ERROR flag is set. """ # Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0' # does not come with pip3 pre-installed. import subprocess subprocess.run([ 'curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py' ], capture_output=True) subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'], capture_output=True) subprocess.run(['python3', 'get-pip.py'], capture_output=True) subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'], capture_output=True) import sys from kfp.cli.diagnose_me import gcp config_error_observed = False quota_list = gcp.get_gcp_configuration( gcp.Commands.GET_QUOTAS, human_readable=False ) if quota_list.has_error: print('Failed to retrieve project quota with error %s\n' % (quota_list.stderr)) config_error_observed = True else: # Check quota. quota_dict = {} # Mapping from region to dict[metric, available] for region_quota in quota_list.json_output: quota_dict[region_quota['name']] = {} for quota in region_quota['quotas']: quota_dict[region_quota['name']][quota['metric'] ] = quota['limit'] - quota['usage'] quota_check = [] or quota_check for single_check in quota_check: if single_check['region'] not in quota_dict: print( 'Regional quota for %s does not exist in current project.\n' % (single_check['region']) ) config_error_observed = True else: if quota_dict[single_check['region']][single_check['metric'] ] < single_check['quota_needed']: print( 'Insufficient quota observed for %s at %s: %s is needed but only %s is available.\n' % ( single_check['metric'], single_check['region'], str(single_check['quota_needed'] ), str(quota_dict[single_check['region']][single_check['metric']]) ) ) config_error_observed = True # Get the project ID # from project configuration project_config = gcp.get_gcp_configuration( gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False ) if not project_config.has_error: auth_project_id = project_config.parsed_output['core']['project'] print( 'GCP credentials are configured with access to project: %s ...\n' % (project_id) ) print('Following account(s) are active under this pipeline:\n') subprocess.run(['gcloud', 'auth', 'list', '--format', 'json']) print('\n') else: print( 'Project configuration is not accessible with error %s\n' % (project_config.stderr), file=sys.stderr ) config_error_observed = True if auth_project_id != project_id: print( 'User provided project ID %s does not match the configuration %s\n' % (project_id, auth_project_id), file=sys.stderr ) config_error_observed = True # Get project buckets get_project_bucket_results = gcp.get_gcp_configuration( gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False ) if get_project_bucket_results.has_error: print( 'could not retrieve project buckets with error: %s' % (get_project_bucket_results.stderr), file=sys.stderr ) config_error_observed = True # Get the root of the user provided bucket i.e. gs://root. bucket_root = '/'.join(bucket.split('/')[0:3]) print( 'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' % (bucket) ) if bucket_root in get_project_bucket_results.json_output: print( 'Provided bucket \n %s\nis accessible within the project\n %s\n' % (bucket, project_id) ) else: print( 'Could not find the bucket %s in project %s' % (bucket, project_id) + 'Please verify that you have provided the correct GCS bucket name.\n' + 'Only the following buckets are visible in this project:\n%s' % (get_project_bucket_results.parsed_output), file=sys.stderr ) config_error_observed = True # Verify APIs that are required are enabled api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS) api_status = {} if api_config_results.has_error: print( 'could not retrieve API status with error: %s' % (api_config_results.stderr), file=sys.stderr ) config_error_observed = True print('Checking APIs status ...') for item in api_config_results.parsed_output: api_status[item['config']['name']] = item['state'] # printing the results in stdout for logging purposes print('%s %s' % (item['config']['name'], item['state'])) # Check if target apis are enabled api_check_results = True for api in target_apis.replace(' ', '').split(','): if 'ENABLED' != api_status.get(api, 'DISABLED'): api_check_results = False print( 'API \"%s\" is not accessible or not enabled. To enable this api go to ' % (api) + 'https://console.cloud.google.com/apis/library/%s?project=%s' % (api, project_id), file=sys.stderr ) config_error_observed = True if 'HALT_ON_ERROR' in execution_mode and config_error_observed: raise RuntimeError( 'There was an error in your environment configuration.\n' + 'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n' + '\n' + 'We highly recommend that you recreate the cluster and check "Allow access ..." \n' + 'checkbox during cluster creation to have the cluster configured automatically.\n' + 'For more information on this and other troubleshooting instructions refer to\n' + 'our troubleshooting guide.\n' + '\n' + 'If you have intentionally modified the cluster configuration, you may\n' + 'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n' ) return (project_id, bucket) def _serialize_str(str_value: str) -> str: if not isinstance(str_value, str): raise TypeError('Value "{}" has type "{}" instead of str.'.format(str(str_value), str(type(str_value)))) return str_value import json import argparse _parser = argparse.ArgumentParser(prog='Run diagnose me', description='Performs environment verification specific to this pipeline.\n\n args:\n bucket:\n string name of the bucket to be checked. Must be of the format\n gs://bucket_root/any/path/here/is/ignored where any path beyond root\n is ignored.\n execution_mode:\n If set to HALT_ON_ERROR will case any error to raise an exception.\n This is intended to stop the data processing of a pipeline. Can set\n to False to only report Errors/Warnings.\n project_id:\n GCP project ID which is assumed to be the project under which\n current pod is executing.\n target_apis:\n String consisting of a comma separated list of apis to be verified.\n quota_check:\n List of entries describing how much quota is required. Each entry\n has three fields: region, metric and quota_needed. All\n string-typed.\n Raises:\n RuntimeError: If configuration is not setup properly and\n HALT_ON_ERROR flag is set.') _parser.add_argument("--bucket", dest="bucket", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--execution-mode", dest="execution_mode", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--project-id", dest="project_id", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--target-apis", dest="target_apis", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--quota-check", dest="quota_check", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=2) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = run_diagnose_me(**_parsed_args) if not hasattr(_outputs, '__getitem__') or isinstance(_outputs, str): _outputs = [_outputs] _output_serializers = [ _serialize_str, _serialize_str, ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --bucket - inputValue: bucket - --execution-mode - inputValue: execution_mode - --project-id - inputValue: project_id - --target-apis - inputValue: target_apis - if: cond: isPresent: quota_check then: - --quota-check - inputValue: quota_check - '----output-paths' - outputPath: bucket - outputPath: project_id
8,163
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow/tfma/component.yaml
name: TFX - Analyze model description: | Runs Tensorflow Model Analysis. https://www.tensorflow.org/tfx/model_analysis/get_started TensorFlow Model Analysis allows you to perform model evaluations in the TFX pipeline, and view resultant metrics and plots in a Jupyter notebook. Specifically, it can provide: * metrics computed on entire training and holdout dataset, as well as next-day evaluations * tracking metrics over time * model quality performance on different feature slices inputs: - {name: Model, type: GCSPath, description: GCS path to the model which will be evaluated.} # type: {GCSPath: {path_type: Directory, data_type: Exported TensorFlow models dir}} - {name: Evaluation data, type: GCSPath, description: GCS path of eval files.} # type: {GCSPath: {data_type: CSV}} - {name: Schema, type: GCSPath, description: GCS json schema file path.} # type: {GCSPath: {data_type: TFDV schema JSON}} - {name: Run mode, type: String, default: local, description: whether to run the job locally or in Cloud Dataflow.} - {name: GCP project, type: GCPProjectID, default: '', description: 'The GCP project to run the dataflow job, if running in the `cloud` mode.'} - {name: Slice columns, type: String, description: Comma-separated list of columns on which to slice for analysis.} - {name: Analysis results dir, type: GCSPath, description: GCS or local directory where the analysis results should be written.} # type: {GCSPath: {path_type: Directory}} outputs: - {name: Analysis results dir, type: GCSPath, description: GCS or local directory where the analysis results should were written.} # type: {GCSPath: {path_type: Directory}} - {name: MLPipeline UI metadata, type: UI metadata} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:57d9f7f1cfd458e945d297957621716062d89a49 command: [python2, /ml/model_analysis.py] args: [ --model, {inputValue: Model}, --eval, {inputValue: Evaluation data}, --schema, {inputValue: Schema}, --mode, {inputValue: Run mode}, --project, {inputValue: GCP project}, --slice-columns, {inputValue: Slice columns}, --output, {inputValue: Analysis results dir}, ] fileOutputs: Analysis results dir: /output.txt MLPipeline UI metadata: /mlpipeline-ui-metadata.json
8,164
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow/predict/component.yaml
name: Predict using TF on Dataflow description: | Runs TensorFlow prediction on Google Cloud Dataflow Input and output data is in GCS inputs: - {name: Data file pattern, type: GCSPath, description: 'GCS or local path of test file patterns.'} # type: {GCSPath: {data_type: CSV}} - {name: Schema, type: GCSPath, description: 'GCS json schema file path.'} # type: {GCSPath: {data_type: TFDV schema JSON}} - {name: Target column, type: String, description: 'Name of the column for prediction target.'} - {name: Model, type: GCSPath, description: 'GCS or local path of model trained with tft preprocessed data.'} # Models trained with estimator are exported to base/export/export/123456781 directory. # Our trainer export only one model. #TODO: Output single model from trainer # type: {GCSPath: {path_type: Directory, data_type: Exported TensorFlow models dir}} - {name: Batch size, type: Integer, default: '32', description: 'Batch size used in prediction.'} - {name: Run mode, type: String, default: local, description: 'Whether to run the job locally or in Cloud Dataflow. Valid values are "local" and "cloud".'} - {name: GCP project, type: GCPProjectID, description: 'The GCP project to run the dataflow job.'} - {name: Predictions dir, type: GCSPath, description: 'GCS or local directory.'} #Will contain prediction_results-* and schema.json files; TODO: Split outputs and replace dir with single file # type: {GCSPath: {path_type: Directory}} outputs: - {name: Predictions dir, type: GCSPath, description: 'GCS or local directory.'} #Will contain prediction_results-* and schema.json files; TODO: Split outputs and replace dir with single file # type: {GCSPath: {path_type: Directory}} - {name: MLPipeline UI metadata, type: UI metadata} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:57d9f7f1cfd458e945d297957621716062d89a49 command: [python2, /ml/predict.py] args: [ --data, {inputValue: Data file pattern}, --schema, {inputValue: Schema}, --target, {inputValue: Target column}, --model, {inputValue: Model}, --mode, {inputValue: Run mode}, --project, {inputValue: GCP project}, --batchsize, {inputValue: Batch size}, --output, {inputValue: Predictions dir}, ] fileOutputs: Predictions dir: /output.txt MLPipeline UI metadata: /mlpipeline-ui-metadata.json
8,165
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow/tfdv/component.yaml
name: TFX - Data Validation description: | Runs Tensorflow Data Validation. https://www.tensorflow.org/tfx/data_validation/get_started Tensorflow Data Validation (TFDV) can analyze training and serving data to: * compute descriptive statistics, * infer a schema, * detect data anomalies. inputs: - {name: Inference data, type: GCSPath, description: GCS path of the CSV file from which to infer the schema.} # type: {GCSPath: {data_type: CSV}} - {name: Validation data, type: GCSPath, description: GCS path of the CSV file whose contents should be validated.} # type: {GCSPath: {data_type: CSV}} - {name: Column names, type: GCSPath, description: GCS json file containing a list of column names.} # type: {GCSPath: {data_type: JSON}} - {name: Key columns, type: String, description: Comma separated list of columns to treat as keys.} - {name: GCP project, type: GCPProjectID, default: '', description: The GCP project to run the dataflow job.} - {name: Run mode, type: String, default: local, description: Whether to run the job locally or in Cloud Dataflow. Valid values are "local" and "cloud". } - {name: Validation output, type: GCSPath, description: GCS or local directory.} # type: {GCSPath: {path_type: Directory}} outputs: - {name: Schema, type: GCSPath, description: GCS path of the inferred schema JSON.} # type: {GCSPath: {data_type: TFDV schema JSON}} - {name: Validation result, type: String, description: Indicates whether anomalies were detected or not.} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:57d9f7f1cfd458e945d297957621716062d89a49 command: [python2, /ml/validate.py] args: [ --csv-data-for-inference, {inputValue: Inference data}, --csv-data-to-validate, {inputValue: Validation data}, --column-names, {inputValue: Column names}, --key-columns, {inputValue: Key columns}, --project, {inputValue: GCP project}, --mode, {inputValue: Run mode}, --output, {inputValue: Validation output}, ] fileOutputs: Schema: /schema.txt Validation result: /output_validation_result.txt
8,166
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataflow/tft/component.yaml
name: Transform using TF on Dataflow description: Runs TensorFlow Transform on Google Cloud Dataflow inputs: - {name: Training data file pattern, type: GCSPath, description: 'GCS path of train file patterns.'} #Also supports local CSV # type: {GCSPath: {data_type: CSV}} - {name: Evaluation data file pattern, type: GCSPath, description: 'GCS path of eval file patterns.'} #Also supports local CSV # type: {GCSPath: {data_type: CSV}} - {name: Schema, type: GCSPath, description: 'GCS json schema file path.'} # type: {GCSPath: {data_type: JSON}} - {name: GCP project, type: GCPProjectID, description: 'The GCP project to run the dataflow job.'} - {name: Run mode, type: String, default: local, description: 'Whether to run the job locally or in Cloud Dataflow. Valid values are "local" and "cloud".' } - {name: Preprocessing module, type: GCSPath, default: '', description: 'GCS path to a python file defining "preprocess" and "get_feature_columns" functions.'} # type: {GCSPath: {data_type: Python}} - {name: Transformed data dir, type: GCSPath, description: 'GCS or local directory'} #Also supports local paths # type: {GCSPath: {path_type: Directory}} outputs: - {name: Transformed data dir, type: GCSPath} # type: {GCSPath: {path_type: Directory}} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:57d9f7f1cfd458e945d297957621716062d89a49 command: [python2, /ml/transform.py] args: [ --train, {inputValue: Training data file pattern}, --eval, {inputValue: Evaluation data file pattern}, --schema, {inputValue: Schema}, --project, {inputValue: GCP project}, --mode, {inputValue: Run mode}, --preprocessing-module, {inputValue: Preprocessing module}, --output, {inputValue: Transformed data dir}, ] fileOutputs: Transformed data dir: /output.txt
8,167
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-analyze "$@"
8,168
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/analyze.py"]
8,169
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze/src/analyze.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Usage: # python analyze.py \ # --project bradley-playground \ # --region us-central1 \ # --cluster ten4 \ # --output gs://bradley-playground/analysis \ # --train gs://bradley-playground/sfpd/train.csv \ # --schema gs://bradley-playground/schema.json \ import argparse import os from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML Analyzer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--train', type=str, help='GCS path of the training csv file.') parser.add_argument('--schema', type=str, help='GCS path of the json schema file.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) runfile_source = os.path.join(code_path, 'analyze_run.py') dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output) try: api = _utils.get_client() print('Submitting job...') spark_args = ['--output', args.output, '--train', args.train, '--schema', args.schema] job_id = _utils.submit_pyspark_job( api, args.project, args.region, args.cluster, dest_files[0], spark_args) print('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output.txt', 'w') as f: f.write(args.output) print('Job completed.') finally: _utils.remove_resources_from_gcs(dest_files) if __name__== "__main__": main()
8,170
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/analyze/src/analyze_run.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pyspark.sql.types import StructType, StructField from pyspark.sql.types import DoubleType, IntegerType, StringType import pandas as pd from tensorflow.python.lib.io import file_io from pyspark.sql.session import SparkSession import json import os VOCAB_ANALYSIS_FILE = 'vocab_%s.csv' STATS_FILE = 'stats.json' def load_schema(schema_file): type_map = { 'KEY': StringType(), 'NUMBER': DoubleType(), 'CATEGORY': StringType(), 'TEXT': StringType(), 'IMAGE_URL': StringType() } schema_json = json.loads(file_io.read_file_to_string(schema_file)) fields = [StructField(x['name'], type_map[x['type']]) for x in schema_json] return schema_json, StructType(fields) def get_columns_of_type(datatype, schema_json): return [x['name'] for x in schema_json if x['type'] == datatype] parser = argparse.ArgumentParser(description='ML') parser.add_argument('--output', type=str) parser.add_argument('--train', type=str) parser.add_argument('--schema', type=str) args = parser.parse_args() schema_json, schema = load_schema(args.schema) text_columns = get_columns_of_type('TEXT', schema_json) category_columns = get_columns_of_type('CATEGORY', schema_json) number_columns = get_columns_of_type('NUMBER', schema_json) spark = SparkSession.builder.appName("MLAnalyzer").getOrCreate() df = spark.read.schema(schema).csv(args.train) df.createOrReplaceTempView("train") num_examples = df.sql_ctx.sql( 'SELECT COUNT(*) AS num_examples FROM train').collect()[0].num_examples stats = {'column_stats': {}, 'num_examples': num_examples} for col in text_columns: col_data = df.sql_ctx.sql(""" SELECT token, COUNT(token) AS token_count FROM (SELECT EXPLODE(SPLIT({name}, \' \')) AS token FROM train) GROUP BY token ORDER BY token_count DESC, token ASC""".format(name=col)) token_counts = [(r.token, r.token_count) for r in col_data.collect()] csv_string = pd.DataFrame(token_counts).to_csv(index=False, header=False) file_io.write_string_to_file(os.path.join(args.output, VOCAB_ANALYSIS_FILE % col), csv_string) stats['column_stats'][col] = {'vocab_size': len(token_counts)} for col in category_columns: col_data = df.sql_ctx.sql(""" SELECT {name} as token, COUNT({name}) AS token_count FROM train GROUP BY token ORDER BY token_count DESC, token ASC """.format(name=col)) token_counts = [(r.token, r.token_count) for r in col_data.collect()] csv_string = pd.DataFrame(token_counts).to_csv(index=False, header=False) file_io.write_string_to_file(os.path.join(args.output, VOCAB_ANALYSIS_FILE % col), csv_string) stats['column_stats'][col] = {'vocab_size': len(token_counts)} for col in number_columns: col_stats = df.sql_ctx.sql(""" SELECT MAX({name}) AS max_value, MIN({name}) AS min_value, AVG({name}) AS mean_value FROM train""".format(name=col)).collect() stats['column_stats'][col] = {'min': col_stats[0].min_value, 'max': col_stats[0].max_value, 'mean': col_stats[0].mean_value} file_io.write_string_to_file(os.path.join(args.output, STATS_FILE), json.dumps(stats, indent=2, separators=(',', ': '))) file_io.write_string_to_file(os.path.join(args.output, 'schema.json'), json.dumps(schema_json, indent=2, separators=(',', ': ')))
8,171
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/common/__init__.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
8,172
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/common/_utils.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import googleapiclient.discovery as discovery import os import subprocess import time def get_client(): """Builds a client to the dataproc API.""" dataproc = discovery.build('dataproc', 'v1') return dataproc def create_cluster(api, project, region, cluster_name, init_file_url): """Create a DataProc clsuter.""" cluster_data = { 'projectId': project, 'clusterName': cluster_name, 'config': { 'gceClusterConfig': { }, 'softwareConfig': { 'imageVersion': '1.2' }, 'initializationActions': { 'executableFile': init_file_url } } } result = api.projects().regions().clusters().create( projectId=project, region=region, body=cluster_data).execute() return result def delete_cluster(api, project, region, cluster): result = api.projects().regions().clusters().delete( projectId=project, region=region, clusterName=cluster).execute() return result def wait_for_operation(api, job_name): """Waiting for a long running operation by polling it.""" while True: result = api.projects().regions().operations().get(name=job_name).execute() if result.get('done'): if result['metadata']['status']['state'] == 'DONE': return result else: raise Exception(result) time.sleep(5) def wait_for_job(api, project, region, job_id): """Waiting for a job by polling it.""" while True: result = api.projects().regions().jobs().get( projectId=project, region=region, jobId=job_id).execute() if result['status']['state'] == 'ERROR': raise Exception(result['status']['details']) elif result['status']['state'] == 'DONE': return result time.sleep(5) def submit_pyspark_job(api, project, region, cluster_name, filepath, args): """Submits the Pyspark job to the cluster""" job_details = { 'projectId': project, 'job': { 'placement': { 'clusterName': cluster_name }, 'pysparkJob': { 'mainPythonFileUri': filepath, 'args': args } } } result = api.projects().regions().jobs().submit( projectId=project, region=region, body=job_details).execute() job_id = result['reference']['jobId'] return job_id def submit_spark_job(api, project, region, cluster_name, jar_files, main_class, args): """Submits the spark job to the cluster""" job_details = { 'projectId': project, 'job': { 'placement': { 'clusterName': cluster_name }, 'sparkJob': { 'jarFileUris': jar_files, 'mainClass': main_class, 'args': args, } } } result = api.projects().regions().jobs().submit( projectId=project, region=region, body=job_details).execute() job_id = result['reference']['jobId'] return job_id def copy_resources_to_gcs(file_paths, gcs_path): """Copy a local resources to a GCS location.""" tmpdir = datetime.datetime.now().strftime('xgb_%y%m%d_%H%M%S') dest_files = [] for file_name in file_paths: dest_file = os.path.join(gcs_path, tmpdir, os.path.basename(file_name)) subprocess.call(['gcloud', 'auth', 'activate-service-account', '--key-file', os.environ['GOOGLE_APPLICATION_CREDENTIALS']]) subprocess.call(['gsutil', 'cp', file_name, dest_file]) dest_files.append(dest_file) return dest_files def remove_resources_from_gcs(file_paths): """Remove staged resources from a GCS location.""" subprocess.call(['gsutil', '-m', 'rm'] + file_paths) def delete_directory_from_gcs(dir_path): """Delete a GCS dir recursively. Ignore errors.""" try: subprocess.call(['gsutil', '-m', 'rm', '-r', dir_path]) except: pass
8,173
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-train "$@"
8,174
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/train.py"]
8,175
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/src/xgb4j_build.sh
#!/bin/bash -e # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The script configures build environment for xgboost4j and distributed # XGBoost training package. # This needs to run on a debian GCE VM (debian 8) to match dataproc workers. # Steps: # 1. Create a GCE debian VM. # 2. On the VM under ~ directory, run # xgb4j_build.sh gs://b/path/to/XGBoost*.scala gs://b/o/path/to/hold/package # The generated package (jar) will be copied to gs://b/o/path/to/hold/package. sudo apt-get update sudo apt install -t jessie-backports build-essential git maven openjdk-8-jre-headless \ openjdk-8-jre openjdk-8-jdk-headless openjdk-8-jdk ca-certificates-java -y wget --no-verbose http://www.cmake.org/files/v3.5/cmake-3.5.2.tar.gz tar xf cmake-3.5.2.tar.gz cd cmake-3.5.2 ./configure make sudo make install cd .. export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH sudo git clone --recursive https://github.com/dmlc/xgboost cd xgboost/ sudo chmod -R 777 . sudo make -j4 sudo chmod -R 777 . cd jvm-packages gsutil cp $1 ./xgboost4j-example/src/main/scala/ml/dmlc/xgboost4j/scala/example/spark/ mvn -DskipTests=true package gsutil cp xgboost4j-example/target/xgboost4j-example-0.8-SNAPSHOT-jar-with-dependencies.jar $2 rm -rf cmake-3.5.2 rm -rf xgboost
8,176
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/src/XGBoostPredictor.scala
/* Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package ml.dmlc.xgboost4j.scala.example.spark import com.google.gson.Gson import java.io._ import ml.dmlc.xgboost4j.scala.spark.XGBoost import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql.expressions.UserDefinedFunction import org.apache.spark.sql.functions._ import org.apache.spark.sql.SparkSession import org.apache.spark.SparkConf import org.apache.spark.SparkContext import scala.sys.process.Process import scala.util.parsing.json.JSON /** A distributed XGBoost predictor program running in spark cluster. * Args: * model-path: GCS path of the trained xgboost model. * predict-data-path: GCS path of the prediction libsvm file pattern. * num-workers: number of spark worker node used for training. * analysis-path: GCS path of analysis results directory. * target-name: column name of the prediction target. * output-path: GCS path to store the prediction results. */ case class SchemaEntry(name: String, `type`: String) object XGBoostPredictor { // TODO: create a common class for the util functions. def column_feature_size(stats: (String, Any), target: String): Double = { if (stats._1 == target) 0.0 val statsMap = stats._2.asInstanceOf[Map[String, Any]] if (statsMap.keys.exists(_ == "vocab_size")) statsMap("vocab_size").asInstanceOf[Double] else if (statsMap.keys.exists(_ == "max")) 1.0 else 0.0 } def get_feature_size(statsPath: String, target: String): Int = { val sparkSession = SparkSession.builder().getOrCreate() val schema_string = sparkSession.sparkContext.wholeTextFiles( statsPath).map(tuple => tuple._2).collect()(0) val column_stats = JSON.parseFull(schema_string).get.asInstanceOf[Map[String, Any]]( "column_stats").asInstanceOf[Map[String, Any]] var sum = 0.0 for (stats <- column_stats) sum = sum + column_feature_size(stats, target) sum.toInt } def isClassificationTask(schemaFile: String, targetName: String): Boolean = { val sparkSession = SparkSession.builder().getOrCreate() val schemaString = sparkSession.sparkContext.wholeTextFiles( schemaFile).map(tuple => tuple._2).collect()(0) val schema = JSON.parseFull(schemaString).get.asInstanceOf[List[Map[String, String]]] val targetList = schema.filter(x => x("name") == targetName) if (targetList.isEmpty) { throw new IllegalArgumentException("target cannot be found.") } val targetType = targetList(0)("type") if (targetType == "CATEGORY") true else if (targetType == "NUMBER") false else throw new IllegalArgumentException("invalid target type.") } def getVocab(vocabFile: String): Array[String] = { val sparkSession = SparkSession.builder().getOrCreate() val vocabContent = sparkSession.sparkContext.wholeTextFiles(vocabFile).map( tuple => tuple._2).collect()(0) val vocabFreq = vocabContent.split("\n") val vocab = for (e <- vocabFreq) yield e.split(",")(0) vocab } def labelIndexToStringUdf(vocab: Array[String]): UserDefinedFunction = { val lookup: (Double => String) = (label: Double) => (vocab(label.toInt)) udf(lookup) } def probsToPredictionUdf(vocab: Array[String]): UserDefinedFunction = { val convert: (Double => String) = (prob: Double) => (if (prob >= 0.5) vocab(1) else vocab(0)) udf(convert) } def writeSchemaFile(output: String, schema: Any): Unit = { val gson = new Gson val content = gson.toJson(schema) val pw = new PrintWriter(new File("schema.json" )) pw.write(content) pw.close() Process("gsutil cp schema.json " + output + "/schema.json").run } def main(args: Array[String]): Unit = { if (args.length != 5) { println( "usage: program model-path predict-data-path analysis-path " + "target-name, output-path") sys.exit(1) } val sparkSession = SparkSession.builder().getOrCreate() val modelPath = args(0) val inputPredictPath = args(1) val analysisPath = args(2) val targetName = args(3) val outputPath = args(4) // build dataset val feature_size = get_feature_size(analysisPath + "/stats.json", targetName) val predictDF = (sparkSession.sqlContext.read.format("libsvm") .option("numFeatures", feature_size.toString).load(inputPredictPath)) println("start prediction -------\n") implicit val sc = SparkContext.getOrCreate() val xgbModel = XGBoost.loadModelFromHadoopFile(modelPath) val predictResultsDF = xgbModel.transform(predictDF) val isClassification = isClassificationTask(analysisPath + "/schema.json", targetName) if (isClassification) { val targetVocab = getVocab(analysisPath + "/vocab_" + targetName + ".csv") val lookupUdf = labelIndexToStringUdf(targetVocab) var processedDF = (predictResultsDF.withColumn("target", lookupUdf(col("label"))) .withColumn("predicted", lookupUdf(col("prediction")))) var schema = Array(SchemaEntry("target", "CATEGORY"), SchemaEntry("predicted", "CATEGORY")) var columns = Array("target", "predicted") if (predictResultsDF.columns.contains("probabilities")) { // probabilities column includes array of probs for each class. Need to expand it. var classIndex = 0 for (classname <- targetVocab) { // Need to make a val copy because the value of "classIndex" is evaluated at "run" // later when the resulting dataframe is used. val classIndexCopy = classIndex val extractValue = udf((arr: Vector) => arr(classIndexCopy)) processedDF = processedDF.withColumn(classname, extractValue(col("probabilities"))) schema :+= SchemaEntry(classname, "NUMBER") classIndex += 1 } columns = columns ++ (for (e <- targetVocab) yield "`" + e + "`") } processedDF.select(columns.map(col): _*).write.option("header", "false").csv(outputPath) writeSchemaFile(outputPath, schema) } else { // regression val processedDF = (predictResultsDF.withColumnRenamed("prediction", "predicted") .withColumnRenamed("label", "target")) processedDF.select("target", "predicted").write.option("header", "false").csv(outputPath) val schema = Array(SchemaEntry("target", "NUMBER"), SchemaEntry("predicted", "NUMBER")) writeSchemaFile(outputPath, schema) } } }
8,177
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/src/README.md
# XGBoost Distributed Trainer and Predictor Package This directory contains code and building script to build a generic XGBoost model and perform predictions on it. XGBoost4j package currently requires building from source (https://github.com/dmlc/xgboost/issues/1807), as well as the spark layer and user code on top of it. To do so, get a GCE VM (debian 8), and run [xgb4j_build.sh](xgb4j_build.sh) on it. The script contains steps to compile/install cmake, git clone xgboost repo, copy sources, and build a jar package that can run in a spark environment. This is only tested on Google Dataproc cluster.
8,178
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/src/XGBoostTrainer.scala
/* Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package ml.dmlc.xgboost4j.scala.example.spark import ml.dmlc.xgboost4j.scala.Booster import ml.dmlc.xgboost4j.scala.spark.XGBoost import org.apache.spark.sql.SparkSession import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.sql.functions.col import scala.util.parsing.json.JSON /** A distributed XGBoost trainer program running in spark cluster. * Args: * train-conf: GCS path of the training config json file for xgboost training. * num-of-rounds: number of rounds to train. * num-workers: number of spark worker node used for training. * analysis-path: GCS path of analysis results directory. * target-name: column name of the prediction target. * training-path: GCS path of training libsvm file patterns. * eval-path: GCS path of eval libsvm file patterns. * output-path: GCS path to store the trained model. */ object XGBoostTrainer { def column_feature_size(stats: (String, Any), target: String): Double = { if (stats._1 == target) 0.0 val statsMap = stats._2.asInstanceOf[Map[String, Any]] if (statsMap.keys.exists(_ == "vocab_size")) statsMap("vocab_size").asInstanceOf[Double] else if (statsMap.keys.exists(_ == "max")) 1.0 else 0.0 } def get_feature_size(statsPath: String, target: String): Int = { val sparkSession = SparkSession.builder().getOrCreate() val schema_string = sparkSession.sparkContext.wholeTextFiles( statsPath).map(tuple => tuple._2).collect()(0) val column_stats = JSON.parseFull(schema_string).get.asInstanceOf[Map[String, Any]]( "column_stats").asInstanceOf[Map[String, Any]] var sum = 0.0 for (stats <- column_stats) sum = sum + column_feature_size(stats, target) sum.toInt } def read_config(configFile: String): Map[String, Any] = { val sparkSession = SparkSession.builder().getOrCreate() val confString = sparkSession.sparkContext.wholeTextFiles( configFile).map(tuple => tuple._2).collect()(0) // Avoid parsing "500" to "500.0" val originNumberParser = JSON.perThreadNumberParser JSON.perThreadNumberParser = { in => try in.toInt catch { case _: NumberFormatException => in.toDouble} } try JSON.parseFull(confString).get.asInstanceOf[Map[String, Any]] finally { JSON.perThreadNumberParser = originNumberParser } } def isClassificationTask(schemaFile: String, targetName: String): Boolean = { val sparkSession = SparkSession.builder().getOrCreate() val schemaString = sparkSession.sparkContext.wholeTextFiles( schemaFile).map(tuple => tuple._2).collect()(0) val schema = JSON.parseFull(schemaString).get.asInstanceOf[List[Map[String, String]]] val targetList = schema.filter(x => x("name") == targetName) if (targetList.isEmpty) { throw new IllegalArgumentException("target cannot be found.") } val targetType = targetList(0)("type") if (targetType == "CATEGORY") true else if (targetType == "NUMBER") false else throw new IllegalArgumentException("invalid target type.") } def main(args: Array[String]): Unit = { if (args.length != 8) { println( "usage: program train-conf num-of-rounds num-workers analysis-path " + "target-name training-path eval-path output-path") sys.exit(1) } val sparkSession = SparkSession.builder().getOrCreate() val trainConf = args(0) val numRounds = args(1).toInt val numWorkers = args(2).toInt val analysisPath = args(3) val targetName = args(4) val inputTrainPath = args(5) val inputTestPath = args(6) val outputPath = args(7) // build dataset val feature_size = get_feature_size(analysisPath + "/stats.json", targetName) val trainDF = sparkSession.sqlContext.read.format("libsvm").option( "numFeatures", feature_size.toString).load(inputTrainPath) val testDF = sparkSession.sqlContext.read.format("libsvm").option( "numFeatures", feature_size.toString).load(inputTestPath) // start training val paramMap = read_config(trainConf) val xgboostModel = XGBoost.trainWithDataFrame( trainDF, paramMap, numRounds, nWorkers = numWorkers, useExternalMemory = true) println("training summary -------\n") println(xgboostModel.summary) // xgboost-spark appends the column containing prediction results val predictionDF = xgboostModel.transform(testDF) val classification = isClassificationTask(analysisPath + "/schema.json", targetName) implicit val sc = SparkContext.getOrCreate() if (classification) { val correctCounts = predictionDF.filter( col("prediction") === col("label")).groupBy(col("label")).count.collect val totalCounts = predictionDF.groupBy(col("label")).count.collect val accuracyAll = (predictionDF.filter(col("prediction") === col("label")).count / predictionDF.count.toDouble) print("\naccuracy: " + accuracyAll + "\n") } else { predictionDF.createOrReplaceTempView("prediction") val rmseDF = sparkSession.sql( "SELECT SQRT(AVG((prediction - label) * (prediction - label))) FROM prediction") val rmse = rmseDF.collect()(0).getDouble(0) print("RMSE: " + rmse + "\n") } xgboostModel.saveModelAsHadoopFile(outputPath) print("Done") } }
8,179
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/train/src/train.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A program to perform training of an XGBoost model through a dataproc cluster. # Usage: # python train.py \ # --project bradley-playground \ # --region us-central1 \ # --cluster ten4 \ # --package gs://bradley-playground/xgboost4j-example-0.8-SNAPSHOT-jar-with-dependencies.jar \ # --output gs://bradley-playground/train/model \ # --conf gs://bradley-playground/trainconf.json \ # --rounds 300 \ # --workers 2 \ # --train gs://bradley-playground/transform/train/part-* \ # --eval gs://bradley-playground/transform/eval/part-* \ # --analysis gs://bradley-playground/analysis \ # --target resolution import argparse import logging from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML Trainer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--package', type=str, help='GCS Path of XGBoost distributed trainer package.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--conf', type=str, help='GCS path of the training json config file.') parser.add_argument('--rounds', type=int, help='Number of rounds to train.') parser.add_argument('--workers', type=int, help='Number of workers to use for training.') parser.add_argument('--train', type=str, help='GCS path of the training libsvm file pattern.') parser.add_argument('--eval', type=str, help='GCS path of the eval libsvm file pattern.') parser.add_argument('--analysis', type=str, help='GCS path of the analysis input.') parser.add_argument('--target', type=str, help='Target column name.') args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) api = _utils.get_client() logging.info('Submitting job...') spark_args = [args.conf, str(args.rounds), str(args.workers), args.analysis, args.target, args.train, args.eval, args.output] job_id = _utils.submit_spark_job( api, args.project, args.region, args.cluster, [args.package], 'ml.dmlc.xgboost4j.scala.example.spark.XGBoostTrainer', spark_args) logging.info('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output.txt', 'w') as f: f.write(args.output) logging.info('Job completed.') if __name__== "__main__": main()
8,180
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-create-cluster "$@"
8,181
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/create_cluster.py"]
8,182
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster/src/initialization_actions.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Initialization actions to run in dataproc setup. # The script will be run on each node in a dataproc cluster. easy_install pip pip install tensorflow==1.4.1 pip install pandas==0.18.1
8,183
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/create_cluster/src/create_cluster.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Usage: # python create_cluster.py \ # --project bradley-playground \ # --zone us-central1-a \ # --name ten4 \ # --staging gs://bradley-playground import argparse import os from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML DataProc Setup') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone for GCE VMs.') parser.add_argument('--name', type=str, help='The name of the cluster to create.') parser.add_argument('--staging', type=str, help='GCS path to use for staging.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) init_file_source = os.path.join(code_path, 'initialization_actions.sh') dest_files = _utils.copy_resources_to_gcs([init_file_source], args.staging) try: api = _utils.get_client() print('Creating cluster...') create_response = _utils.create_cluster(api, args.project, args.region, args.name, dest_files[0]) print('Cluster creation request submitted. Waiting for completion...') _utils.wait_for_operation(api, create_response['name']) with open('/output.txt', 'w') as f: f.write(args.name) print('Cluster created.') finally: _utils.remove_resources_from_gcs(dest_files) if __name__== "__main__": main()
8,184
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/base/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. mkdir -p ./build/common rsync -arvp "../analyze/src"/ ./build/ rsync -arvp "../train/src"/ ./build/ rsync -arvp "../predict/src"/ ./build/ rsync -arvp "../create_cluster/src"/ ./build/ rsync -arvp "../delete_cluster/src"/ ./build/ rsync -arvp "../transform/src"/ ./build/ rsync -arvp "../common"/ ./build/common/ cp ../../../license.sh ./build cp ../../../third_party_licenses.csv ./build docker build -t ml-pipeline-dataproc-base . rm -rf ./build
8,185
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/base/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ubuntu:16.04 RUN apt-get update -y && apt-get install --no-install-recommends -y -q ca-certificates python-dev python-setuptools wget unzip RUN easy_install pip RUN pip install google-api-python-client==1.6.2 RUN pip install tensorflow==1.6.0 RUN wget -nv https://dl.google.com/dl/cloudsdk/release/google-cloud-sdk.zip && \ unzip -qq google-cloud-sdk.zip -d tools && \ rm google-cloud-sdk.zip && \ tools/google-cloud-sdk/install.sh --usage-reporting=false \ --path-update=false --bash-completion=false \ --disable-installation-options && \ tools/google-cloud-sdk/bin/gcloud -q components update \ gcloud core gsutil && \ tools/google-cloud-sdk/bin/gcloud config set component_manager/disable_update_check true && \ touch /tools/google-cloud-sdk/lib/third_party/google.py ADD build /ml ENV PATH $PATH:/tools/node/bin:/tools/google-cloud-sdk/bin
8,186
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/predict/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-predict "$@"
8,187
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/predict/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/predict.py"]
8,188
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/predict
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/predict/src/predict.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A program to perform prediction with an XGBoost model through a dataproc cluster. # # Usage: # python predict.py \ # --project bradley-playground \ # --region us-central1 \ # --cluster my-cluster \ # --package gs://bradley-playground/xgboost4j-example-0.8-SNAPSHOT-jar-with-dependencies.jar \ # --model gs://bradley-playground/model \ # --output gs://bradley-playground/predict/ \ # --workers 2 \ # --predict gs://bradley-playground/transform/eval/part-* \ # --analysis gs://bradley-playground/analysis \ # --target resolution import argparse import json import os from common import _utils import logging from tensorflow.python.lib.io import file_io def main(argv=None): parser = argparse.ArgumentParser(description='ML Predictor') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--package', type=str, help='GCS Path of XGBoost distributed trainer package.') parser.add_argument('--model', type=str, help='GCS path of the model file.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--predict', type=str, help='GCS path of prediction libsvm file.') parser.add_argument('--analysis', type=str, help='GCS path of the analysis input.') parser.add_argument('--target', type=str, help='Target column name.') args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) api = _utils.get_client() logging.info('Submitting job...') spark_args = [args.model, args.predict, args.analysis, args.target, args.output] job_id = _utils.submit_spark_job( api, args.project, args.region, args.cluster, [args.package], 'ml.dmlc.xgboost4j.scala.example.spark.XGBoostPredictor', spark_args) logging.info('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) prediction_results = os.path.join(args.output, 'part-*.csv') with open('/output.txt', 'w') as f: f.write(prediction_results) with file_io.FileIO(os.path.join(args.output, 'schema.json'), 'r') as f: schema = json.load(f) metadata = { 'outputs' : [{ 'type': 'table', 'storage': 'gcs', 'format': 'csv', 'header': [x['name'] for x in schema], 'source': prediction_results }] } with open('/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f) logging.info('Job completed.') if __name__== "__main__": main()
8,189
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-transform "$@"
8,190
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/transform.py"]
8,191
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform/src/transform_run.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from collections import Counter import six from pyspark.sql import Row from pyspark.mllib.linalg import SparseVector from pyspark.mllib.util import MLUtils from pyspark.mllib.regression import LabeledPoint from pyspark.sql.types import StructType, StructField from pyspark.sql.types import DoubleType, IntegerType, StringType import pandas as pd from tensorflow.python.lib.io import file_io from pyspark.sql.session import SparkSession VOCAB_ANALYSIS_FILE = "vocab_%s.csv" STATS_FILE = 'stats.json' def load_schema(analysis_path): type_map = { 'KEY': StringType(), 'NUMBER': DoubleType(), 'CATEGORY': StringType(), 'TEXT': StringType(), 'IMAGE_URL': StringType() } schema_file = os.path.join(analysis_path, 'schema.json') schema_json = json.loads(file_io.read_file_to_string(schema_file)) fields = [StructField(x['name'], type_map[x['type']]) for x in schema_json] return schema_json, StructType(fields) def get_columns_of_type(datatype, schema_json): return [x['name'] for x in schema_json if x['type'] == datatype] parser = argparse.ArgumentParser(description='ML') parser.add_argument('--output', type=str) parser.add_argument('--train', type=str) parser.add_argument('--eval', type=str) parser.add_argument('--target', type=str) parser.add_argument('--analysis', type=str) args = parser.parse_args() schema_json, schema = load_schema(args.analysis) text_columns = get_columns_of_type('TEXT', schema_json) category_columns = get_columns_of_type('CATEGORY', schema_json) number_columns = get_columns_of_type('NUMBER', schema_json) classification = False if args.target in number_columns: number_columns.remove(args.target) elif args.target in category_columns: category_columns.remove(args.target) classification = True else: raise ValueError( 'Specified target "%s" is neither in numeric or categorical columns' % args.target) stats = json.loads(file_io.read_file_to_string(os.path.join(args.analysis, STATS_FILE))) # Load vocab vocab = {} columns_require_vocab = text_columns + category_columns if classification: columns_require_vocab.append(args.target) for col in columns_require_vocab: with file_io.FileIO(os.path.join(args.analysis, VOCAB_ANALYSIS_FILE % col), 'r') as f: vocab_df = pd.read_csv(f, header=None, names=['vocab', 'count'], dtype=str, na_filter=False) vocab[col] = list(vocab_df.vocab) # Calculate the feature size feature_size = 0 for col in text_columns + category_columns: feature_size += stats['column_stats'][col]['vocab_size'] for col in number_columns: feature_size += 1 spark = SparkSession.builder.appName("ML Transformer").getOrCreate() def make_process_rows_fn( classification, target_col, text_cols, category_cols, number_cols, vocab, stats): def process_rows(row): feature_indices = [] feature_values = [] start_index = 0 for col in schema.names: col_value = getattr(row, col) if col in number_cols: v_max = stats['column_stats'][col]['max'] v_min = stats['column_stats'][col]['min'] value = -1 + (col_value - v_min) * 2 / (v_max - v_min) feature_indices.append(start_index) feature_values.append(value) start_index += 1 if col in category_cols: if col_value in vocab[col]: value_index = vocab[col].index(col_value) feature_indices.append(start_index + value_index) feature_values.append(1.0) start_index += len(vocab[col]) if col in text_cols: if col_value is not None: values = col_value.split() word_indices = [] for v in values: if v in vocab[col]: word_indices.append(start_index + vocab[col].index(v)) for k, v in sorted(six.iteritems(Counter(word_indices))): feature_indices.append(k) feature_values.append(float(v)) start_index += len(vocab[col]) if col == target_col: label = vocab[col].index(col_value) if classification else col_value return {"label": label, "indices": feature_indices, "values": feature_values} return process_rows process_row_fn = make_process_rows_fn( classification, args.target, text_columns, category_columns, number_columns, vocab, stats) dfs = [] if args.train: dfTrain = spark.read.schema(schema).csv(args.train) dfs.append(("train", dfTrain)) if args.eval: dfEval = spark.read.schema(schema).csv(args.eval) dfs.append(("eval", dfEval)) for name, df in dfs: rdd = df.rdd.map(process_row_fn).map( lambda row: LabeledPoint(row["label"], SparseVector(feature_size, row["indices"], row["values"]))) MLUtils.saveAsLibSVMFile(rdd, os.path.join(args.output, name))
8,192
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/transform/src/transform.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Usage: # python transform.py \ # --project bradley-playground \ # --region us-central1 \ # --cluster ten4 \ # --output gs://bradley-playground/transform \ # --train gs://bradley-playground/sfpd/train.csv \ # --eval gs://bradley-playground/sfpd/eval.csv \ # --analysis gs://bradley-playground/analysis \ # --target resolution import argparse import os import subprocess from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML Transfomer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--train', type=str, help='GCS path of the training csv file.') parser.add_argument('--eval', type=str, help='GCS path of the eval csv file.') parser.add_argument('--analysis', type=str, help='GCS path of the analysis results.') parser.add_argument('--target', type=str, help='Target column name.') args = parser.parse_args() # Remove existing [output]/train and [output]/eval if they exist. # It should not be done in the run time code because run time code should be portable # to on-prem while we need gsutil here. _utils.delete_directory_from_gcs(os.path.join(args.output, 'train')) _utils.delete_directory_from_gcs(os.path.join(args.output, 'eval')) code_path = os.path.dirname(os.path.realpath(__file__)) runfile_source = os.path.join(code_path, 'transform_run.py') dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output) try: api = _utils.get_client() print('Submitting job...') spark_args = ['--output', args.output, '--analysis', args.analysis, '--target', args.target] if args.train: spark_args.extend(['--train', args.train]) if args.eval: spark_args.extend(['--eval', args.eval]) job_id = _utils.submit_pyspark_job( api, args.project, args.region, args.cluster, dest_files[0], spark_args) print('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output_train.txt', 'w') as f: f.write(os.path.join(args.output, 'train', 'part-*')) with open('/output_eval.txt', 'w') as f: f.write(os.path.join(args.output, 'eval', 'part-*')) print('Job completed.') finally: _utils.remove_resources_from_gcs(dest_files) if __name__== "__main__": main()
8,193
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/delete_cluster/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # build base image pushd ../base ./build_image.sh popd ../../../build_image.sh -l ml-pipeline-dataproc-delete-cluster "$@"
8,194
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/delete_cluster/Dockerfile
# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM ml-pipeline-dataproc-base RUN mkdir /usr/licenses && \ /ml/license.sh /ml/third_party_licenses.csv /usr/licenses ENTRYPOINT ["python", "/ml/delete_cluster.py"]
8,195
0
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/delete_cluster
kubeflow_public_repos/kfp-tekton-backend/components/deprecated/dataproc/delete_cluster/src/delete_cluster.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Usage: # python delete_cluster.py \ # --project bradley-playground \ # --region us-central1 \ # --name ten4 import argparse from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML DataProc Deletion') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--name', type=str, help='The name of the cluster to create.') args = parser.parse_args() api = _utils.get_client() print('Tearing down cluster...') delete_response = _utils.delete_cluster(api, args.project, args.region, args.name) print('Cluster deletion request submitted. Waiting for completion...') _utils.wait_for_operation(api, delete_response['name']) print('Cluster deleted.') if __name__== "__main__": main()
8,196
0
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras/train_classifier/README.md
# Keras - Train classifier ### Trains classifier using Keras sequential model ## Inputs |Name|Type|Default|Description| |---|---|---|---| |training_set_features_path|GcsPath: {data_type: TSV}||Local or GCS path to the training set features table.| |training_set_labels_path|GcsPath: {data_type: TSV}||Local or GCS path to the training set labels (each label is a class index from 0 to num-classes - 1).| |output_model_uri|GcsPath: {data_type: Keras model}||Local or GCS path specifying where to save the trained model. The model (topology + weights + optimizer state) is saved in HDF5 format and can be loaded back by calling keras.models.load_model| |model_config|GcsPath: {data_type: Keras model config json}||JSON string containing the serialized model structure. Can be obtained by calling model.to_json() on a Keras model.| |number_of_classes|Integer||Number of classifier classes.| |number_of_epochs|Integer|100|Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided.| |batch_size|Integer|32|Number of samples per gradient update| ## Outputs |Name|Type|Default|Description| |---|---|---|---| |output_model_uri|GcsPath: {data_type: Keras model}||GCS path where the trained model has been saved. The model (topology + weights + optimizer state) is saved in HDF5 format and can be loaded back by calling keras.models.load_model| ## Container image gcr.io/ml-pipeline/components/sample/keras/train_classifier ## Usage: ```python import os from pathlib import Path import requests import kfp component_url_prefix = 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/sample/keras/train_classifier/' test_data_url_prefix = component_url_prefix + 'tests/testdata/' #Prepare input/output paths and data input_data_gcs_dir = 'gs://<my bucket>/<path>/' output_data_gcs_dir = 'gs://<my bucket>/<path>/' #Downloading the training set (to upload to GCS later) training_set_features_local_path = os.path.join('.', 'training_set_features.tsv') training_set_labels_local_path = os.path.join('.', 'training_set_labels.tsv') training_set_features_url = test_data_url_prefix + '/training_set_features.tsv' training_set_labels_url = test_data_url_prefix + '/training_set_labels.tsv' Path(training_set_features_local_path).write_bytes(requests.get(training_set_features_url).content) Path(training_set_labels_local_path).write_bytes(requests.get(training_set_labels_url).content) #Uploading the data to GCS where it can be read by the trainer training_set_features_gcs_path = os.path.join(input_data_gcs_dir, 'training_set_features.tsv') training_set_labels_gcs_path = os.path.join(input_data_gcs_dir, 'training_set_labels.tsv') gfile.Copy(training_set_features_local_path, training_set_features_gcs_path) gfile.Copy(training_set_labels_local_path, training_set_labels_gcs_path) output_model_uri_template = os.path.join(output_data_gcs_dir, kfp.dsl.EXECUTION_ID_PLACEHOLDER, 'output_model_uri', 'data') xor_model_config = requests.get(test_data_url_prefix + 'model_config.json').content #Load the component train_op = kfp.components.load_component_from_url(component_url_prefix + 'component.yaml') #Use the component as part of the pipeline @kfp.dsl.pipeline(name='Test keras/train_classifier', description='Pipeline to test keras/train_classifier component') def pipeline_to_test_keras_train_classifier(): train_task = train_op( training_set_features_path=training_set_features_gcs_path, training_set_labels_path=training_set_labels_gcs_path, output_model_uri=output_model_uri_template, model_config=xor_model_config, number_of_classes=2, number_of_epochs=10, batch_size=32, ) #Use train_task.outputs['output_model_uri'] to obtain the reference to the trained model URI that can be a passed to other pipeline tasks (e.g. for prediction or analysis) ```
8,197
0
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras/train_classifier/build_image.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. image_name=gcr.io/ml-pipeline/sample/keras/train_classifier image_tag=latest full_image_name=${image_name}:${image_tag} base_image_tag=1.12.0-py3 cd "$(dirname "$0")" docker build --build-arg BASE_IMAGE_TAG=$base_image_tag -t "$full_image_name" . docker push "$full_image_name" #Output the strict image name (which contains the sha256 image digest) #This name can be used by the subsequent steps to refer to the exact image that was built even if another image with the same name was pushed. image_name_with_digest=$(docker inspect --format="{{index .RepoDigests 0}}" "$IMAGE_NAME") strict_image_name_output_file=./versions/image_digests_for_tags/$image_tag mkdir -p "$(dirname "$strict_image_name_output_file")" echo $image_name_with_digest | tee "$strict_image_name_output_file"
8,198
0
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras
kubeflow_public_repos/kfp-tekton-backend/components/sample/keras/train_classifier/run_tests.sh
#!/bin/bash -e # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. cd $(dirname $0) python3 -m unittest discover --verbose --start-dir tests --top-level-directory=..
8,199