Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
100
2.11k
text
stringlengths
1
120
αž‘αŸ… αžœαž·αž‰ αž‘αŸ… αž˜αž€ αžšαžœαžΆαž„ មតិ αžŸαŸ’αžšαž” αž“αž·αž„ មតិ αž•αŸ’αž‘αž»αž™ αŸ” តើ αž“αž·αž˜αž·αžαŸ’αž
αž˜αž“αž»αžŸαŸ’αžŸαž…αžΆαžŸαŸ‹αŸ”αžαžΎαžαž½αž“αžΆαž‘αžΈβ€œ
αž•αž›αž·αž αž€αžš
their advantage to form part of our glorious
αž–αŸ‚αž„
αž“αž·αž„ αž‚αŸ’αž˜αžΆ αž”αž€αŸ’αžŸ αž‡αŸ†αž‘αžΆαžŸαŸ‹ αž“αžΆαŸ†αž’αŸ„αž™ αž”αŸ’αžšαž‘αŸαžŸ αž“αŸ„αŸ‡ αžαŸ‚αž„αžαŸ‚ αž‡αž½αž”αž”αŸ’αžšαž‘αŸ‡ αž’αŸ†αžŽαžΆαž… αž•αŸ’αžαžΆαž…αŸ‹αž€αžΆαžšαž€αžΆαžš αž‚αŸ’αžšαž”αŸ‹αž‚αŸ’αžšαž„
តើ αž˜αž“αŸ’αžαŸ’αžšαžΈαžšαžΆαž‡αž€αžΆαžš αž˜αžΆαž“ αž”αŸ‰αž»αž“αŸ’αž˜αžΆαž“ αž”αŸ’αžšαž—αŸαž‘ ? αž…αžΌαžš αžšαŸ€αž”αžšαžΆαž”αŸ‹ αž–αž“αŸ’αž™αž›αŸ‹ ? αž˜αž“αŸ’αžαŸ’αžšαžΈαžšαžΆαž‡αž€αžΆαžš
3665050
αŸ” αžŸαž·αž‘αŸ’αž’αž· αž‘αž‘αž½αž›αž”αžΆαž“ αž“αžΌαžœ αž€αžΆαžš αž€αžΆαžšαž–αžΆαžšαŸ– αžŸαž·αž‘αŸ’αž’αž· αž“αŸαŸ‡ αž…αž„αŸ‹ αžŸαŸ†αžŠαŸ… αž™αŸ‰αžΆαž„ αž‘αžΌαž›αŸ†αž‘αžΌαž›αžΆαž™ αžŠαž›αŸ‹ αžŸαž·αž‘αŸ’αž’αž·
αž’αŸ†αžŽαžΆαž…αž“αž·αž„αž’αž’αž·αž”αžαŸαž™αŸ’αž™αž—αžΆαž–
αžšαž›αŸ‡αžšαž›αžΆαŸ†αž„
was now doing her
αž“αž·αž„αžŸαž„αŸ‹αžŸαŸ’αž–αžΆαž“
αž‘αž»αž€αŸ’αžαž€αž·αžšαž·αž™αžΆαŸ”
ៀ៦៦ αž“αžΆαž€αŸ‹ αžαŸ’αžšαžΌαžœ αž‡αžΆ αŸ₯្.
land and sea. You have fairly earned
αž₯αžŽαŸ’αžŒαžΌ
αžŸαŸ’αžšαž»αž€
αž“αž·αž„ αž›αŸ„αž€ αž’αžΆαžαž» αžŸαž˜αŸ’αžšαžΆαž”αŸ‹ αž™αž€ αž‘αŸ… αž’αž“αž»αžœαžαŸ’αž αž€αŸ’αž“αž»αž„ αž‡αžΈαžœαž·αž αž”αŸ’αžšαž…αžΆαŸ† αžαŸ’αž„αŸƒ αžŠαžΎαž˜αŸ’αž”αžΈ αž”αžΆαž“ αžŸαŸαž…αž€αŸ’αžŠαžΈαžŸαž»αž
αž‘αŸ’αžšαžΉαž„
αžŸαž‘αŸ’αž’αžΆ
αž˜αž»αžαž‡αžΆ
αžŸαž˜αž‡αŸ’αž‡αžΆ
αž–αžΈ αž€αžΆαžšαž•αŸ’αžαž“αŸ’αž‘αžΆ αž…αŸαŸ‡
αž‘αžΌαžšαž‘αžŸαŸ’αžŸαž“αŸ ...
αžœαž·αž‘αžαŸ’αžαž·
αž€αŸ’αž“αž»αž„αž’αŸ†αž‘αž»αž„αž–αŸαž›αŸ‘αŸ€αžαŸ’αž„αŸƒ
[ ហូធ៊ូ ហូ... αž™αŸ... αž€αŸ ឈឺ αžαŸ’αž›αžΆαŸ†αž„ ] αŸ” ( αž…αŸ’αžšαŸ€αž„ αž˜αŸ’αžαž„ αž‘αŸ€αž
αžŠαŸ‚αž› αž‚αŸ αž”αžΆαž“ αž‚αŸ’αžšαŸ„αž„ αž‘αž»αž€ αŸ• αž‚αŸ
αž‘αŸ†αž–αžΆαŸ†αž„αž›αŸ’αž’αž€αŸ’αž›αžΆαž™αž‡αžΆ
αžšαž‚αžΈαž˜
αž˜αžΆαž“ αž€αžΆαžšαž”αŸ’αžšαž–αŸ’αžšαžΉαžαŸ’αž
αž“αž·αž„ αž²αŸ’αž™ αžŸαž·αžŸαŸ’αžŸ αž›αŸ’αž’
αžαŸ’αžšαž’αž€
αžŠαŸαž€αžΆαž…αžŸαžΆαž αžΆαžœαž“αŸαŸ‡αŸ”αŸ₯.
αž˜αž½αž™ ណអ αžŠαŸ‚αž› αž‡αžΆ αžŸαŸ’αžαž·αž
fight to the death for
αžŠαŸ„αž™αžŸαŸ’αžšαž»αžαž·(αž€αžΆαž“αŸ‹αž”αž„αŸ’αž αžΆαž‰
αžœαžŽαŸ’αžŽ
αž“αž·αž„αž’αž—αž·αžœαžŒαŸ’αžƒαž•αŸ’αž“αŸ‚αž€αž αžΆαž“αž·αž—αŸαž™
they are to-day. The future lies with
αž–αž·αžŸαŸ’αžŽαž»
αž˜αžΌαž›αž αŸαžαž»αžŸαŸ†αžαžΆαž“αŸ‹αŸ—αžŠαžΌαž…αž‡αžΆαŸˆ
αžαŸ’αž›αžΆαŸ†αž„αž€αŸ’αž›αžΆ αž“αž·αž„
Β αž˜αž“αŸ’αžαž‘αžŸαž€αŸˆΒ (αž–αžΈαŸ‘αžŠαž›αŸ‹αŸ‘αŸ αž†αŸ’αž“αžΆαŸ†)
-αž–αŸ’αžšαžΉαž‘αŸ’αž’αžŸαž—αžΆ)αŸ–
αž“αž™αŸ„αž”αžΆαž™ αžŸαž·αž‘αŸ’αž’αž·
αž˜αž αžΆαžαžαŸƒ
αž‡αžΌαž“αžšαžŠαŸ’αž‹αžŸαž—αžΆ
αž‘αž»αž€αž…αŸ„αž› αž›αžΎ αž•αŸ’αž‘αŸ‡ αž“αŸ„αŸ‡ αŸ” αž–αŸαž› αž›αŸ’αž„αžΆαž… αž€αž»αžŠαž»αž˜αŸ’αž–αžΈ αž€αŸ αžœαž·αž› αž˜αž€ αžœαž·αž‰ αžƒαžΎαž‰
on the rascal. Oscar's next movement was to
αž―αž€αž―αž„
αž–αŸαž›αž”αžΌαžŽαŸŒαž˜αžΈαžαŸ‚αž˜αžΆαžƒαžšαŸ†αž›αžΉαž€
αž–αž˜
αž§αž”αžŸαŸ’αžŸαŸαž™
αž§αž”αž—αŸ„αž‚ αž”αžšαž·αž—αŸ„αž‚ αŸ”αŸ’αŸ¦ . αžαŸ’αž›αžΆαž… αž…αž·αžαŸ’αž αžŸαŸ’αžœαžΆαž˜αžΈ αž˜αžΆαžαžΆαž”αž·αžαžΆ αž αžΎαž™ αž‚αŸ„αžšαž– តអម αž±αžœαžΆαž‘
αž–αž»αŸ†αž”αžΆαž“
αž’αŸ†αž–αŸ’αžšαŸ†αž”αŸ’αžšαŸ‚αž€αŸ’αžšαŸ„αž™
αžαŸ’αž“αžΆαž€αŸ‹ αž›αžΎ αž“αž·αž„ αž”αž“αŸ’αž αž•αŸ’αžŸαž–αŸ’αžœαž•αŸ’αžŸαžΆαž™ αž’αž“αž»αžœαžαŸ’αž αž²αŸ’αž™ αž˜αžΆαž“ αž”αŸ’αžšαžŸαž·αž‘αŸ’αž’αž·αž—αžΆαž– αžαŸ’αž–αžŸαŸ‹
αž‚αŸ„αžšαž–αžŸαž·αž‘αŸ’αž’αž·αž‚αŸ’αž“αžΆαž‘αŸ…αžœαž·αž‰αž‘αŸ…αž˜αž€
αž˜αž‡αŸ’αžƒαž˜αžŽαŸ’αžŒαž›
αž”αŸ‰αŸƒαž›αž·αž“
the fight became hotter than ever,
αž‚αž»αžŽαžαž”
αž‚αŸαž’αŸ„αž™αžˆαŸ’αž˜αŸ„αŸ‡
αž€αž˜αŸ’αžšαžΆαž›
αž–αŸ’αžšαž αžŸαŸ’αž”αžαŸ’αžαž·αŸαž—αž–αžŸαŸ…αžšαž·αŸ
won't know what to
αžαŸ’αžšαžΌαžœαž€αžΆαžš αž€αžΆαžšαž”αž“αŸ’αžαž–αžΌαž‡ αŸ” ឯ αžŸαž„αŸ’αž‚αž˜ αžœαž·αž‰ αž€αŸ αžαŸ’αžšαžΌαžœ αž”αž„αŸ’αž€αžΎαž αžŸαž˜αžΆαž‡αž·αž€ αžšαž”αžŸαŸ‹ αžαŸ’αž›αž½αž“ ឬ
αž†αŸ’αž“αžΆαŸ† αž˜αŸ’αžŠαž„ αŸ” αž‡αŸ†αžšαžΏαž“ αž…αž»αž„αž€αŸ’αžšαŸ„αž™ αž€αŸ’αž“αž»αž„ αž”αŸ’αžšαž‘αŸαžŸ αž€αž˜αŸ’αž–αž»αž‡αžΆ αž’αŸ’αžœαžΎαž‘αžΎαž„ αž…αžΆαž”αŸ‹αž–αžΈ Β  αžαŸ’αž„αŸƒαž‘αžΈ
αŸ” ខ. តើ
αž“αŸ…αžαŸ‚αž…αž„αŸ‹αž”αŸ†αž›αžΆαžŸαŸ‹αž‘αžΈαžŠαŸ„αž™αžŸαžΆαžšαžŸ
αž”αž˜αŸ’αžšαžΆαžŸ
Another Blowing Up CHAPTER X. The
αž€αžΆαžšαž’αŸ’αžœαžΎ αž…αŸ†αžŽαžΆαž€αžŸαŸ’αžšαž»αž€
αžαŸ’αžšαžΌαžœαŸ– αž™αž›αŸ‹
carefully sighted. Touch off! was
αž”αž‰αŸ’αž†αŸ€αž„
back, since gold was
αž’αžΆαž…αžΆαžšαžΆ --
αžšαž›αžΆαž™
αž•αŸ’αžŸαŸαž„ αŸ— αžŠαŸ‚αž› αžšαŸ†αž–αžΉαž„ αž…αž„αŸ‹αž”αžΆαž“
αž’αž“αŸ’αž‘αŸ’αžšαžΌαž
αž€αŸ’αž”αžαŸ‹ αžŸαŸ’αžœαžΆαž˜αžΈ
αž‘αž‘αž½αž›αž™αž€αž“αžΌαžœαž€αŸ’αžαžΈ
αž‡αžΆαžαž· αž”αŸ’αžšαž‡αžΆαž‡αž“ αŸ”
αžšαžΆαž„ αž˜αžΌαž›
វិម αž‡αŸ’αžƒ αž€αžΆαžšαž•αŸ’αžαž›αŸ‹
αž‡αžΆ ធវតអ αž‡αž½αž™ αžαŸ‚αžšαž€αŸ’αžŸαžΆ
αž•
αžŠαžΎαž˜αŸ’αž”αžΈαž”αž˜αŸ’αžšαžΎαžŸαŸ†αžŽαžΌαž˜αž–αžš
to a sudden halt. Her screws continued
αž“αž·αž„αž›αŸ†αž“αžΆ
αž‡αžΆ αžαž·αŸ–
αž”αŸ’αžšαž›αž„ αžŠαžΌαž…αŸ’αž“αŸαŸ‡ សូម αž’αžΆαž“ !
αž‡αžΆαŸ– αž•αŸ’αž›αžΌαžœαž€αžΆαž™ Β - αž€αžΆαžšαžœαžΆαž™αžŠαŸ†
αž˜αžΆαž€αŸ‹αž„αžΆαž™
plates had to be re-riveted. Besides this,
αžαŸ’αž›αžΉαž˜αžŸαžΆαžš αž“αŸƒ αž’αž“αž»αžŸαž‰αŸ’αž‰αžΆ αž“αŸαŸ‡
αž“αž·αž„αž§αžŸαŸ’αž˜αŸαž“
End of preview. Expand in Data Studio

62k Khmer-English Printed Dataset

This repository contains a dataset of Khmer and English printed text images for training, validation, and testing. The dataset is stored in parquet format and managed using Git Large File Storage (LFS).

Installation

Prerequisites

Before cloning this repository, make sure you have Git LFS installed:

Install Git LFS

  • Linux/macOS:
    curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
    sudo apt install git-lfs
    
  • Windows: Download and install Git LFS from git-lfs.github.com

Clone the Repository

git clone https://github.com/SoyVitou/62k-images-khmer-printed-dataset.git
cd 62k-images-khmer-printed-dataset

Pull LFS Files

git lfs install
git lfs pull

Dataset Files

  • trainset.parquet (1.92 GB) - Training set with Khmer and English printed text.
  • validset.parquet - Validation set.
  • testset.parquet (238 MB) - Testing set with Khmer and English printed text.

Usage

You can load the dataset using Python with Pandas:

import pandas as pd

# Load training set
df_train = pd.read_parquet("trainset.parquet")
print(df_train.head())

# Load validation set
df_valid = pd.read_parquet("validset.parquet")
print(df_valid.head())

# Load test set
df_test = pd.read_parquet("testset.parquet")
print(df_test.head())

License

[Specify your license here, e.g., MIT, Apache 2.0, etc.]

Contact

For any issues or inquiries, please contact [your email or GitHub profile].

Downloads last month
29