Index
stringlengths
1
5
Challenge
stringlengths
41
1.55k
Answer in Latex
stringclasses
122 values
Answer in Sympy
stringlengths
1
774
Variation
stringclasses
31 values
Source
stringclasses
61 values
1101
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1102
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1103
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1104
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1105
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1106
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1107
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1108
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1109
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1110
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1111
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1112
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1113
Evaluate $ \lim_{x \to \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1114
Evaluate $ \lim_{x \to \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1115
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1116
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1117
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1118
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1119
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1120
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1121
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1122
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1123
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1124
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1125
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1126
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1127
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1128
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1129
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1130
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1131
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1132
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1133
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1134
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1135
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1136
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1137
Evaluate $ \lim_{x \to \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1138
Evaluate $ \lim_{x \to \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1139
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1140
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1141
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1142
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1143
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1144
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1145
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1146
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1147
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1148
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1149
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1150
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1151
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1152
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1153
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1154
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1155
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1156
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1157
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1158
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1159
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1160
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1161
Evaluate $ \lim_{x \to \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1162
Evaluate $ \lim_{x \to \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1163
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1164
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1165
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1166
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1167
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1168
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1169
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1170
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1171
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1172
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1173
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1174
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1175
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1176
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1177
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1178
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1179
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \frac{i \left(e^{i F x} - e^{- i F x}\right)}{2 \sin{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1180
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(- \frac{2 i \left(e^{4 i F x} + 1\right) \tan{\left(F x \right)}}{\left(1 - e^{4 i F x}\right) \left(1 - \tan^{2}{\left(F x \right)}\right)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1181
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1182
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1183
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1184
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1185
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }-\frac{ 3 \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1186
Evaluate $ \lim_{x \to \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) 5} \left( \frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) x }{ x - 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }-\frac{ 3 \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1187
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(- \sinh^{2}{\left(F x \right)} + \cosh^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1188
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{\sinh{\left(\log{\left(F x + \sqrt{F^{2} x^{2} + 1} \right)} \right)}}{F x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1189
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1190
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1191
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1192
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1193
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1194
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1195
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{\ln(x) \cdot \log_{x}(F)}{\ln(F)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1196
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{\log_F\left(\frac{x}{e}\right) + \log_F(e)}{\log_F(x)}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1197
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{2^{- N} x}{F}}{x}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1198
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{F \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} F}}{x}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1199
Evaluate $ \lim_{x \to \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) 5} \left( \frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) x }{ x - 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }-\frac{ 3 \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) }\right) } \right)^{ \left(\sin^{2}{\left(- F x \right)} + \cos^{2}{\left(F x \right)}\right) } $
3/2
Equivalence-All-Easy
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
1200
Evaluate $ \lim_{x \to \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) 5} \left( \frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) x }{ x - 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }-\frac{ 3 \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) }{ \ln\left(\frac{ x }{ 5 \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) }\right) } \right)^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(F - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(F - 1\right) \right)} + 1\right) \tan{\left(F x \right)}}\right) } $
3/2
Equivalence-All-Hard
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e