Index
stringlengths 1
5
| Challenge
stringlengths 41
1.55k
| Answer in Latex
stringclasses 122
values | Answer in Sympy
stringlengths 1
774
| Variation
stringclasses 31
values | Source
stringclasses 61
values |
---|---|---|---|---|---|
101
|
Evaluate the iterated integral $\int_0^1dy\int_y^1 e^{-A (F x)^2}+B e^{F x} dx$.
Assume A,B,F are real and positive.
|
\frac{2 A B \left(e^F (F-1)+1\right)-e^{-A F^2}+1}{2 A F^2}
|
(e**(A*F**2)*(2*A*B*(e**F*(F - 1) + 1) + 1) - 1)/(2*A*F**2*e**(A*F**2))
|
Symbolic-3
|
MathOdyssey
Problem 336 from Calculus and Analysis - College Math
|
102
|
What is the integral of $ 2 A x-B x^{7 F} \tan ^{-1}(3 G) $
Assume A,B,F,G are real and positive.
|
x \left(A x-\frac{B x^{7 F} \tan ^{-1}(3 G)}{7 F+1}\right)
|
x*((A*x*(7*F + 1) - B*x**(7*F)*atan(3*G))/(7*F + 1))
|
Symbolic-4
|
GHOSTS
Symbolic Integration
Q97
|
103
|
What is the integral of
$ (1 A) + B F x + \cosh (2 G) (F x)^{3 H} $
Assume A,B,F,G,H are real and positive.
|
A x+\frac{1}{2} B F x^2+\frac{x \cosh (2 G) (F x)^{3 H}}{3 H+1}
|
x*(2*(F*x)**(3*H)*cosh(2*G) + (2*A + B*F*x)*(3*H + 1))/(2*(3*H + 1))
|
Symbolic-5
|
GHOSTS
Symbolic Integration
Q98
|
104
|
What is the integral of $12 A+6 B \cosh (F x)$
Assume A,B,F are real and positive.
|
12 A x+\frac{6 B \sinh (F x)}{F}
|
12*A*x + 6*B*sinh(F*x)/F
|
Symbolic-3
|
GHOSTS
Symbolic Integration
Q90
|
105
|
What is the integral of
$ 4 (B x)^{7 F}+G \sin ((1 H)+A x) $
Assume A,B,F,G,H are real and positive.
|
\frac{4 A x (B x)^{7 F}-(7 F+1) G \cos (H+A x)}{7 F A+A}
|
(4*A*x*(B*x)**(7*F) - G*(7*F + 1)*cos(H + A*x))/(A*(7*F + 1))
|
Symbolic-5
|
GHOSTS
Symbolic Integration
Q14
|
106
|
What is the integral of
$ 2 x+2 B x^{2 F}+\frac{x}{G x+H x e^{A x}} $.
Assume A,B,F,G,H are real and positive.
|
x \left(x+\frac{2 B x^{2 F}}{2 F+1}\right)-\frac{\log \left(G A \left(G+H e^{A x}\right)\right)}{G A}+\frac{\log \left(e^{A
x}\right)}{G A}
|
(G*A*x*((x*(2*F + 1) + 2*B*x**(2*F))/(2*F + 1)) + log(e**(A*x)) - log(G*A*(G + H*e**(A*x))))/(G*A)
|
Symbolic-5
|
GHOSTS
Symbolic Integration
Q7
|
107
|
What is the integral of
$ B \log (3 H x) \cos (F \log (\sin (3)))-A x $
Assume A,B,F,H are real and positive.
|
B x (\log (3 H x)-1) \cos (F \log (\sin (3)))-\frac{A x^2}{2}
|
-A*x**2/2 + B*x*(log(3*H*x) - 1)*cos(F*log(sin(3)))
|
Symbolic-4
|
GHOSTS
Symbolic Integration
Q15
|
108
|
What is the integral of
$ 3 A x - 4 B (H x)^2 \cos (F x+3 G) $
Assume A,B,F,G,H are real and positive.
|
\frac{3 A x^2}{2}-\frac{8 B H^2 x \cos (F x+3 G)}{F^2}-\frac{4 B H^2 \left(F^2 x^2-2\right) \sin (F x+3 G)}{F^3}
|
(3*A*F**3*x**2 - 16*B*F*H**2*x*cos(F*x + 3*G) - 8*B*H**2*(F**2*x**2 - 2)*sin(F*x + 3*G))/(2*F**3)
|
Symbolic-5
|
GHOSTS
Symbolic Integration
Q18
|
109
|
What is the integral of
$ A \tan ^{-1}(B x)+F \log (G \tanh (3 H))-3 $
Assume A,B,F,G,H are real and positive.
|
-\frac{A \log \left(B^2 x^2+1\right)}{2 B}+A x \tan ^{-1}(B x)+x (F \log (G \tanh (3 H))-3)
|
A*x*atan(B*x) - A*log(B**2*x**2 + 1)/(2*B) + x*(F*log(G*tanh(3*H)) - 3)
|
Symbolic-5
|
GHOSTS
Symbolic Integration
Q20
|
110
|
What is the integral of
$ A (F x+4 G) (3 F x+4 G) e^{B x (F x+4 G)^2} $
Assume A,B,F,G are real and positive.
|
\frac{A e^{B x (F x+4 G)^2}}{B}
|
A*e**(B*x*(F*x + 4*G)**2)/B
|
Symbolic-4
|
GHOSTS
Symbolic Integration
Q22
|
111
|
What is the integral of
$ -A e^{3 B x} \sin \left(F e^{3 B x}\right) $
Assume A,B,F are real and positive.
|
\frac{A \cos \left(F e^{3 B x}\right)}{3 B F}
|
A*cos(F*e**(3*B*x))/(3*B*F)
|
Symbolic-3
|
GHOSTS
Symbolic Integration
Q29
|
112
|
If $\log_{2 A} x - 2 F \log _{2 A} y=2 B$, determine $y$, as a function of $x$
Assume A,B,F are real and positive.
|
e^{\frac{2 F \log (2 A) \log (x)}{\log (2 A)-2 B \log(x)}}
|
e**(-2*F*log(2*A)*log(x)/(2*B*log(x) - log(2*A)))
|
Symbolic-3
|
OlympiadBench
oe_to_maths_en_comp
2498
|
113
|
If $f(x)=2 A x+ (1 B)$ and $g(f(x)) = 4 F x^{2}+ (1 G)$, determine an expression for $g(x)$.
|
\frac{F (x-B)^2}{A^2}+G
|
G + F*(-B + x)**2/A**2
|
Symbolic-4
|
OlympicArena
Math_1381
|
114
|
Solve the following integral. Assume A,B,F are real and B>0.
$\int_0^{\frac{\pi}{2 F}} \frac{A x \sin(2 F x)}{(1 B) + \cos^2(2 F x)} dx$
|
\frac{A\pi}{4F^2\sqrt{B}} \arctan\!\frac{1}{\sqrt{B}}
|
A*pi*atan(1/sqrt(B))/(4*sqrt(B)*F**2)
|
Symbolic-3
|
OBMU 2019 - Q21
|
115
|
Solve the following integral. Assume A,B,F,G are real and positive.
$\int_{1}^{2} \frac{A e^{F x} (F x-1)}{F x \left(B e^{F x}+F G x\right)} dx$
|
-\frac{A \log \left(\frac{2 (e B+G)}{e^2 B+2 G}\right)}{B F}
|
-A*log((2*(B*e + G))/(B*e**2 + 2*G), E)/(B*F)
|
Symbolic-4
|
OBMU 2019 - Q18
|
116
|
Solve the following integral. Assume A,B,F are real and positive.
Solve the following integral:
$\int_{0}^{\pi} A \log(B (\sin(x))^{1 F}) dx$
|
A \pi \log\left(\frac{B}{2^F}\right)
|
A*(pi*log(B/(2**F), E))
|
Symbolic-3
|
OBMU 2019 - Q22
|
117
|
Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 2 \end{array}; (-A)^B \right) $
|
-(-A)^{-B} \log \left(1-(-A)^B\right)
|
log(1 - (-A)**B, E)/((-A)**B)
|
Symbolic-2
|
ASyMOB
Hypergeometrics
Q1
|
118
|
Evaluate the following hypergeometric function. Assume the parameters: A,B are real numbers. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1 ,1 \\ 3 \end{array}; -2 \cdot (A^B) \right) $
|
\frac{1}{2} A^{-2 B} \left(\left(2 A^B+1\right) \log \left(2 A^B+1\right)-2
A^B\right)
|
(-2*(A**B) + (2*(A**B) + 1)*log(2*(A**B) + 1, E))/(2*(A**B)**2)
|
Symbolic-2
|
ASyMOB
Hypergeometrics
Q2
|
119
|
Evaluate the following hypergeometric function. Assume the parameters: A,B,G,H are real numbers. Return a closed-form symbolic answer.
$ {}_8F_7\left( \begin{array}{c} 1,1,1, (1 A), (1 B), 1, (1 G), (1 H) \\ 2,2, (1 H), (1 G), (1 B), 1, (1 A) \end{array}; -1 \right) $
|
\frac{\pi ^2}{12}
|
pi**2/12
|
Symbolic-4
|
ASyMOB
Hypergeometrics
Q3
|
120
|
Evaluate the following hypergeometric function. Assume the parameters: x,A,B,G,H are real numbers. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} -1,-A, -B \\ -H, -G \end{array}; x \right) $
|
1-\frac{A B x}{H G}
|
1 - A*(B*x)/(H*G)
|
Symbolic-4
|
ASyMOB
Hypergeometrics
Q4
|
121
|
Solve the following integral. Assume the parameters: A,B,F are real numbers. Return a closed-form symbolic answer.
$ \int \frac{ 1 A }{ 1 B + (x F)^3 } dx $
|
-\frac{A \left(\log \left(B^{2/3}-\sqrt[3]{B} F x+F^2 x^2\right)-2 \log \left(\sqrt[3]{B}+F x\right)+2 \sqrt{3} \tan
^{-1}\left(\frac{1-\frac{2 F x}{\sqrt[3]{B}}}{\sqrt{3}}\right)\right)}{6 B^{2/3} F}
|
-A*(-2*log(B**(1/3) + F*x) + log(B**(2/3) - B**(1/3)*F*x + F**2*x**2) + 2*sqrt(3)*atan(sqrt(3)*(B**(1/3) - 2*F*x)/(3*B**(1/3))))/(6*B**(2/3)*F)
|
Symbolic-3
|
ASyMOB
Hypergeometrics
Q5
|
122
|
Solve the following integral. Assume A,B are positive integers.
$ \int \frac{(4 A + (4 A - (1 B))x^{1 B})x^{2 A - 1}}{2 (1 + x^{1 B} + x^{4 A})\sqrt{1 + x^{1 B}}} dx $
|
\tan ^{-1}\left(\frac{\left x^A}{\sqrt{x^B+1}}\right)
|
atan(x**A/(sqrt(x**B + 1)))
|
Symbolic-2
|
ASyMOB
Hypergeometrics
Q6
|
123
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) e^{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
124
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) e^{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
125
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
126
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) e^{ \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
127
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
128
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
129
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) e^{ \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
130
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) e^{ \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
131
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) e^{ \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
132
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
133
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
134
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) e^{ \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
135
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
136
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
137
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) e^{ \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
138
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) e^{ \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
139
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) e^{ \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
140
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
141
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) e^{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
142
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
143
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
144
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
145
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) e^{ \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
146
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) e^{ \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
147
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) e^{ \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
148
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
149
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) e^{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
150
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) e^{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
151
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
152
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) e^{ \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
153
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) e^{ \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
154
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) e^{ \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
155
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) e^{ \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
156
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
157
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) e^{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
158
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) e^{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
159
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) e^{ \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
160
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) e^{ \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
161
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
162
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-All-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
163
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\sin^{2}{\left(- A x \right)} + \cos^{2}{\left(A x \right)}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
164
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(A - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(A - 1\right) \right)} + 1\right) \tan{\left(A x \right)}}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
165
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \sinh^{2}{\left(A x \right)} + \cosh^{2}{\left(A x \right)}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
166
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\sinh{\left(\log{\left(A x + \sqrt{A^{2} x^{2} + 1} \right)} \right)}}{A x}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
167
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\ln(x) \cdot \log_{x}(A)}{\ln(A)}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
168
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{\log_A\left(\frac{x}{e}\right) + \log_A(e)}{\log_A(x)}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
169
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{2^{- N} x}{A}}{x}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
170
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(\frac{A \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} A}}{x}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
171
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{i \left(e^{i A x} - e^{- i A x}\right)}{2 \sin{\left(A x \right)}}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
172
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(- \frac{2 i \left(e^{4 i A x} + 1\right) \tan{\left(A x \right)}}{\left(1 - e^{4 i A x}\right) \left(1 - \tan^{2}{\left(A x \right)}\right)}\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
173
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(9\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*9/15 - x**4*9/8 + x**2*9/2 + x*9 + 9
|
Numeric-One-1
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
174
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(13\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*13/15 - x**4*13/8 + x**2*13/2 + x*13 + 13
|
Numeric-One-2
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
175
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(974\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*974/15 - x**4*974/8 + x**2*974/2 + x*974 + 974
|
Numeric-One-3
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
176
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(4561\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*4561/15 - x**4*4561/8 + x**2*4561/2 + x*4561 + 4561
|
Numeric-One-4
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
177
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(68222\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*68222/15 - x**4*68222/8 + x**2*68222/2 + x*68222 + 68222
|
Numeric-One-5
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
178
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(388580\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*388580/15 - x**4*388580/8 + x**2*388580/2 + x*388580 + 388580
|
Numeric-One-6
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
179
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(2316065\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*2316065/15 - x**4*2316065/8 + x**2*2316065/2 + x*2316065 + 2316065
|
Numeric-One-7
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
180
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(97287075\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*97287075/15 - x**4*97287075/8 + x**2*97287075/2 + x*97287075 + 97287075
|
Numeric-One-8
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
181
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(326602299\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*326602299/15 - x**4*326602299/8 + x**2*326602299/2 + x*326602299 + 326602299
|
Numeric-One-9
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
182
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = \left(4615937897\right) e^{ \sin(x)} $, where A and B are symbolic constants.
|
-x**5*4615937897/15 - x**4*4615937897/8 + x**2*4615937897/2 + x*4615937897 + 4615937897
|
Numeric-One-10
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
183
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\sin^{2}{\left(- B x \right)} + \cos^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
184
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{\tan{\left(x \right)} + \tan{\left(x \left(B - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(B - 1\right) \right)} + 1\right) \tan{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
185
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(- \sinh^{2}{\left(B x \right)} + \cosh^{2}{\left(B x \right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
186
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{\sinh{\left(\log{\left(B x + \sqrt{B^{2} x^{2} + 1} \right)} \right)}}{B x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
187
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{\ln(x) \cdot \log_{x}(B)}{\ln(B)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
188
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{\log_B\left(\frac{x}{e}\right) + \log_B(e)}{\log_B(x)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
189
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{2^{- N} x}{B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
190
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(\frac{B \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} B}}{x}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
191
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(- \frac{i \left(e^{i B x} - e^{- i B x}\right)}{2 \sin{\left(B x \right)}}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Easy
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
192
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(- \frac{2 i \left(e^{4 i B x} + 1\right) \tan{\left(B x \right)}}{\left(1 - e^{4 i B x}\right) \left(1 - \tan^{2}{\left(B x \right)}\right)}\right) \sin(x)} $, where A and B are symbolic constants.
|
-x**5/15 - x**4/8 + x**2/2 + x + 1
|
Equivalence-One-Hard
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
193
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(4\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(4 - 10*4**3 + 4**5)/120 + x**4*(-4*4**2 + 4**4)/24 + x**3*(-4 + 4**3)/6 + x**2*4**2/2 + x*4 + 1
|
Numeric-One-1
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
194
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(49\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(49 - 10*49**3 + 49**5)/120 + x**4*(-4*49**2 + 49**4)/24 + x**3*(-49 + 49**3)/6 + x**2*49**2/2 + x*49 + 1
|
Numeric-One-2
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
195
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(113\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(113 - 10*113**3 + 113**5)/120 + x**4*(-4*113**2 + 113**4)/24 + x**3*(-113 + 113**3)/6 + x**2*113**2/2 + x*113 + 1
|
Numeric-One-3
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
196
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(5969\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(5969 - 10*5969**3 + 5969**5)/120 + x**4*(-4*5969**2 + 5969**4)/24 + x**3*(-5969 + 5969**3)/6 + x**2*5969**2/2 + x*5969 + 1
|
Numeric-One-4
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
197
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(92382\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(92382 - 10*92382**3 + 92382**5)/120 + x**4*(-4*92382**2 + 92382**4)/24 + x**3*(-92382 + 92382**3)/6 + x**2*92382**2/2 + x*92382 + 1
|
Numeric-One-5
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
198
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(503855\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(503855 - 10*503855**3 + 503855**5)/120 + x**4*(-4*503855**2 + 503855**4)/24 + x**3*(-503855 + 503855**3)/6 + x**2*503855**2/2 + x*503855 + 1
|
Numeric-One-6
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
199
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(9004607\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(9004607 - 10*9004607**3 + 9004607**5)/120 + x**4*(-4*9004607**2 + 9004607**4)/24 + x**3*(-9004607 + 9004607**3)/6 + x**2*9004607**2/2 + x*9004607 + 1
|
Numeric-One-7
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
|
200
|
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = e^{ \left(55653951\right) \sin(x)} $, where A and B are symbolic constants.
|
x**5*(55653951 - 10*55653951**3 + 55653951**5)/120 + x**4*(-4*55653951**2 + 55653951**4)/24 + x**3*(-55653951 + 55653951**3)/6 + x**2*55653951**2/2 + x*55653951 + 1
|
Numeric-One-8
|
U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.