Upload 8 files
Browse files- data/csi_data.zip +3 -0
- data/processed_data.zip +3 -0
- data_process_example/README.md +3 -0
- data_process_example/combine_csi_cv.py +102 -0
- data_process_example/process_csi1.py +53 -0
- data_process_example/process_csi2.py +76 -0
- data_process_example/process_csi2_magnitude_linear_inter.py +91 -0
- data_process_example/process_cv.py +112 -0
data/csi_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91454a2af39d397357330afabffd1b1ba5d59fabfa23c10bde8daa40448eccbd
|
3 |
+
size 16281304
|
data/processed_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20b8c44e02a8231803cf4f2088d1fddda85d4848defa96607da7786bb3e4dcf6
|
3 |
+
size 59596932
|
data_process_example/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# How to Run
|
2 |
+
|
3 |
+
You can run the code `process_csi1.py`, `process_csi2.py`, `process_csi2_magnitude_linear_inter.py`, `process_cv.py`, `combine_csi_cv.py` in order.
|
data_process_example/combine_csi_cv.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
with open("./data_sequence.pkl", 'rb') as f:
|
5 |
+
# with open("./data_sequence_linear.pkl", 'rb') as f:
|
6 |
+
data_csi = pickle.load(f)
|
7 |
+
with open("./gt_data.pkl", 'rb') as f:
|
8 |
+
data_cv = pickle.load(f)
|
9 |
+
|
10 |
+
data = []
|
11 |
+
pad = -1000
|
12 |
+
for k in range(len(data_csi)):
|
13 |
+
csi = data_csi[k]
|
14 |
+
cv = data_cv[k]
|
15 |
+
|
16 |
+
x = cv['x']
|
17 |
+
y = cv['y']
|
18 |
+
img_path = np.array(cv['img_path'])
|
19 |
+
time_cv = cv['timestamp']
|
20 |
+
print(cv['people_name'])
|
21 |
+
|
22 |
+
indices = np.argsort(time_cv)
|
23 |
+
x = x[indices]
|
24 |
+
y = y[indices]
|
25 |
+
img_path = img_path[indices]
|
26 |
+
time_cv = time_cv[indices]
|
27 |
+
|
28 |
+
print(x)
|
29 |
+
print(y)
|
30 |
+
|
31 |
+
|
32 |
+
csi_time = csi['global_time']
|
33 |
+
local_time = csi['time']
|
34 |
+
magnitude = csi['magnitude']
|
35 |
+
phase = csi['phase']
|
36 |
+
people = csi['people']
|
37 |
+
|
38 |
+
indices = np.argsort(csi_time)
|
39 |
+
local_time = local_time[indices]
|
40 |
+
magnitude = magnitude[indices]
|
41 |
+
csi_time = csi_time[indices]
|
42 |
+
phase = phase[indices]
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
x_list = []
|
47 |
+
y_list = []
|
48 |
+
path_list = []
|
49 |
+
|
50 |
+
i = 0
|
51 |
+
j = 0
|
52 |
+
|
53 |
+
print(csi_time)
|
54 |
+
print(time_cv)
|
55 |
+
|
56 |
+
|
57 |
+
while csi_time[i] < time_cv[j]:
|
58 |
+
i += 1
|
59 |
+
x_list.append(pad)
|
60 |
+
y_list.append(pad)
|
61 |
+
path_list.append(pad)
|
62 |
+
|
63 |
+
|
64 |
+
# print(len(csi_time))
|
65 |
+
# print(len(time_cv))
|
66 |
+
while i < len(csi_time):
|
67 |
+
while csi_time[i] > time_cv[j]:
|
68 |
+
j += 1
|
69 |
+
if j >= len(time_cv):
|
70 |
+
break
|
71 |
+
if j >= len(time_cv):
|
72 |
+
break
|
73 |
+
x_list.append(x[j])
|
74 |
+
y_list.append(y[j])
|
75 |
+
path_list.append(img_path[j])
|
76 |
+
i += 1
|
77 |
+
|
78 |
+
print(len(x_list))
|
79 |
+
|
80 |
+
|
81 |
+
if len(x_list) < len(csi_time):
|
82 |
+
num = len(csi_time) - len(x_list)
|
83 |
+
x_list = x_list + [pad] * num
|
84 |
+
y_list = y_list + [pad] * num
|
85 |
+
path_list = path_list + [pad] * num
|
86 |
+
|
87 |
+
data.append({
|
88 |
+
'magnitude': magnitude,
|
89 |
+
'phase': phase,
|
90 |
+
'x': x_list,
|
91 |
+
'y': y_list,
|
92 |
+
'img_path': path_list,
|
93 |
+
'time': local_time,
|
94 |
+
'people': people
|
95 |
+
})
|
96 |
+
print(people)
|
97 |
+
print(len(magnitude),len(phase),len(x_list),len(y_list),len(path_list),len(local_time))
|
98 |
+
|
99 |
+
output_file = './wiloc.pkl'
|
100 |
+
# output_file = './wiloc_linear.pkl'
|
101 |
+
with open(output_file, 'wb') as f:
|
102 |
+
pickle.dump(data, f)
|
data_process_example/process_csi1.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# root="./csi"
|
7 |
+
root="/home/chentingwei/LoFi/csi_csv"
|
8 |
+
|
9 |
+
|
10 |
+
data=[]
|
11 |
+
csi_vaid_subcarrier_index = range(0, 52)
|
12 |
+
|
13 |
+
def handle_complex_data(x, valid_indices):
|
14 |
+
real_parts = []
|
15 |
+
imag_parts = []
|
16 |
+
for i in valid_indices:
|
17 |
+
real_parts.append(x[i * 2])
|
18 |
+
imag_parts.append(x[i * 2 - 1])
|
19 |
+
return np.array(real_parts) + 1j * np.array(imag_parts)
|
20 |
+
|
21 |
+
people_id=0
|
22 |
+
for people in os.listdir(root):
|
23 |
+
print(people)
|
24 |
+
path=os.path.join(root,people)
|
25 |
+
|
26 |
+
for file in os.listdir(path):
|
27 |
+
if file[-3:] != "csv":
|
28 |
+
continue
|
29 |
+
# print(file)
|
30 |
+
df = pd.read_csv(os.path.join(path,file))
|
31 |
+
df.dropna(inplace=True)
|
32 |
+
df['data'] = df['data'].apply(lambda x: eval(x))
|
33 |
+
complex_data = df['data'].apply(lambda x: handle_complex_data(x, csi_vaid_subcarrier_index))
|
34 |
+
magnitude = complex_data.apply(lambda x: np.abs(x))
|
35 |
+
phase = complex_data.apply(lambda x: np.angle(x, deg=True))
|
36 |
+
time = np.array(df['timestamp'])
|
37 |
+
local_time = np.array(df['local_timestamp'])
|
38 |
+
|
39 |
+
data.append({
|
40 |
+
'csi_time':time,
|
41 |
+
'csi_local_time':local_time,
|
42 |
+
'people_name': people,
|
43 |
+
'people': people_id,
|
44 |
+
'magnitude': np.array([np.array(a) for a in magnitude]),
|
45 |
+
'phase': np.array([np.array(a) for a in phase]),
|
46 |
+
'CSI': np.array([np.array(a) for a in complex_data])
|
47 |
+
})
|
48 |
+
people_id+=1
|
49 |
+
|
50 |
+
|
51 |
+
output_file = './csi_data.pkl'
|
52 |
+
with open(output_file, 'wb') as f:
|
53 |
+
pickle.dump(data, f)
|
data_process_example/process_csi2.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
|
5 |
+
result=[]
|
6 |
+
pad=[-1000]*52
|
7 |
+
loacl_gap=10000
|
8 |
+
|
9 |
+
def process_time(timestamp):
|
10 |
+
t = timestamp.split()
|
11 |
+
# print(t)
|
12 |
+
t = t[-1].split(":")
|
13 |
+
h = float(t[0])
|
14 |
+
m = float(t[1])
|
15 |
+
t = t[-1].split(".")
|
16 |
+
s = float(t[0])
|
17 |
+
ms = float(t[1])
|
18 |
+
# print(h,m,s,ms)
|
19 |
+
return h * 60 * 60 * 100 + m * 60 * 100 + s * 100 + ms
|
20 |
+
|
21 |
+
|
22 |
+
with open("./csi_data.pkl", 'rb') as f:
|
23 |
+
csi = pickle.load(f)
|
24 |
+
|
25 |
+
for data in csi:
|
26 |
+
csi_time=data['csi_time']
|
27 |
+
local_time=data['csi_local_time']
|
28 |
+
magnitude=data['magnitude']
|
29 |
+
phase=data['phase']
|
30 |
+
people=data['people']
|
31 |
+
|
32 |
+
last_local=None
|
33 |
+
last_glob=None
|
34 |
+
current_magnitude=[]
|
35 |
+
current_phase=[]
|
36 |
+
current_timestamp=[]
|
37 |
+
global_timestamp=[]
|
38 |
+
for i in range(len(csi_time)):
|
39 |
+
if last_local is None:
|
40 |
+
last_local=local_time[i]
|
41 |
+
last_glob=process_time(csi_time[i])
|
42 |
+
current_magnitude.append(magnitude[i])
|
43 |
+
current_phase.append(phase[i])
|
44 |
+
current_timestamp.append(local_time[i])
|
45 |
+
else:
|
46 |
+
local = local_time[i]
|
47 |
+
glob = process_time(csi_time[i])
|
48 |
+
num=round((local-last_local-loacl_gap)/loacl_gap)
|
49 |
+
if num>0:
|
50 |
+
delta=(local-last_local)/(num+1)
|
51 |
+
delta_glob=(glob-last_glob)/(num+1)
|
52 |
+
for j in range(num):
|
53 |
+
current_magnitude.append(pad)
|
54 |
+
current_phase.append(pad)
|
55 |
+
current_timestamp.append(current_timestamp[-1] + delta)
|
56 |
+
global_timestamp.append(global_timestamp[-1]+delta_glob)
|
57 |
+
current_magnitude.append(magnitude[i])
|
58 |
+
current_phase.append(phase[i])
|
59 |
+
current_timestamp.append(local)
|
60 |
+
global_timestamp.append(glob)
|
61 |
+
last_local = local
|
62 |
+
last_glob = glob
|
63 |
+
|
64 |
+
print(len(current_magnitude))
|
65 |
+
# print(np.max(global_timestamp))
|
66 |
+
result.append({
|
67 |
+
'time': np.array(current_timestamp),
|
68 |
+
'global_time': np.array(global_timestamp),
|
69 |
+
'people': people,
|
70 |
+
'magnitude': np.array(current_magnitude),
|
71 |
+
'phase': np.array(current_phase)
|
72 |
+
})
|
73 |
+
|
74 |
+
output_file = './data_sequence.pkl'
|
75 |
+
with open(output_file, 'wb') as f:
|
76 |
+
pickle.dump(result, f)
|
data_process_example/process_csi2_magnitude_linear_inter.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
|
6 |
+
result=[]
|
7 |
+
pad=[-1000]*52
|
8 |
+
loacl_gap=10000
|
9 |
+
|
10 |
+
def process_time(timestamp):
|
11 |
+
t = timestamp.split()
|
12 |
+
t = t[-1].split(":")
|
13 |
+
h = float(t[0])
|
14 |
+
m = float(t[1])
|
15 |
+
t = t[-1].split(".")
|
16 |
+
s = float(t[0])
|
17 |
+
ms = float(t[1])
|
18 |
+
return h * 60 * 60 * 100 + m * 60 * 100 + s * 100 + ms
|
19 |
+
|
20 |
+
def interpolate_data(original_data):
|
21 |
+
data_interpolate = np.copy(original_data)
|
22 |
+
|
23 |
+
# 对数据进行插值处理
|
24 |
+
for j in range(original_data.shape[1]):
|
25 |
+
series = pd.Series(original_data[:, j])
|
26 |
+
series.interpolate(method='linear', inplace=True)
|
27 |
+
data_interpolate[:, j] = series.values
|
28 |
+
|
29 |
+
return data_interpolate
|
30 |
+
|
31 |
+
|
32 |
+
with open("./csi_data.pkl", 'rb') as f:
|
33 |
+
csi = pickle.load(f)
|
34 |
+
|
35 |
+
for data in csi:
|
36 |
+
csi_time=data['csi_time']
|
37 |
+
local_time=data['csi_local_time']
|
38 |
+
magnitude=data['magnitude']
|
39 |
+
phase=data['phase']
|
40 |
+
people=data['people']
|
41 |
+
|
42 |
+
last_local=None
|
43 |
+
last_glob=None
|
44 |
+
current_magnitude=[]
|
45 |
+
current_phase=[]
|
46 |
+
current_timestamp=[]
|
47 |
+
global_timestamp=[]
|
48 |
+
for i in range(len(csi_time)):
|
49 |
+
if last_local is None:
|
50 |
+
last_local=local_time[i]
|
51 |
+
last_glob=process_time(csi_time[i])
|
52 |
+
current_magnitude.append(magnitude[i])
|
53 |
+
current_phase.append(phase[i])
|
54 |
+
current_timestamp.append(local_time[i])
|
55 |
+
else:
|
56 |
+
local = local_time[i]
|
57 |
+
glob = process_time(csi_time[i])
|
58 |
+
num=round((local-last_local-loacl_gap)/loacl_gap)
|
59 |
+
if num>0:
|
60 |
+
delta=(local-last_local)/(num+1)
|
61 |
+
delta_glob=(glob-last_glob)/(num+1)
|
62 |
+
for j in range(num):
|
63 |
+
current_magnitude.append(pad)
|
64 |
+
current_phase.append(pad)
|
65 |
+
current_timestamp.append(current_timestamp[-1] + delta)
|
66 |
+
global_timestamp.append(global_timestamp[-1]+delta_glob)
|
67 |
+
current_magnitude.append(magnitude[i])
|
68 |
+
current_phase.append(phase[i])
|
69 |
+
current_timestamp.append(local)
|
70 |
+
global_timestamp.append(glob)
|
71 |
+
last_local = local
|
72 |
+
last_glob = glob
|
73 |
+
|
74 |
+
|
75 |
+
current_magnitude = np.array(current_magnitude)
|
76 |
+
current_magnitude[current_magnitude == -1000] = np.nan
|
77 |
+
current_magnitude = interpolate_data(current_magnitude)
|
78 |
+
print(len(current_magnitude))
|
79 |
+
|
80 |
+
|
81 |
+
result.append({
|
82 |
+
'time': np.array(current_timestamp),
|
83 |
+
'global_time': np.array(global_timestamp),
|
84 |
+
'people': people,
|
85 |
+
'magnitude': current_magnitude,
|
86 |
+
'phase': np.array(current_phase)
|
87 |
+
})
|
88 |
+
|
89 |
+
output_file = './data_sequence_linear.pkl'
|
90 |
+
with open(output_file, 'wb') as f:
|
91 |
+
pickle.dump(result, f)
|
data_process_example/process_cv.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tqdm
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
# root="./cv"
|
8 |
+
root="/home/chentingwei/LoFi/lofi"
|
9 |
+
|
10 |
+
|
11 |
+
# 加载 YOLO 模型
|
12 |
+
net = cv2.dnn.readNet("./model/yolov3.weights", "./model/yolov3.cfg")
|
13 |
+
# 获取输出层的名称
|
14 |
+
layer_names = net.getLayerNames()
|
15 |
+
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
|
16 |
+
|
17 |
+
src_points = np.array([[0, 0], [180, 0], [0, 480], [180, 480]], dtype="float32") # real world
|
18 |
+
dst_points = np.array([[222, 210], [374, 209], [65, 458], [495, 451]], dtype="float32") # image world
|
19 |
+
|
20 |
+
|
21 |
+
M = cv2.getPerspectiveTransform(src_points, dst_points)
|
22 |
+
|
23 |
+
data=[]
|
24 |
+
|
25 |
+
def get_gt(img_path,net):
|
26 |
+
image = cv2.imread(img_path)
|
27 |
+
# 加载图像
|
28 |
+
height, width, channels = image.shape
|
29 |
+
|
30 |
+
# 准备输入图像
|
31 |
+
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
|
32 |
+
net.setInput(blob)
|
33 |
+
outs = net.forward(output_layers)
|
34 |
+
|
35 |
+
# 解析 YOLO 输出,找到人体边界框
|
36 |
+
class_ids = []
|
37 |
+
confidences = []
|
38 |
+
boxes = []
|
39 |
+
|
40 |
+
for out in outs:
|
41 |
+
for detection in out:
|
42 |
+
scores = detection[5:]
|
43 |
+
class_id = np.argmax(scores)
|
44 |
+
confidence = scores[class_id]
|
45 |
+
if confidence > 0.5: # 置信度阈值
|
46 |
+
center_x = int(detection[0] * width)
|
47 |
+
center_y = int(detection[1] * height)
|
48 |
+
w = int(detection[2] * width)
|
49 |
+
h = int(detection[3] * height)
|
50 |
+
x = int(center_x - w / 2)
|
51 |
+
y = int(center_y - h / 2)
|
52 |
+
boxes.append([x, y, w, h])
|
53 |
+
confidences.append(float(confidence))
|
54 |
+
class_ids.append(class_id)
|
55 |
+
|
56 |
+
# 如果检测到了多个框,只保留置信度最高的那个框
|
57 |
+
if len(boxes) > 0:
|
58 |
+
max_confidence_idx = np.argmax(confidences)
|
59 |
+
boxes = [boxes[max_confidence_idx]]
|
60 |
+
x, y, w, h = boxes[0]
|
61 |
+
foot_position_image = (x + w // 2, y + h)
|
62 |
+
|
63 |
+
person_img_coords = np.array([[foot_position_image[0], foot_position_image[1]]],
|
64 |
+
dtype="float32")
|
65 |
+
actual_coords = cv2.perspectiveTransform(np.array([person_img_coords]), np.linalg.inv(M))
|
66 |
+
return actual_coords[0,0,0],actual_coords[0,0,1]
|
67 |
+
|
68 |
+
|
69 |
+
people_id=0
|
70 |
+
for people in os.listdir(root):
|
71 |
+
print(people)
|
72 |
+
path=os.path.join(root,people)
|
73 |
+
|
74 |
+
pbar = tqdm.tqdm(os.listdir(path))
|
75 |
+
|
76 |
+
x_list = []
|
77 |
+
y_list = []
|
78 |
+
img_path_list = []
|
79 |
+
time_list = []
|
80 |
+
|
81 |
+
for pic in pbar:
|
82 |
+
if "color" not in pic:
|
83 |
+
continue
|
84 |
+
|
85 |
+
# print(pic)
|
86 |
+
timestamp = pic.split("_")
|
87 |
+
timestamp = timestamp[-1].split(".")
|
88 |
+
timestamp = timestamp[0]
|
89 |
+
timestamp = timestamp.split("-")
|
90 |
+
# print(timestamp)
|
91 |
+
timestamp = float(timestamp[0]) * 60 * 60 * 100 + float(timestamp[1]) * 60 * 100 + float(timestamp[2]) * 100 + float(timestamp[3])
|
92 |
+
|
93 |
+
img_path = os.path.join(path, pic)
|
94 |
+
x, y = get_gt(img_path, net)
|
95 |
+
x_list.append(x)
|
96 |
+
y_list.append(y)
|
97 |
+
img_path_list.append(img_path)
|
98 |
+
time_list.append(timestamp)
|
99 |
+
|
100 |
+
data.append({
|
101 |
+
'timestamp': np.array(time_list),
|
102 |
+
'people_name': people,
|
103 |
+
'people': people_id,
|
104 |
+
'x': np.array(x_list),
|
105 |
+
'y': np.array(y_list),
|
106 |
+
'img_path': img_path_list
|
107 |
+
})
|
108 |
+
people_id += 1
|
109 |
+
|
110 |
+
output_file = './gt_data.pkl'
|
111 |
+
with open(output_file, 'wb') as f:
|
112 |
+
pickle.dump(data, f)
|