Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
LlamaLens-Hindi / README.md
AliShahroor's picture
update readme
f5a1ded verified
metadata
license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - hi
tags:
  - Social Media
  - News Media
  - Sentiment
  - Stance
  - Emotion
pretty_name: >-
  LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media
  Content -- Hindi
size_categories:
  - 10K<n<100K
dataset_info:
  - config_name: Sentiment_Analysis
    splits:
      - name: train
        num_examples: 10039
      - name: dev
        num_examples: 1258
      - name: test
        num_examples: 1259
  - config_name: MC_Hinglish1
    splits:
      - name: train
        num_examples: 5177
      - name: dev
        num_examples: 2219
      - name: test
        num_examples: 1000
  - config_name: Offensive_Speech_Detection
    splits:
      - name: train
        num_examples: 2172
      - name: dev
        num_examples: 318
      - name: test
        num_examples: 636
  - config_name: xlsum
    splits:
      - name: train
        num_examples: 70754
      - name: dev
        num_examples: 8847
      - name: test
        num_examples: 8847
  - config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
    splits:
      - name: train
        num_examples: 5718
      - name: dev
        num_examples: 811
      - name: test
        num_examples: 1651
  - config_name: hate-speech-detection
    splits:
      - name: train
        num_examples: 3327
      - name: dev
        num_examples: 476
      - name: test
        num_examples: 951
  - config_name: fake-news
    splits:
      - name: train
        num_examples: 8393
      - name: dev
        num_examples: 1417
      - name: test
        num_examples: 2743
  - config_name: Natural_Language_Inference
    splits:
      - name: train
        num_examples: 1251
      - name: dev
        num_examples: 537
      - name: test
        num_examples: 447
configs:
  - config_name: Sentiment_Analysis
    data_files:
      - split: test
        path: Sentiment_Analysis/test.json
      - split: dev
        path: Sentiment_Analysis/dev.json
      - split: train
        path: Sentiment_Analysis/train.json
  - config_name: MC_Hinglish1
    data_files:
      - split: test
        path: MC_Hinglish1/test.json
      - split: dev
        path: MC_Hinglish1/dev.json
      - split: train
        path: MC_Hinglish1/train.json
  - config_name: Offensive_Speech_Detection
    data_files:
      - split: test
        path: Offensive_Speech_Detection/test.json
      - split: dev
        path: Offensive_Speech_Detection/dev.json
      - split: train
        path: Offensive_Speech_Detection/train.json
  - config_name: xlsum
    data_files:
      - split: test
        path: xlsum/test.json
      - split: dev
        path: xlsum/dev.json
      - split: train
        path: xlsum/train.json
  - config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
    data_files:
      - split: test
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/test.json
      - split: dev
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/dev.json
      - split: train
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/train.json
  - config_name: hate-speech-detection
    data_files:
      - split: test
        path: hate-speech-detection/test.json
      - split: dev
        path: hate-speech-detection/dev.json
      - split: train
        path: hate-speech-detection/train.json
  - config_name: fake-news
    data_files:
      - split: test
        path: fake-news/test.json
      - split: dev
        path: fake-news/dev.json
      - split: train
        path: fake-news/train.json
  - config_name: Natural_Language_Inference
    data_files:
      - split: test
        path: Natural_Language_Inference/test.json
      - split: dev
        path: Natural_Language_Inference/dev.json
      - split: train
        path: Natural_Language_Inference/train.json

LlamaLens: Specialized Multilingual LLM Dataset

Overview

LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.

LlamaLens

This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.

Features

  • Multilingual support (Arabic, English, Hindi)
  • 18 NLP tasks with 52 datasets
  • Optimized for news and social media content analysis

📂 Dataset Overview

Hindi Datasets

Task Dataset # Labels # Train # Test # Dev
Cyberbullying MC-Hinglish1.0 7 7,400 1,000 2,119
Factuality fake-news 2 8,393 2,743 1,417
Hate Speech hate-speech-detection 2 3,327 951 476
Hate Speech Hindi-Hostility-Detection-CONSTRAINT-2021 15 5,718 1,651 811
Natural_Language_Inference Natural_Language_Inference 2 1,251 447 537
Summarization xlsum -- 70,754 8,847 8,847
Offensive Speech Offensive_Speech_Detection 3 2,172 636 318
Sentiment Sentiment_Analysis 3 10,039 1,259 1,258

Results

Below, we present the performance of L-Lens: LlamaLens , where "Eng" refers to the English-instructed model and "Native" refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: Llama-Instruct 3.1 baseline. The Δ (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).


Task Dataset Metric SOTA Base L-Lens-Eng L-Lens-Native Δ (L-Lens (Eng) - SOTA)
Factuality fake-news Mi-F1 -- 0.759 0.994 0.993 --
Hate Speech Detection hate-speech-detection Mi-F1 0.639 0.750 0.963 0.963 0.324
Hate Speech Detection Hindi-Hostility-Detection-CONSTRAINT-2021 W-F1 0.841 0.469 0.753 0.753 -0.088
Natural Language Inference Natural Language Inference W-F1 0.646 0.633 0.568 0.679 -0.078
News Summarization xlsum R-2 0.136 0.078 0.171 0.170 0.035
Offensive Language Detection Offensive Speech Detection Mi-F1 0.723 0.621 0.862 0.865 0.139
Cyberbullying Detection MC_Hinglish1 Acc 0.609 0.233 0.625 0.627 0.016
Sentiment Classification Sentiment Analysis Acc 0.697 0.552 0.647 0.654 -0.050

File Format

Each JSONL file in the dataset follows a structured format with the following fields:

  • id: Unique identifier for each data entry.
  • original_id: Identifier from the original dataset, if available.
  • input: The original text that needs to be analyzed.
  • output: The label assigned to the text after analysis.
  • dataset: Name of the dataset the entry belongs.
  • task: The specific task type.
  • lang: The language of the input text.
  • instructions: A brief set of instructions describing how the text should be labeled.

Example entry in JSONL file:

{
    "id": "5486ee85-4a70-4b33-8711-fb2a0b6d81e1",
    "original_id": null,
    "input": "आप और बाकी सभी मुसलमान समाज के लिए आशीर्वाद हैं.",
    "output": "not-hateful",
    "dataset": "hate-speech-detection",
    "task": "Factuality",
    "lang": "hi",
    "instructions": "Classify the given text as either 'not-hateful' or 'hateful'. Return only the label without any explanation, justification, or additional text."
}

Model

LlamaLens on Hugging Face

Replication Scripts

LlamaLens GitHub Repository

📢 Citation

If you use this dataset, please cite our paper:

@article{kmainasi2024llamalensspecializedmultilingualllm,
  title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
  author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
  year={2024},
  journal={arXiv preprint arXiv:2410.15308},
  volume={},
  number={},
  pages={},
  url={https://arxiv.org/abs/2410.15308},
  eprint={2410.15308},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}