metadata
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- ar
tags:
- Social Media
- News Media
- Sentiment
- Stance
- Emotion
pretty_name: >-
LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media
Content -- English
size_categories:
- 10K<n<100K
dataset_info:
- config_name: QProp
splits:
- name: train
num_examples: 35986
- name: dev
num_examples: 5125
- name: test
num_examples: 10159
- config_name: Cyberbullying
splits:
- name: train
num_examples: 32551
- name: dev
num_examples: 4751
- name: test
num_examples: 9473
- config_name: clef2024-checkthat-lab
splits:
- name: train
num_examples: 825
- name: dev
num_examples: 219
- name: test
num_examples: 484
- config_name: SemEval23T3-subtask1
splits:
- name: train
num_examples: 302
- name: dev
num_examples: 130
- name: test
num_examples: 83
- config_name: offensive_language_dataset
splits:
- name: train
num_examples: 29216
- name: dev
num_examples: 3653
- name: test
num_examples: 3653
- config_name: xlsum
splits:
- name: train
num_examples: 306493
- name: dev
num_examples: 11535
- name: test
num_examples: 11535
- config_name: claim-detection
splits:
- name: train
num_examples: 23224
- name: dev
num_examples: 5815
- name: test
num_examples: 7267
- config_name: emotion
splits:
- name: train
num_examples: 280551
- name: dev
num_examples: 41429
- name: test
num_examples: 82454
- config_name: Politifact
splits:
- name: train
num_examples: 14799
- name: dev
num_examples: 2116
- name: test
num_examples: 4230
- config_name: News_dataset
splits:
- name: train
num_examples: 28147
- name: dev
num_examples: 4376
- name: test
num_examples: 8616
- config_name: hate-offensive-speech
splits:
- name: train
num_examples: 48944
- name: dev
num_examples: 2802
- name: test
num_examples: 2799
- config_name: CNN_News_Articles_2011-2022
splits:
- name: train
num_examples: 32193
- name: dev
num_examples: 9663
- name: test
num_examples: 5682
- config_name: CT24_checkworthy
splits:
- name: train
num_examples: 22403
- name: dev
num_examples: 318
- name: test
num_examples: 1031
- config_name: News_Category_Dataset
splits:
- name: train
num_examples: 145748
- name: dev
num_examples: 20899
- name: test
num_examples: 41740
- config_name: NewsMTSC-dataset
splits:
- name: train
num_examples: 7739
- name: dev
num_examples: 320
- name: test
num_examples: 747
- config_name: Offensive_Hateful_Dataset_New
splits:
- name: train
num_examples: 42000
- name: dev
num_examples: 5254
- name: test
num_examples: 5252
- config_name: News-Headlines-Dataset-For-Sarcasm-Detection
splits:
- name: train
num_examples: 19965
- name: dev
num_examples: 2858
- name: test
num_examples: 5719
configs:
- config_name: QProp
data_files:
- split: test
path: QProp/test.json
- split: dev
path: QProp/dev.json
- split: train
path: QProp/train.json
- config_name: Cyberbullying
data_files:
- split: test
path: Cyberbullying/test.json
- split: dev
path: Cyberbullying/dev.json
- split: train
path: Cyberbullying/train.json
- config_name: clef2024-checkthat-lab
data_files:
- split: test
path: clef2024-checkthat-lab/test.json
- split: dev
path: clef2024-checkthat-lab/dev.json
- split: train
path: clef2024-checkthat-lab/train.json
- config_name: SemEval23T3-subtask1
data_files:
- split: test
path: SemEval23T3-subtask1/test.json
- split: dev
path: SemEval23T3-subtask1/dev.json
- split: train
path: SemEval23T3-subtask1/train.json
- config_name: offensive_language_dataset
data_files:
- split: test
path: offensive_language_dataset/test.json
- split: dev
path: offensive_language_dataset/dev.json
- split: train
path: offensive_language_dataset/train.json
- config_name: xlsum
data_files:
- split: test
path: xlsum/test.json
- split: dev
path: xlsum/dev.json
- split: train
path: xlsum/train.json
- config_name: claim-detection
data_files:
- split: test
path: claim-detection/test.json
- split: dev
path: claim-detection/dev.json
- split: train
path: claim-detection/train.json
- config_name: emotion
data_files:
- split: test
path: emotion/test.json
- split: dev
path: emotion/dev.json
- split: train
path: emotion/train.json
- config_name: Politifact
data_files:
- split: test
path: Politifact/test.json
- split: dev
path: Politifact/dev.json
- split: train
path: Politifact/train.json
- config_name: News_dataset
data_files:
- split: test
path: News_dataset/test.json
- split: dev
path: News_dataset/dev.json
- split: train
path: News_dataset/train.json
- config_name: hate-offensive-speech
data_files:
- split: test
path: hate-offensive-speech/test.json
- split: dev
path: hate-offensive-speech/dev.json
- split: train
path: hate-offensive-speech/train.json
- config_name: CNN_News_Articles_2011-2022
data_files:
- split: test
path: CNN_News_Articles_2011-2022/test.json
- split: dev
path: CNN_News_Articles_2011-2022/dev.json
- split: train
path: CNN_News_Articles_2011-2022/train.json
- config_name: CT24_checkworthy
data_files:
- split: test
path: CT24_checkworthy/test.json
- split: dev
path: CT24_checkworthy/dev.json
- split: train
path: CT24_checkworthy/train.json
- config_name: News_Category_Dataset
data_files:
- split: test
path: News_Category_Dataset/test.json
- split: dev
path: News_Category_Dataset/dev.json
- split: train
path: News_Category_Dataset/train.json
- config_name: NewsMTSC-dataset
data_files:
- split: test
path: NewsMTSC-dataset/test.json
- split: dev
path: NewsMTSC-dataset/dev.json
- split: train
path: NewsMTSC-dataset/train.json
- config_name: Offensive_Hateful_Dataset_New
data_files:
- split: test
path: Offensive_Hateful_Dataset_New/test.json
- split: dev
path: Offensive_Hateful_Dataset_New/dev.json
- split: train
path: Offensive_Hateful_Dataset_New/train.json
- config_name: News-Headlines-Dataset-For-Sarcasm-Detection
data_files:
- split: test
path: News-Headlines-Dataset-For-Sarcasm-Detection/test.json
- split: dev
path: News-Headlines-Dataset-For-Sarcasm-Detection/dev.json
- split: train
path: News-Headlines-Dataset-For-Sarcasm-Detection/train.json
LlamaLens: Specialized Multilingual LLM Dataset
Overview
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
LlamaLens
This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.
Features
- Multilingual support (Arabic, English, Hindi)
- 19 NLP tasks with 52 datasets
- Optimized for news and social media content analysis
📂 Dataset Overview
English Datasets
Task | Dataset | # Labels | # Train | # Test | # Dev |
---|---|---|---|---|---|
Checkworthiness | CT24_T1 | 2 | 22,403 | 1,031 | 318 |
Claim | claim-detection | 2 | 23,224 | 7,267 | 5,815 |
Cyberbullying | Cyberbullying | 6 | 32,551 | 9,473 | 4,751 |
Emotion | emotion | 6 | 280,551 | 82,454 | 41,429 |
Factuality | News_dataset | 2 | 28,147 | 8,616 | 4,376 |
Factuality | Politifact | 6 | 14,799 | 4,230 | 2,116 |
News Genre Categorization | CNN_News_Articles_2011-2022 | 6 | 32,193 | 5,682 | 9,663 |
News Genre Categorization | News_Category_Dataset | 42 | 145,748 | 41,740 | 20,899 |
News Genre Categorization | SemEval23T3-subtask1 | 3 | 302 | 83 | 130 |
Summarization | xlsum | -- | 306,493 | 11,535 | 11,535 |
Offensive Language | Offensive_Hateful_Dataset_New | 2 | 42,000 | 5,252 | 5,254 |
Offensive Language | offensive_language_dataset | 2 | 29,216 | 3,653 | 3,653 |
Offensive/Hate-Speech | hate-offensive-speech | 3 | 48,944 | 2,799 | 2,802 |
Propaganda | QProp | 2 | 35,986 | 10,159 | 5,125 |
Sarcasm | News-Headlines-Dataset-For-Sarcasm-Detection | 2 | 19,965 | 5,719 | 2,858 |
Sentiment | NewsMTSC-dataset | 3 | 7,739 | 747 | 320 |
Subjectivity | clef2024-checkthat-lab | 2 | 825 | 484 | 219 |
File Format
Each JSONL file in the dataset follows a structured format with the following fields:
id
: Unique identifier for each data entry.original_id
: Identifier from the original dataset, if available.input
: The original text that needs to be analyzed.output
: The label assigned to the text after analysis.dataset
: Name of the dataset the entry belongs.task
: The specific task type.lang
: The language of the input text.instructions
: A brief set of instructions describing how the text should be labeled.text
: A formatted structure including instructions and response for the task in a conversation format between the system, user, and assistant, showing the decision process.
Example entry in JSONL file:
{
"id": "3fe3eb6a-843e-4a03-b38c-8333c052f4c4",
"original_id": "nan",
"input": "You know, I saw a movie - \"Crocodile Dundee.\"",
"output": "not_checkworthy",
"dataset": "CT24_checkworthy",
"task": "Checkworthiness",
"lang": "en",
"instructions": "Analyze the given text and label it as 'checkworthy' if it includes a factual statement that is significant or relevant to verify, or 'not_checkworthy' if it's not worth checking. Return only the label without any explanation, justification or additional text.",
"text": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a social media expert providing accurate analysis and insights.<|eot_id|><|start_header_id|>user<|end_header_id|>Analyze the given text and label it as 'checkworthy' if it includes a factual statement that is significant or relevant to verify, or 'not_checkworthy' if it's not worth checking. Return only the label without any explanation, justification or additional text.\ninput: You know, I saw a movie - \"Crocodile Dundee.\"\nlabel: <|eot_id|><|start_header_id|>assistant<|end_header_id|>not_checkworthy<|eot_id|><|end_of_text|>"
}
📢 Citation
If you use this dataset, please cite our paper:
@article{kmainasi2024llamalensspecializedmultilingualllm,
title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
year={2024},
journal={arXiv preprint arXiv:2410.15308},
volume={},
number={},
pages={},
url={https://arxiv.org/abs/2410.15308},
eprint={2410.15308},
archivePrefix={arXiv},
primaryClass={cs.CL}
}