|
from pathlib import Path |
|
from types import MethodType |
|
from typing import Optional |
|
|
|
import os |
|
import shutil |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
from PIL import Image, ImageFilter, ImageOps |
|
from modules import processing, shared, masking, images, devices |
|
from modules.paths import data_path |
|
from modules.processing import (StableDiffusionProcessing, |
|
StableDiffusionProcessingImg2Img, |
|
StableDiffusionProcessingTxt2Img) |
|
|
|
from scripts.animatediff_logger import logger_animatediff as logger |
|
from scripts.animatediff_ui import AnimateDiffProcess |
|
from scripts.animatediff_prompt import AnimateDiffPromptSchedule |
|
from scripts.animatediff_infotext import update_infotext |
|
from scripts.animatediff_i2ibatch import animatediff_i2ibatch |
|
|
|
|
|
class AnimateDiffControl: |
|
original_processing_process_images_hijack = None |
|
original_controlnet_main_entry = None |
|
original_postprocess_batch = None |
|
|
|
def __init__(self, p: StableDiffusionProcessing, prompt_scheduler: AnimateDiffPromptSchedule): |
|
try: |
|
from scripts.external_code import find_cn_script |
|
self.cn_script = find_cn_script(p.scripts) |
|
except: |
|
self.cn_script = None |
|
self.prompt_scheduler = prompt_scheduler |
|
|
|
|
|
def hack_batchhijack(self, params: AnimateDiffProcess): |
|
cn_script = self.cn_script |
|
prompt_scheduler = self.prompt_scheduler |
|
|
|
def get_input_frames(): |
|
if params.video_source is not None and params.video_source != '': |
|
cap = cv2.VideoCapture(params.video_source) |
|
frame_count = 0 |
|
tmp_frame_dir = Path(f'{data_path}/tmp/animatediff-frames/') |
|
tmp_frame_dir.mkdir(parents=True, exist_ok=True) |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
cv2.imwrite(f"{tmp_frame_dir}/{frame_count}.png", frame) |
|
frame_count += 1 |
|
cap.release() |
|
return str(tmp_frame_dir) |
|
elif params.video_path is not None and params.video_path != '': |
|
return params.video_path |
|
return '' |
|
|
|
from scripts.batch_hijack import BatchHijack, instance |
|
def hacked_processing_process_images_hijack(self, p: StableDiffusionProcessing, *args, **kwargs): |
|
from scripts import external_code |
|
from scripts.batch_hijack import InputMode |
|
|
|
units = external_code.get_all_units_in_processing(p) |
|
units = [unit for unit in units if getattr(unit, 'enabled', False)] |
|
|
|
if len(units) > 0: |
|
global_input_frames = get_input_frames() |
|
for idx, unit in enumerate(units): |
|
|
|
if getattr(p, '_animatediff_i2i_batch', None) and not unit.image: |
|
unit.input_mode = InputMode.BATCH |
|
|
|
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH: |
|
if not unit.batch_images: |
|
assert global_input_frames, 'No input images found for ControlNet module' |
|
unit.batch_images = global_input_frames |
|
elif not unit.image: |
|
try: |
|
cn_script.choose_input_image(p, unit, idx) |
|
except: |
|
assert global_input_frames != '', 'No input images found for ControlNet module' |
|
unit.batch_images = global_input_frames |
|
unit.input_mode = InputMode.BATCH |
|
|
|
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH: |
|
if 'inpaint' in unit.module: |
|
images = shared.listfiles(f'{unit.batch_images}/image') |
|
masks = shared.listfiles(f'{unit.batch_images}/mask') |
|
assert len(images) == len(masks), 'Inpainting image mask count mismatch' |
|
unit.batch_images = [{'image': images[i], 'mask': masks[i]} for i in range(len(images))] |
|
else: |
|
unit.batch_images = shared.listfiles(unit.batch_images) |
|
|
|
unit_batch_list = [len(unit.batch_images) for unit in units |
|
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH] |
|
if getattr(p, '_animatediff_i2i_batch', None): |
|
unit_batch_list.append(len(p.init_images)) |
|
|
|
if len(unit_batch_list) > 0: |
|
video_length = min(unit_batch_list) |
|
|
|
if params.video_length > video_length: |
|
params.video_length = video_length |
|
if params.batch_size > video_length: |
|
params.batch_size = video_length |
|
if params.video_default: |
|
params.video_length = video_length |
|
p.batch_size = video_length |
|
for unit in units: |
|
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH: |
|
unit.batch_images = unit.batch_images[:params.video_length] |
|
|
|
animatediff_i2ibatch.cap_init_image(p, params) |
|
prompt_scheduler.parse_prompt(p) |
|
update_infotext(p, params) |
|
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs) |
|
|
|
if AnimateDiffControl.original_processing_process_images_hijack is not None: |
|
logger.info('BatchHijack already hacked.') |
|
return |
|
|
|
AnimateDiffControl.original_processing_process_images_hijack = BatchHijack.processing_process_images_hijack |
|
BatchHijack.processing_process_images_hijack = hacked_processing_process_images_hijack |
|
processing.process_images_inner = instance.processing_process_images_hijack |
|
|
|
|
|
def restore_batchhijack(self): |
|
if AnimateDiffControl.original_processing_process_images_hijack is not None: |
|
from scripts.batch_hijack import BatchHijack, instance |
|
BatchHijack.processing_process_images_hijack = AnimateDiffControl.original_processing_process_images_hijack |
|
AnimateDiffControl.original_processing_process_images_hijack = None |
|
processing.process_images_inner = instance.processing_process_images_hijack |
|
|
|
|
|
def hack_cn(self): |
|
cn_script = self.cn_script |
|
|
|
|
|
def hacked_main_entry(self, p: StableDiffusionProcessing): |
|
from scripts import external_code, global_state, hook |
|
from scripts.controlnet_lora import bind_control_lora |
|
from scripts.adapter import Adapter, Adapter_light, StyleAdapter |
|
from scripts.batch_hijack import InputMode |
|
from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite |
|
from scripts.controlmodel_ipadapter import (PlugableIPAdapter, |
|
clear_all_ip_adapter) |
|
from scripts.hook import ControlModelType, ControlParams, UnetHook |
|
from scripts.logging import logger |
|
from scripts.processor import model_free_preprocessors |
|
|
|
|
|
def image_has_mask(input_image: np.ndarray) -> bool: |
|
return ( |
|
input_image.ndim == 3 and |
|
input_image.shape[2] == 4 and |
|
np.max(input_image[:, :, 3]) > 127 |
|
) |
|
|
|
|
|
def prepare_mask( |
|
mask: Image.Image, p: processing.StableDiffusionProcessing |
|
) -> Image.Image: |
|
mask = mask.convert("L") |
|
if getattr(p, "inpainting_mask_invert", False): |
|
mask = ImageOps.invert(mask) |
|
|
|
if hasattr(p, 'mask_blur_x'): |
|
if getattr(p, "mask_blur_x", 0) > 0: |
|
np_mask = np.array(mask) |
|
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1 |
|
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x) |
|
mask = Image.fromarray(np_mask) |
|
if getattr(p, "mask_blur_y", 0) > 0: |
|
np_mask = np.array(mask) |
|
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1 |
|
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y) |
|
mask = Image.fromarray(np_mask) |
|
else: |
|
if getattr(p, "mask_blur", 0) > 0: |
|
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur)) |
|
|
|
return mask |
|
|
|
|
|
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]: |
|
try: |
|
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0)) |
|
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0)) |
|
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF |
|
np.random.seed(seed) |
|
return seed |
|
except Exception as e: |
|
logger.warning(e) |
|
logger.warning('Warning: Failed to use consistent random seed.') |
|
return None |
|
|
|
sd_ldm = p.sd_model |
|
unet = sd_ldm.model.diffusion_model |
|
self.noise_modifier = None |
|
|
|
setattr(p, 'controlnet_control_loras', []) |
|
|
|
if self.latest_network is not None: |
|
|
|
self.latest_network.restore() |
|
|
|
|
|
clear_all_lllite() |
|
clear_all_ip_adapter() |
|
|
|
self.enabled_units = cn_script.get_enabled_units(p) |
|
|
|
if len(self.enabled_units) == 0: |
|
self.latest_network = None |
|
return |
|
|
|
detected_maps = [] |
|
forward_params = [] |
|
post_processors = [] |
|
|
|
|
|
if self.latest_model_hash != p.sd_model.sd_model_hash: |
|
cn_script.clear_control_model_cache() |
|
|
|
for idx, unit in enumerate(self.enabled_units): |
|
unit.module = global_state.get_module_basename(unit.module) |
|
|
|
|
|
module_list = [unit.module for unit in self.enabled_units] |
|
for key in self.unloadable: |
|
if key not in module_list: |
|
self.unloadable.get(key, lambda:None)() |
|
|
|
self.latest_model_hash = p.sd_model.sd_model_hash |
|
for idx, unit in enumerate(self.enabled_units): |
|
cn_script.bound_check_params(unit) |
|
|
|
resize_mode = external_code.resize_mode_from_value(unit.resize_mode) |
|
control_mode = external_code.control_mode_from_value(unit.control_mode) |
|
|
|
if unit.module in model_free_preprocessors: |
|
model_net = None |
|
else: |
|
model_net = cn_script.load_control_model(p, unet, unit.model) |
|
model_net.reset() |
|
if model_net is not None and getattr(devices, "fp8", False) and not isinstance(model_net, PlugableIPAdapter): |
|
for _module in model_net.modules(): |
|
if isinstance(_module, (torch.nn.Conv2d, torch.nn.Linear)): |
|
_module.to(torch.float8_e4m3fn) |
|
|
|
if getattr(model_net, 'is_control_lora', False): |
|
control_lora = model_net.control_model |
|
bind_control_lora(unet, control_lora) |
|
p.controlnet_control_loras.append(control_lora) |
|
|
|
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH: |
|
input_images = [] |
|
for img in unit.batch_images: |
|
unit.image = img |
|
input_image, _ = cn_script.choose_input_image(p, unit, idx) |
|
input_images.append(input_image) |
|
else: |
|
input_image, image_from_a1111 = cn_script.choose_input_image(p, unit, idx) |
|
input_images = [input_image] |
|
|
|
if image_from_a1111: |
|
a1111_i2i_resize_mode = getattr(p, "resize_mode", None) |
|
if a1111_i2i_resize_mode is not None: |
|
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode) |
|
|
|
for idx, input_image in enumerate(input_images): |
|
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None) |
|
if a1111_mask_image and isinstance(a1111_mask_image, list): |
|
a1111_mask_image = a1111_mask_image[idx] |
|
if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None: |
|
a1111_mask = np.array(prepare_mask(a1111_mask_image, p)) |
|
if a1111_mask.ndim == 2: |
|
if a1111_mask.shape[0] == input_image.shape[0]: |
|
if a1111_mask.shape[1] == input_image.shape[1]: |
|
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2) |
|
a1111_i2i_resize_mode = getattr(p, "resize_mode", None) |
|
if a1111_i2i_resize_mode is not None: |
|
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode) |
|
|
|
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \ |
|
and p.inpaint_full_res and a1111_mask_image is not None: |
|
logger.debug("A1111 inpaint mask START") |
|
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])] |
|
input_image = [Image.fromarray(x) for x in input_image] |
|
|
|
mask = prepare_mask(a1111_mask_image, p) |
|
|
|
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding) |
|
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height) |
|
|
|
input_image = [ |
|
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height) |
|
for i in input_image |
|
] |
|
|
|
input_image = [x.crop(crop_region) for x in input_image] |
|
input_image = [ |
|
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height) |
|
for x in input_image |
|
] |
|
|
|
input_image = [np.asarray(x)[:, :, 0] for x in input_image] |
|
input_image = np.stack(input_image, axis=2) |
|
logger.debug("A1111 inpaint mask END") |
|
|
|
|
|
logger.debug("Safe numpy convertion START") |
|
input_image = np.ascontiguousarray(input_image.copy()).copy() |
|
logger.debug("Safe numpy convertion END") |
|
|
|
input_images[idx] = input_image |
|
|
|
if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None: |
|
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.') |
|
unit.module = 'inpaint' |
|
|
|
logger.info(f"Loading preprocessor: {unit.module}") |
|
preprocessor = self.preprocessor[unit.module] |
|
|
|
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False) |
|
|
|
h = (p.height // 8) * 8 |
|
w = (p.width // 8) * 8 |
|
|
|
if high_res_fix: |
|
if p.hr_resize_x == 0 and p.hr_resize_y == 0: |
|
hr_y = int(p.height * p.hr_scale) |
|
hr_x = int(p.width * p.hr_scale) |
|
else: |
|
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x |
|
hr_y = (hr_y // 8) * 8 |
|
hr_x = (hr_x // 8) * 8 |
|
else: |
|
hr_y = h |
|
hr_x = w |
|
|
|
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT: |
|
|
|
for idx, input_image in enumerate(input_images): |
|
_, input_image = cn_script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x) |
|
input_images[idx] = input_image |
|
|
|
control_model_type = ControlModelType.ControlNet |
|
global_average_pooling = False |
|
|
|
if 'reference' in unit.module: |
|
control_model_type = ControlModelType.AttentionInjection |
|
elif 'revision' in unit.module: |
|
control_model_type = ControlModelType.ReVision |
|
elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)): |
|
control_model_type = ControlModelType.T2I_Adapter |
|
elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter): |
|
control_model_type = ControlModelType.T2I_StyleAdapter |
|
elif isinstance(model_net, PlugableIPAdapter): |
|
control_model_type = ControlModelType.IPAdapter |
|
elif isinstance(model_net, PlugableControlLLLite): |
|
control_model_type = ControlModelType.Controlllite |
|
|
|
if control_model_type is ControlModelType.ControlNet: |
|
global_average_pooling = model_net.control_model.global_average_pooling |
|
|
|
preprocessor_resolution = unit.processor_res |
|
if unit.pixel_perfect: |
|
preprocessor_resolution = external_code.pixel_perfect_resolution( |
|
input_images[0], |
|
target_H=h, |
|
target_W=w, |
|
resize_mode=resize_mode |
|
) |
|
|
|
logger.info(f'preprocessor resolution = {preprocessor_resolution}') |
|
|
|
|
|
|
|
|
|
|
|
seed = set_numpy_seed(p) |
|
logger.debug(f"Use numpy seed {seed}.") |
|
|
|
controls = [] |
|
hr_controls = [] |
|
controls_ipadapter = {'hidden_states': [], 'image_embeds': []} |
|
hr_controls_ipadapter = {'hidden_states': [], 'image_embeds': []} |
|
for idx, input_image in tqdm(enumerate(input_images), total=len(input_images)): |
|
detected_map, is_image = preprocessor( |
|
input_image, |
|
res=preprocessor_resolution, |
|
thr_a=unit.threshold_a, |
|
thr_b=unit.threshold_b, |
|
) |
|
|
|
if high_res_fix: |
|
if is_image: |
|
hr_control, hr_detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x) |
|
detected_maps.append((hr_detected_map, unit.module)) |
|
else: |
|
hr_control = detected_map |
|
else: |
|
hr_control = None |
|
|
|
if is_image: |
|
control, detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, h, w) |
|
detected_maps.append((detected_map, unit.module)) |
|
else: |
|
control = detected_map |
|
detected_maps.append((input_image, unit.module)) |
|
|
|
if control_model_type == ControlModelType.T2I_StyleAdapter: |
|
control = control['last_hidden_state'] |
|
|
|
if control_model_type == ControlModelType.ReVision: |
|
control = control['image_embeds'] |
|
|
|
if control_model_type == ControlModelType.IPAdapter: |
|
if model_net.is_plus: |
|
controls_ipadapter['hidden_states'].append(control['hidden_states'][-2].cpu()) |
|
else: |
|
controls_ipadapter['image_embeds'].append(control['image_embeds'].cpu()) |
|
if hr_control is not None: |
|
if model_net.is_plus: |
|
hr_controls_ipadapter['hidden_states'].append(hr_control['hidden_states'][-2].cpu()) |
|
else: |
|
hr_controls_ipadapter['image_embeds'].append(hr_control['image_embeds'].cpu()) |
|
else: |
|
hr_controls_ipadapter = None |
|
hr_controls = None |
|
else: |
|
controls.append(control.cpu()) |
|
if hr_control is not None: |
|
hr_controls.append(hr_control.cpu()) |
|
else: |
|
hr_controls = None |
|
|
|
if control_model_type == ControlModelType.IPAdapter: |
|
ipadapter_key = 'hidden_states' if model_net.is_plus else 'image_embeds' |
|
controls = {ipadapter_key: torch.cat(controls_ipadapter[ipadapter_key], dim=0)} |
|
if controls[ipadapter_key].shape[0] > 1: |
|
controls[ipadapter_key] = torch.cat([controls[ipadapter_key], controls[ipadapter_key]], dim=0) |
|
if model_net.is_plus: |
|
controls[ipadapter_key] = [controls[ipadapter_key], None] |
|
if hr_controls_ipadapter is not None: |
|
hr_controls = {ipadapter_key: torch.cat(hr_controls_ipadapter[ipadapter_key], dim=0)} |
|
if hr_controls[ipadapter_key].shape[0] > 1: |
|
hr_controls[ipadapter_key] = torch.cat([hr_controls[ipadapter_key], hr_controls[ipadapter_key]], dim=0) |
|
if model_net.is_plus: |
|
hr_controls[ipadapter_key] = [hr_controls[ipadapter_key], None] |
|
else: |
|
controls = torch.cat(controls, dim=0) |
|
if controls.shape[0] > 1: |
|
controls = torch.cat([controls, controls], dim=0) |
|
if hr_controls is not None: |
|
hr_controls = torch.cat(hr_controls, dim=0) |
|
if hr_controls.shape[0] > 1: |
|
hr_controls = torch.cat([hr_controls, hr_controls], dim=0) |
|
|
|
preprocessor_dict = dict( |
|
name=unit.module, |
|
preprocessor_resolution=preprocessor_resolution, |
|
threshold_a=unit.threshold_a, |
|
threshold_b=unit.threshold_b |
|
) |
|
|
|
forward_param = ControlParams( |
|
control_model=model_net, |
|
preprocessor=preprocessor_dict, |
|
hint_cond=controls, |
|
weight=unit.weight, |
|
guidance_stopped=False, |
|
start_guidance_percent=unit.guidance_start, |
|
stop_guidance_percent=unit.guidance_end, |
|
advanced_weighting=None, |
|
control_model_type=control_model_type, |
|
global_average_pooling=global_average_pooling, |
|
hr_hint_cond=hr_controls, |
|
soft_injection=control_mode != external_code.ControlMode.BALANCED, |
|
cfg_injection=control_mode == external_code.ControlMode.CONTROL, |
|
) |
|
forward_params.append(forward_param) |
|
|
|
unit_is_batch = getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH |
|
if 'inpaint_only' in unit.module: |
|
final_inpaint_raws = [] |
|
final_inpaint_masks = [] |
|
for i in range(len(controls)): |
|
final_inpaint_feed = hr_controls[i] if hr_controls is not None else controls[i] |
|
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy() |
|
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy() |
|
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32) |
|
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32) |
|
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7) |
|
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8)) |
|
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None] |
|
_, Hmask, Wmask = final_inpaint_mask.shape |
|
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy()) |
|
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy()) |
|
final_inpaint_raws.append(final_inpaint_raw) |
|
final_inpaint_masks.append(final_inpaint_mask) |
|
|
|
def inpaint_only_post_processing(x, i): |
|
_, H, W = x.shape |
|
if Hmask != H or Wmask != W: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
idx = i if unit_is_batch else 0 |
|
r = final_inpaint_raw[idx].to(x.dtype).to(x.device) |
|
m = final_inpaint_mask[idx].to(x.dtype).to(x.device) |
|
y = m * x.clip(0, 1) + (1 - m) * r |
|
y = y.clip(0, 1) |
|
return y |
|
|
|
post_processors.append(inpaint_only_post_processing) |
|
|
|
if 'recolor' in unit.module: |
|
final_feeds = [] |
|
for i in range(len(controls)): |
|
final_feed = hr_control if hr_control is not None else control |
|
final_feed = final_feed.detach().cpu().numpy() |
|
final_feed = np.ascontiguousarray(final_feed).copy() |
|
final_feed = final_feed[0, 0, :, :].astype(np.float32) |
|
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8) |
|
Hfeed, Wfeed = final_feed.shape |
|
final_feeds.append(final_feed) |
|
|
|
if 'luminance' in unit.module: |
|
|
|
def recolor_luminance_post_processing(x, i): |
|
C, H, W = x.shape |
|
if Hfeed != H or Wfeed != W or C != 3: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
h = x.detach().cpu().numpy().transpose((1, 2, 0)) |
|
h = (h * 255).clip(0, 255).astype(np.uint8) |
|
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB) |
|
h[:, :, 0] = final_feed[i if unit_is_batch else 0] |
|
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB) |
|
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1)) |
|
y = torch.from_numpy(h).clip(0, 1).to(x) |
|
return y |
|
|
|
post_processors.append(recolor_luminance_post_processing) |
|
|
|
if 'intensity' in unit.module: |
|
|
|
def recolor_intensity_post_processing(x, i): |
|
C, H, W = x.shape |
|
if Hfeed != H or Wfeed != W or C != 3: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
h = x.detach().cpu().numpy().transpose((1, 2, 0)) |
|
h = (h * 255).clip(0, 255).astype(np.uint8) |
|
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV) |
|
h[:, :, 2] = final_feed[i if unit_is_batch else 0] |
|
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB) |
|
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1)) |
|
y = torch.from_numpy(h).clip(0, 1).to(x) |
|
return y |
|
|
|
post_processors.append(recolor_intensity_post_processing) |
|
|
|
if '+lama' in unit.module: |
|
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control) |
|
self.noise_modifier = forward_param.used_hint_cond_latent |
|
|
|
del model_net |
|
|
|
is_low_vram = any(unit.low_vram for unit in self.enabled_units) |
|
|
|
self.latest_network = UnetHook(lowvram=is_low_vram) |
|
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p) |
|
|
|
for param in forward_params: |
|
if param.control_model_type == ControlModelType.IPAdapter: |
|
param.control_model.hook( |
|
model=unet, |
|
clip_vision_output=param.hint_cond, |
|
weight=param.weight, |
|
dtype=torch.float32, |
|
start=param.start_guidance_percent, |
|
end=param.stop_guidance_percent |
|
) |
|
if param.control_model_type == ControlModelType.Controlllite: |
|
param.control_model.hook( |
|
model=unet, |
|
cond=param.hint_cond, |
|
weight=param.weight, |
|
start=param.start_guidance_percent, |
|
end=param.stop_guidance_percent |
|
) |
|
|
|
self.detected_map = detected_maps |
|
self.post_processors = post_processors |
|
|
|
if os.path.exists(f'{data_path}/tmp/animatediff-frames/'): |
|
shutil.rmtree(f'{data_path}/tmp/animatediff-frames/') |
|
|
|
def hacked_postprocess_batch(self, p, *args, **kwargs): |
|
images = kwargs.get('images', []) |
|
for post_processor in self.post_processors: |
|
for i in range(len(images)): |
|
images[i] = post_processor(images[i], i) |
|
return |
|
|
|
if AnimateDiffControl.original_controlnet_main_entry is not None: |
|
logger.info('ControlNet Main Entry already hacked.') |
|
return |
|
|
|
AnimateDiffControl.original_controlnet_main_entry = self.cn_script.controlnet_main_entry |
|
AnimateDiffControl.original_postprocess_batch = self.cn_script.postprocess_batch |
|
self.cn_script.controlnet_main_entry = MethodType(hacked_main_entry, self.cn_script) |
|
self.cn_script.postprocess_batch = MethodType(hacked_postprocess_batch, self.cn_script) |
|
|
|
|
|
def restore_cn(self): |
|
if AnimateDiffControl.original_controlnet_main_entry is not None: |
|
self.cn_script.controlnet_main_entry = AnimateDiffControl.original_controlnet_main_entry |
|
AnimateDiffControl.original_controlnet_main_entry = None |
|
if AnimateDiffControl.original_postprocess_batch is not None: |
|
self.cn_script.postprocess_batch = AnimateDiffControl.original_postprocess_batch |
|
AnimateDiffControl.original_postprocess_batch = None |
|
|
|
|
|
def hack(self, params: AnimateDiffProcess): |
|
if self.cn_script is not None: |
|
logger.info(f"Hacking ControlNet.") |
|
self.hack_batchhijack(params) |
|
self.hack_cn() |
|
|
|
|
|
def restore(self): |
|
if self.cn_script is not None: |
|
logger.info(f"Restoring ControlNet.") |
|
self.restore_batchhijack() |
|
self.restore_cn() |
|
|