PennyJX's picture
Upload 35 files
a9658c4 verified
raw
history blame
33.4 kB
from pathlib import Path
from types import MethodType
from typing import Optional
import os
import shutil
import cv2
import numpy as np
import torch
from tqdm import tqdm
from PIL import Image, ImageFilter, ImageOps
from modules import processing, shared, masking, images, devices
from modules.paths import data_path
from modules.processing import (StableDiffusionProcessing,
StableDiffusionProcessingImg2Img,
StableDiffusionProcessingTxt2Img)
from scripts.animatediff_logger import logger_animatediff as logger
from scripts.animatediff_ui import AnimateDiffProcess
from scripts.animatediff_prompt import AnimateDiffPromptSchedule
from scripts.animatediff_infotext import update_infotext
from scripts.animatediff_i2ibatch import animatediff_i2ibatch
class AnimateDiffControl:
original_processing_process_images_hijack = None
original_controlnet_main_entry = None
original_postprocess_batch = None
def __init__(self, p: StableDiffusionProcessing, prompt_scheduler: AnimateDiffPromptSchedule):
try:
from scripts.external_code import find_cn_script
self.cn_script = find_cn_script(p.scripts)
except:
self.cn_script = None
self.prompt_scheduler = prompt_scheduler
def hack_batchhijack(self, params: AnimateDiffProcess):
cn_script = self.cn_script
prompt_scheduler = self.prompt_scheduler
def get_input_frames():
if params.video_source is not None and params.video_source != '':
cap = cv2.VideoCapture(params.video_source)
frame_count = 0
tmp_frame_dir = Path(f'{data_path}/tmp/animatediff-frames/')
tmp_frame_dir.mkdir(parents=True, exist_ok=True)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.imwrite(f"{tmp_frame_dir}/{frame_count}.png", frame)
frame_count += 1
cap.release()
return str(tmp_frame_dir)
elif params.video_path is not None and params.video_path != '':
return params.video_path
return ''
from scripts.batch_hijack import BatchHijack, instance
def hacked_processing_process_images_hijack(self, p: StableDiffusionProcessing, *args, **kwargs):
from scripts import external_code
from scripts.batch_hijack import InputMode
units = external_code.get_all_units_in_processing(p)
units = [unit for unit in units if getattr(unit, 'enabled', False)]
if len(units) > 0:
global_input_frames = get_input_frames()
for idx, unit in enumerate(units):
# i2i-batch mode
if getattr(p, '_animatediff_i2i_batch', None) and not unit.image:
unit.input_mode = InputMode.BATCH
# if no input given for this unit, use global input
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
if not unit.batch_images:
assert global_input_frames, 'No input images found for ControlNet module'
unit.batch_images = global_input_frames
elif not unit.image:
try:
cn_script.choose_input_image(p, unit, idx)
except:
assert global_input_frames != '', 'No input images found for ControlNet module'
unit.batch_images = global_input_frames
unit.input_mode = InputMode.BATCH
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
if 'inpaint' in unit.module:
images = shared.listfiles(f'{unit.batch_images}/image')
masks = shared.listfiles(f'{unit.batch_images}/mask')
assert len(images) == len(masks), 'Inpainting image mask count mismatch'
unit.batch_images = [{'image': images[i], 'mask': masks[i]} for i in range(len(images))]
else:
unit.batch_images = shared.listfiles(unit.batch_images)
unit_batch_list = [len(unit.batch_images) for unit in units
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH]
if getattr(p, '_animatediff_i2i_batch', None):
unit_batch_list.append(len(p.init_images))
if len(unit_batch_list) > 0:
video_length = min(unit_batch_list)
# ensure that params.video_length <= video_length and params.batch_size <= video_length
if params.video_length > video_length:
params.video_length = video_length
if params.batch_size > video_length:
params.batch_size = video_length
if params.video_default:
params.video_length = video_length
p.batch_size = video_length
for unit in units:
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
unit.batch_images = unit.batch_images[:params.video_length]
animatediff_i2ibatch.cap_init_image(p, params)
prompt_scheduler.parse_prompt(p)
update_infotext(p, params)
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
if AnimateDiffControl.original_processing_process_images_hijack is not None:
logger.info('BatchHijack already hacked.')
return
AnimateDiffControl.original_processing_process_images_hijack = BatchHijack.processing_process_images_hijack
BatchHijack.processing_process_images_hijack = hacked_processing_process_images_hijack
processing.process_images_inner = instance.processing_process_images_hijack
def restore_batchhijack(self):
if AnimateDiffControl.original_processing_process_images_hijack is not None:
from scripts.batch_hijack import BatchHijack, instance
BatchHijack.processing_process_images_hijack = AnimateDiffControl.original_processing_process_images_hijack
AnimateDiffControl.original_processing_process_images_hijack = None
processing.process_images_inner = instance.processing_process_images_hijack
def hack_cn(self):
cn_script = self.cn_script
def hacked_main_entry(self, p: StableDiffusionProcessing):
from scripts import external_code, global_state, hook
from scripts.controlnet_lora import bind_control_lora
from scripts.adapter import Adapter, Adapter_light, StyleAdapter
from scripts.batch_hijack import InputMode
from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
from scripts.controlmodel_ipadapter import (PlugableIPAdapter,
clear_all_ip_adapter)
from scripts.hook import ControlModelType, ControlParams, UnetHook
from scripts.logging import logger
from scripts.processor import model_free_preprocessors
# TODO: i2i-batch mode, what should I change?
def image_has_mask(input_image: np.ndarray) -> bool:
return (
input_image.ndim == 3 and
input_image.shape[2] == 4 and
np.max(input_image[:, :, 3]) > 127
)
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if hasattr(p, 'mask_blur_x'):
if getattr(p, "mask_blur_x", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
mask = Image.fromarray(np_mask)
if getattr(p, "mask_blur_y", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
mask = Image.fromarray(np_mask)
else:
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
self.noise_modifier = None
setattr(p, 'controlnet_control_loras', [])
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore()
# always clear (~0.05s)
clear_all_lllite()
clear_all_ip_adapter()
self.enabled_units = cn_script.get_enabled_units(p)
if len(self.enabled_units) == 0:
self.latest_network = None
return
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
cn_script.clear_control_model_cache()
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
for idx, unit in enumerate(self.enabled_units):
cn_script.bound_check_params(unit)
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
control_mode = external_code.control_mode_from_value(unit.control_mode)
if unit.module in model_free_preprocessors:
model_net = None
else:
model_net = cn_script.load_control_model(p, unet, unit.model)
model_net.reset()
if model_net is not None and getattr(devices, "fp8", False) and not isinstance(model_net, PlugableIPAdapter):
for _module in model_net.modules():
if isinstance(_module, (torch.nn.Conv2d, torch.nn.Linear)):
_module.to(torch.float8_e4m3fn)
if getattr(model_net, 'is_control_lora', False):
control_lora = model_net.control_model
bind_control_lora(unet, control_lora)
p.controlnet_control_loras.append(control_lora)
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
input_images = []
for img in unit.batch_images:
unit.image = img
input_image, _ = cn_script.choose_input_image(p, unit, idx)
input_images.append(input_image)
else:
input_image, image_from_a1111 = cn_script.choose_input_image(p, unit, idx)
input_images = [input_image]
if image_from_a1111:
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
for idx, input_image in enumerate(input_images):
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if a1111_mask_image and isinstance(a1111_mask_image, list):
a1111_mask_image = a1111_mask_image[idx]
if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
if a1111_mask.ndim == 2:
if a1111_mask.shape[0] == input_image.shape[0]:
if a1111_mask.shape[1] == input_image.shape[1]:
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
and p.inpaint_full_res and a1111_mask_image is not None:
logger.debug("A1111 inpaint mask START")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
logger.debug("A1111 inpaint mask END")
# safe numpy
logger.debug("Safe numpy convertion START")
input_image = np.ascontiguousarray(input_image.copy()).copy()
logger.debug("Safe numpy convertion END")
input_images[idx] = input_image
if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
unit.module = 'inpaint'
logger.info(f"Loading preprocessor: {unit.module}")
preprocessor = self.preprocessor[unit.module]
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h = (p.height // 8) * 8
w = (p.width // 8) * 8
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = (hr_y // 8) * 8
hr_x = (hr_x // 8) * 8
else:
hr_y = h
hr_x = w
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
for idx, input_image in enumerate(input_images):
_, input_image = cn_script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
input_images[idx] = input_image
control_model_type = ControlModelType.ControlNet
global_average_pooling = False
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
elif 'revision' in unit.module:
control_model_type = ControlModelType.ReVision
elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
control_model_type = ControlModelType.T2I_Adapter
elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
control_model_type = ControlModelType.T2I_StyleAdapter
elif isinstance(model_net, PlugableIPAdapter):
control_model_type = ControlModelType.IPAdapter
elif isinstance(model_net, PlugableControlLLLite):
control_model_type = ControlModelType.Controlllite
if control_model_type is ControlModelType.ControlNet:
global_average_pooling = model_net.control_model.global_average_pooling
preprocessor_resolution = unit.processor_res
if unit.pixel_perfect:
preprocessor_resolution = external_code.pixel_perfect_resolution(
input_images[0],
target_H=h,
target_W=w,
resize_mode=resize_mode
)
logger.info(f'preprocessor resolution = {preprocessor_resolution}')
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
controls = []
hr_controls = []
controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
hr_controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
for idx, input_image in tqdm(enumerate(input_images), total=len(input_images)):
detected_map, is_image = preprocessor(
input_image,
res=preprocessor_resolution,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
)
if high_res_fix:
if is_image:
hr_control, hr_detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
detected_maps.append((hr_detected_map, unit.module))
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
detected_maps.append((detected_map, unit.module))
else:
control = detected_map
detected_maps.append((input_image, unit.module))
if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
if control_model_type == ControlModelType.ReVision:
control = control['image_embeds']
if control_model_type == ControlModelType.IPAdapter:
if model_net.is_plus:
controls_ipadapter['hidden_states'].append(control['hidden_states'][-2].cpu())
else:
controls_ipadapter['image_embeds'].append(control['image_embeds'].cpu())
if hr_control is not None:
if model_net.is_plus:
hr_controls_ipadapter['hidden_states'].append(hr_control['hidden_states'][-2].cpu())
else:
hr_controls_ipadapter['image_embeds'].append(hr_control['image_embeds'].cpu())
else:
hr_controls_ipadapter = None
hr_controls = None
else:
controls.append(control.cpu())
if hr_control is not None:
hr_controls.append(hr_control.cpu())
else:
hr_controls = None
if control_model_type == ControlModelType.IPAdapter:
ipadapter_key = 'hidden_states' if model_net.is_plus else 'image_embeds'
controls = {ipadapter_key: torch.cat(controls_ipadapter[ipadapter_key], dim=0)}
if controls[ipadapter_key].shape[0] > 1:
controls[ipadapter_key] = torch.cat([controls[ipadapter_key], controls[ipadapter_key]], dim=0)
if model_net.is_plus:
controls[ipadapter_key] = [controls[ipadapter_key], None]
if hr_controls_ipadapter is not None:
hr_controls = {ipadapter_key: torch.cat(hr_controls_ipadapter[ipadapter_key], dim=0)}
if hr_controls[ipadapter_key].shape[0] > 1:
hr_controls[ipadapter_key] = torch.cat([hr_controls[ipadapter_key], hr_controls[ipadapter_key]], dim=0)
if model_net.is_plus:
hr_controls[ipadapter_key] = [hr_controls[ipadapter_key], None]
else:
controls = torch.cat(controls, dim=0)
if controls.shape[0] > 1:
controls = torch.cat([controls, controls], dim=0)
if hr_controls is not None:
hr_controls = torch.cat(hr_controls, dim=0)
if hr_controls.shape[0] > 1:
hr_controls = torch.cat([hr_controls, hr_controls], dim=0)
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=preprocessor_resolution,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=controls,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=None,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_controls,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
unit_is_batch = getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH
if 'inpaint_only' in unit.module:
final_inpaint_raws = []
final_inpaint_masks = []
for i in range(len(controls)):
final_inpaint_feed = hr_controls[i] if hr_controls is not None else controls[i]
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
final_inpaint_raws.append(final_inpaint_raw)
final_inpaint_masks.append(final_inpaint_mask)
def inpaint_only_post_processing(x, i):
_, H, W = x.shape
if Hmask != H or Wmask != W:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
idx = i if unit_is_batch else 0
r = final_inpaint_raw[idx].to(x.dtype).to(x.device)
m = final_inpaint_mask[idx].to(x.dtype).to(x.device)
y = m * x.clip(0, 1) + (1 - m) * r
y = y.clip(0, 1)
return y
post_processors.append(inpaint_only_post_processing)
if 'recolor' in unit.module:
final_feeds = []
for i in range(len(controls)):
final_feed = hr_control if hr_control is not None else control
final_feed = final_feed.detach().cpu().numpy()
final_feed = np.ascontiguousarray(final_feed).copy()
final_feed = final_feed[0, 0, :, :].astype(np.float32)
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
Hfeed, Wfeed = final_feed.shape
final_feeds.append(final_feed)
if 'luminance' in unit.module:
def recolor_luminance_post_processing(x, i):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
h[:, :, 0] = final_feed[i if unit_is_batch else 0]
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_luminance_post_processing)
if 'intensity' in unit.module:
def recolor_intensity_post_processing(x, i):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
h[:, :, 2] = final_feed[i if unit_is_batch else 0]
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_intensity_post_processing)
if '+lama' in unit.module:
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
self.noise_modifier = forward_param.used_hint_cond_latent
del model_net
is_low_vram = any(unit.low_vram for unit in self.enabled_units)
self.latest_network = UnetHook(lowvram=is_low_vram)
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
for param in forward_params:
if param.control_model_type == ControlModelType.IPAdapter:
param.control_model.hook(
model=unet,
clip_vision_output=param.hint_cond,
weight=param.weight,
dtype=torch.float32,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.Controlllite:
param.control_model.hook(
model=unet,
cond=param.hint_cond,
weight=param.weight,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
self.detected_map = detected_maps
self.post_processors = post_processors
if os.path.exists(f'{data_path}/tmp/animatediff-frames/'):
shutil.rmtree(f'{data_path}/tmp/animatediff-frames/')
def hacked_postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(len(images)):
images[i] = post_processor(images[i], i)
return
if AnimateDiffControl.original_controlnet_main_entry is not None:
logger.info('ControlNet Main Entry already hacked.')
return
AnimateDiffControl.original_controlnet_main_entry = self.cn_script.controlnet_main_entry
AnimateDiffControl.original_postprocess_batch = self.cn_script.postprocess_batch
self.cn_script.controlnet_main_entry = MethodType(hacked_main_entry, self.cn_script)
self.cn_script.postprocess_batch = MethodType(hacked_postprocess_batch, self.cn_script)
def restore_cn(self):
if AnimateDiffControl.original_controlnet_main_entry is not None:
self.cn_script.controlnet_main_entry = AnimateDiffControl.original_controlnet_main_entry
AnimateDiffControl.original_controlnet_main_entry = None
if AnimateDiffControl.original_postprocess_batch is not None:
self.cn_script.postprocess_batch = AnimateDiffControl.original_postprocess_batch
AnimateDiffControl.original_postprocess_batch = None
def hack(self, params: AnimateDiffProcess):
if self.cn_script is not None:
logger.info(f"Hacking ControlNet.")
self.hack_batchhijack(params)
self.hack_cn()
def restore(self):
if self.cn_script is not None:
logger.info(f"Restoring ControlNet.")
self.restore_batchhijack()
self.restore_cn()