File size: 33,361 Bytes
a9658c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
from pathlib import Path
from types import MethodType
from typing import Optional
import os
import shutil
import cv2
import numpy as np
import torch
from tqdm import tqdm
from PIL import Image, ImageFilter, ImageOps
from modules import processing, shared, masking, images, devices
from modules.paths import data_path
from modules.processing import (StableDiffusionProcessing,
StableDiffusionProcessingImg2Img,
StableDiffusionProcessingTxt2Img)
from scripts.animatediff_logger import logger_animatediff as logger
from scripts.animatediff_ui import AnimateDiffProcess
from scripts.animatediff_prompt import AnimateDiffPromptSchedule
from scripts.animatediff_infotext import update_infotext
from scripts.animatediff_i2ibatch import animatediff_i2ibatch
class AnimateDiffControl:
original_processing_process_images_hijack = None
original_controlnet_main_entry = None
original_postprocess_batch = None
def __init__(self, p: StableDiffusionProcessing, prompt_scheduler: AnimateDiffPromptSchedule):
try:
from scripts.external_code import find_cn_script
self.cn_script = find_cn_script(p.scripts)
except:
self.cn_script = None
self.prompt_scheduler = prompt_scheduler
def hack_batchhijack(self, params: AnimateDiffProcess):
cn_script = self.cn_script
prompt_scheduler = self.prompt_scheduler
def get_input_frames():
if params.video_source is not None and params.video_source != '':
cap = cv2.VideoCapture(params.video_source)
frame_count = 0
tmp_frame_dir = Path(f'{data_path}/tmp/animatediff-frames/')
tmp_frame_dir.mkdir(parents=True, exist_ok=True)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.imwrite(f"{tmp_frame_dir}/{frame_count}.png", frame)
frame_count += 1
cap.release()
return str(tmp_frame_dir)
elif params.video_path is not None and params.video_path != '':
return params.video_path
return ''
from scripts.batch_hijack import BatchHijack, instance
def hacked_processing_process_images_hijack(self, p: StableDiffusionProcessing, *args, **kwargs):
from scripts import external_code
from scripts.batch_hijack import InputMode
units = external_code.get_all_units_in_processing(p)
units = [unit for unit in units if getattr(unit, 'enabled', False)]
if len(units) > 0:
global_input_frames = get_input_frames()
for idx, unit in enumerate(units):
# i2i-batch mode
if getattr(p, '_animatediff_i2i_batch', None) and not unit.image:
unit.input_mode = InputMode.BATCH
# if no input given for this unit, use global input
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
if not unit.batch_images:
assert global_input_frames, 'No input images found for ControlNet module'
unit.batch_images = global_input_frames
elif not unit.image:
try:
cn_script.choose_input_image(p, unit, idx)
except:
assert global_input_frames != '', 'No input images found for ControlNet module'
unit.batch_images = global_input_frames
unit.input_mode = InputMode.BATCH
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
if 'inpaint' in unit.module:
images = shared.listfiles(f'{unit.batch_images}/image')
masks = shared.listfiles(f'{unit.batch_images}/mask')
assert len(images) == len(masks), 'Inpainting image mask count mismatch'
unit.batch_images = [{'image': images[i], 'mask': masks[i]} for i in range(len(images))]
else:
unit.batch_images = shared.listfiles(unit.batch_images)
unit_batch_list = [len(unit.batch_images) for unit in units
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH]
if getattr(p, '_animatediff_i2i_batch', None):
unit_batch_list.append(len(p.init_images))
if len(unit_batch_list) > 0:
video_length = min(unit_batch_list)
# ensure that params.video_length <= video_length and params.batch_size <= video_length
if params.video_length > video_length:
params.video_length = video_length
if params.batch_size > video_length:
params.batch_size = video_length
if params.video_default:
params.video_length = video_length
p.batch_size = video_length
for unit in units:
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
unit.batch_images = unit.batch_images[:params.video_length]
animatediff_i2ibatch.cap_init_image(p, params)
prompt_scheduler.parse_prompt(p)
update_infotext(p, params)
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
if AnimateDiffControl.original_processing_process_images_hijack is not None:
logger.info('BatchHijack already hacked.')
return
AnimateDiffControl.original_processing_process_images_hijack = BatchHijack.processing_process_images_hijack
BatchHijack.processing_process_images_hijack = hacked_processing_process_images_hijack
processing.process_images_inner = instance.processing_process_images_hijack
def restore_batchhijack(self):
if AnimateDiffControl.original_processing_process_images_hijack is not None:
from scripts.batch_hijack import BatchHijack, instance
BatchHijack.processing_process_images_hijack = AnimateDiffControl.original_processing_process_images_hijack
AnimateDiffControl.original_processing_process_images_hijack = None
processing.process_images_inner = instance.processing_process_images_hijack
def hack_cn(self):
cn_script = self.cn_script
def hacked_main_entry(self, p: StableDiffusionProcessing):
from scripts import external_code, global_state, hook
from scripts.controlnet_lora import bind_control_lora
from scripts.adapter import Adapter, Adapter_light, StyleAdapter
from scripts.batch_hijack import InputMode
from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
from scripts.controlmodel_ipadapter import (PlugableIPAdapter,
clear_all_ip_adapter)
from scripts.hook import ControlModelType, ControlParams, UnetHook
from scripts.logging import logger
from scripts.processor import model_free_preprocessors
# TODO: i2i-batch mode, what should I change?
def image_has_mask(input_image: np.ndarray) -> bool:
return (
input_image.ndim == 3 and
input_image.shape[2] == 4 and
np.max(input_image[:, :, 3]) > 127
)
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if hasattr(p, 'mask_blur_x'):
if getattr(p, "mask_blur_x", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
mask = Image.fromarray(np_mask)
if getattr(p, "mask_blur_y", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
mask = Image.fromarray(np_mask)
else:
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
self.noise_modifier = None
setattr(p, 'controlnet_control_loras', [])
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore()
# always clear (~0.05s)
clear_all_lllite()
clear_all_ip_adapter()
self.enabled_units = cn_script.get_enabled_units(p)
if len(self.enabled_units) == 0:
self.latest_network = None
return
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
cn_script.clear_control_model_cache()
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
for idx, unit in enumerate(self.enabled_units):
cn_script.bound_check_params(unit)
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
control_mode = external_code.control_mode_from_value(unit.control_mode)
if unit.module in model_free_preprocessors:
model_net = None
else:
model_net = cn_script.load_control_model(p, unet, unit.model)
model_net.reset()
if model_net is not None and getattr(devices, "fp8", False) and not isinstance(model_net, PlugableIPAdapter):
for _module in model_net.modules():
if isinstance(_module, (torch.nn.Conv2d, torch.nn.Linear)):
_module.to(torch.float8_e4m3fn)
if getattr(model_net, 'is_control_lora', False):
control_lora = model_net.control_model
bind_control_lora(unet, control_lora)
p.controlnet_control_loras.append(control_lora)
if getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH:
input_images = []
for img in unit.batch_images:
unit.image = img
input_image, _ = cn_script.choose_input_image(p, unit, idx)
input_images.append(input_image)
else:
input_image, image_from_a1111 = cn_script.choose_input_image(p, unit, idx)
input_images = [input_image]
if image_from_a1111:
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
for idx, input_image in enumerate(input_images):
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if a1111_mask_image and isinstance(a1111_mask_image, list):
a1111_mask_image = a1111_mask_image[idx]
if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
if a1111_mask.ndim == 2:
if a1111_mask.shape[0] == input_image.shape[0]:
if a1111_mask.shape[1] == input_image.shape[1]:
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
and p.inpaint_full_res and a1111_mask_image is not None:
logger.debug("A1111 inpaint mask START")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
logger.debug("A1111 inpaint mask END")
# safe numpy
logger.debug("Safe numpy convertion START")
input_image = np.ascontiguousarray(input_image.copy()).copy()
logger.debug("Safe numpy convertion END")
input_images[idx] = input_image
if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
unit.module = 'inpaint'
logger.info(f"Loading preprocessor: {unit.module}")
preprocessor = self.preprocessor[unit.module]
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h = (p.height // 8) * 8
w = (p.width // 8) * 8
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = (hr_y // 8) * 8
hr_x = (hr_x // 8) * 8
else:
hr_y = h
hr_x = w
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
for idx, input_image in enumerate(input_images):
_, input_image = cn_script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
input_images[idx] = input_image
control_model_type = ControlModelType.ControlNet
global_average_pooling = False
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
elif 'revision' in unit.module:
control_model_type = ControlModelType.ReVision
elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
control_model_type = ControlModelType.T2I_Adapter
elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
control_model_type = ControlModelType.T2I_StyleAdapter
elif isinstance(model_net, PlugableIPAdapter):
control_model_type = ControlModelType.IPAdapter
elif isinstance(model_net, PlugableControlLLLite):
control_model_type = ControlModelType.Controlllite
if control_model_type is ControlModelType.ControlNet:
global_average_pooling = model_net.control_model.global_average_pooling
preprocessor_resolution = unit.processor_res
if unit.pixel_perfect:
preprocessor_resolution = external_code.pixel_perfect_resolution(
input_images[0],
target_H=h,
target_W=w,
resize_mode=resize_mode
)
logger.info(f'preprocessor resolution = {preprocessor_resolution}')
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
controls = []
hr_controls = []
controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
hr_controls_ipadapter = {'hidden_states': [], 'image_embeds': []}
for idx, input_image in tqdm(enumerate(input_images), total=len(input_images)):
detected_map, is_image = preprocessor(
input_image,
res=preprocessor_resolution,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
)
if high_res_fix:
if is_image:
hr_control, hr_detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
detected_maps.append((hr_detected_map, unit.module))
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = cn_script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
detected_maps.append((detected_map, unit.module))
else:
control = detected_map
detected_maps.append((input_image, unit.module))
if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
if control_model_type == ControlModelType.ReVision:
control = control['image_embeds']
if control_model_type == ControlModelType.IPAdapter:
if model_net.is_plus:
controls_ipadapter['hidden_states'].append(control['hidden_states'][-2].cpu())
else:
controls_ipadapter['image_embeds'].append(control['image_embeds'].cpu())
if hr_control is not None:
if model_net.is_plus:
hr_controls_ipadapter['hidden_states'].append(hr_control['hidden_states'][-2].cpu())
else:
hr_controls_ipadapter['image_embeds'].append(hr_control['image_embeds'].cpu())
else:
hr_controls_ipadapter = None
hr_controls = None
else:
controls.append(control.cpu())
if hr_control is not None:
hr_controls.append(hr_control.cpu())
else:
hr_controls = None
if control_model_type == ControlModelType.IPAdapter:
ipadapter_key = 'hidden_states' if model_net.is_plus else 'image_embeds'
controls = {ipadapter_key: torch.cat(controls_ipadapter[ipadapter_key], dim=0)}
if controls[ipadapter_key].shape[0] > 1:
controls[ipadapter_key] = torch.cat([controls[ipadapter_key], controls[ipadapter_key]], dim=0)
if model_net.is_plus:
controls[ipadapter_key] = [controls[ipadapter_key], None]
if hr_controls_ipadapter is not None:
hr_controls = {ipadapter_key: torch.cat(hr_controls_ipadapter[ipadapter_key], dim=0)}
if hr_controls[ipadapter_key].shape[0] > 1:
hr_controls[ipadapter_key] = torch.cat([hr_controls[ipadapter_key], hr_controls[ipadapter_key]], dim=0)
if model_net.is_plus:
hr_controls[ipadapter_key] = [hr_controls[ipadapter_key], None]
else:
controls = torch.cat(controls, dim=0)
if controls.shape[0] > 1:
controls = torch.cat([controls, controls], dim=0)
if hr_controls is not None:
hr_controls = torch.cat(hr_controls, dim=0)
if hr_controls.shape[0] > 1:
hr_controls = torch.cat([hr_controls, hr_controls], dim=0)
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=preprocessor_resolution,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=controls,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=None,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_controls,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
unit_is_batch = getattr(unit, 'input_mode', InputMode.SIMPLE) == InputMode.BATCH
if 'inpaint_only' in unit.module:
final_inpaint_raws = []
final_inpaint_masks = []
for i in range(len(controls)):
final_inpaint_feed = hr_controls[i] if hr_controls is not None else controls[i]
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
final_inpaint_raws.append(final_inpaint_raw)
final_inpaint_masks.append(final_inpaint_mask)
def inpaint_only_post_processing(x, i):
_, H, W = x.shape
if Hmask != H or Wmask != W:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
idx = i if unit_is_batch else 0
r = final_inpaint_raw[idx].to(x.dtype).to(x.device)
m = final_inpaint_mask[idx].to(x.dtype).to(x.device)
y = m * x.clip(0, 1) + (1 - m) * r
y = y.clip(0, 1)
return y
post_processors.append(inpaint_only_post_processing)
if 'recolor' in unit.module:
final_feeds = []
for i in range(len(controls)):
final_feed = hr_control if hr_control is not None else control
final_feed = final_feed.detach().cpu().numpy()
final_feed = np.ascontiguousarray(final_feed).copy()
final_feed = final_feed[0, 0, :, :].astype(np.float32)
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
Hfeed, Wfeed = final_feed.shape
final_feeds.append(final_feed)
if 'luminance' in unit.module:
def recolor_luminance_post_processing(x, i):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
h[:, :, 0] = final_feed[i if unit_is_batch else 0]
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_luminance_post_processing)
if 'intensity' in unit.module:
def recolor_intensity_post_processing(x, i):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
h[:, :, 2] = final_feed[i if unit_is_batch else 0]
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_intensity_post_processing)
if '+lama' in unit.module:
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
self.noise_modifier = forward_param.used_hint_cond_latent
del model_net
is_low_vram = any(unit.low_vram for unit in self.enabled_units)
self.latest_network = UnetHook(lowvram=is_low_vram)
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
for param in forward_params:
if param.control_model_type == ControlModelType.IPAdapter:
param.control_model.hook(
model=unet,
clip_vision_output=param.hint_cond,
weight=param.weight,
dtype=torch.float32,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.Controlllite:
param.control_model.hook(
model=unet,
cond=param.hint_cond,
weight=param.weight,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
self.detected_map = detected_maps
self.post_processors = post_processors
if os.path.exists(f'{data_path}/tmp/animatediff-frames/'):
shutil.rmtree(f'{data_path}/tmp/animatediff-frames/')
def hacked_postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(len(images)):
images[i] = post_processor(images[i], i)
return
if AnimateDiffControl.original_controlnet_main_entry is not None:
logger.info('ControlNet Main Entry already hacked.')
return
AnimateDiffControl.original_controlnet_main_entry = self.cn_script.controlnet_main_entry
AnimateDiffControl.original_postprocess_batch = self.cn_script.postprocess_batch
self.cn_script.controlnet_main_entry = MethodType(hacked_main_entry, self.cn_script)
self.cn_script.postprocess_batch = MethodType(hacked_postprocess_batch, self.cn_script)
def restore_cn(self):
if AnimateDiffControl.original_controlnet_main_entry is not None:
self.cn_script.controlnet_main_entry = AnimateDiffControl.original_controlnet_main_entry
AnimateDiffControl.original_controlnet_main_entry = None
if AnimateDiffControl.original_postprocess_batch is not None:
self.cn_script.postprocess_batch = AnimateDiffControl.original_postprocess_batch
AnimateDiffControl.original_postprocess_batch = None
def hack(self, params: AnimateDiffProcess):
if self.cn_script is not None:
logger.info(f"Hacking ControlNet.")
self.hack_batchhijack(params)
self.hack_cn()
def restore(self):
if self.cn_script is not None:
logger.info(f"Restoring ControlNet.")
self.restore_batchhijack()
self.restore_cn()
|