|
from enum import Enum |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from modules import sd_hijack, shared |
|
from ldm.modules.attention import FeedForward |
|
|
|
from einops import rearrange, repeat |
|
import math |
|
|
|
|
|
class MotionModuleType(Enum): |
|
AnimateDiffV1 = "AnimateDiff V1, Yuwei GUo, Shanghai AI Lab" |
|
AnimateDiffV2 = "AnimateDiff V2, Yuwei Guo, Shanghai AI Lab" |
|
AnimateDiffV3 = "AnimateDiff V3, Yuwei Guo, Shanghai AI Lab" |
|
AnimateDiffXL = "AnimateDiff SDXL, Yuwei Guo, Shanghai AI Lab" |
|
HotShotXL = "HotShot-XL, John Mullan, Natural Synthetics Inc" |
|
|
|
|
|
@staticmethod |
|
def get_mm_type(state_dict: dict[str, torch.Tensor]): |
|
keys = list(state_dict.keys()) |
|
if any(["mid_block" in k for k in keys]): |
|
return MotionModuleType.AnimateDiffV2 |
|
elif any(["temporal_attentions" in k for k in keys]): |
|
return MotionModuleType.HotShotXL |
|
elif any(["down_blocks.3" in k for k in keys]): |
|
if 32 in next((state_dict[key] for key in state_dict if 'pe' in key), None).shape: |
|
return MotionModuleType.AnimateDiffV3 |
|
else: |
|
return MotionModuleType.AnimateDiffV1 |
|
else: |
|
return MotionModuleType.AnimateDiffXL |
|
|
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
class MotionWrapper(nn.Module): |
|
def __init__(self, mm_name: str, mm_hash: str, mm_type: MotionModuleType): |
|
super().__init__() |
|
self.is_v2 = mm_type == MotionModuleType.AnimateDiffV2 |
|
self.is_v3 = mm_type == MotionModuleType.AnimateDiffV3 |
|
self.is_hotshot = mm_type == MotionModuleType.HotShotXL |
|
self.is_adxl = mm_type == MotionModuleType.AnimateDiffXL |
|
self.is_xl = self.is_hotshot or self.is_adxl |
|
max_len = 32 if (self.is_v2 or self.is_adxl or self.is_v3) else 24 |
|
in_channels = (320, 640, 1280) if (self.is_xl) else (320, 640, 1280, 1280) |
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
for c in in_channels: |
|
self.down_blocks.append(MotionModule(c, num_mm=2, max_len=max_len, is_hotshot=self.is_hotshot)) |
|
self.up_blocks.insert(0,MotionModule(c, num_mm=3, max_len=max_len, is_hotshot=self.is_hotshot)) |
|
if self.is_v2: |
|
self.mid_block = MotionModule(1280, num_mm=1, max_len=max_len) |
|
self.mm_name = mm_name |
|
self.mm_type = mm_type |
|
self.mm_hash = mm_hash |
|
|
|
|
|
def enable_gn_hack(self): |
|
return not (self.is_adxl or self.is_v3) |
|
|
|
|
|
class MotionModule(nn.Module): |
|
def __init__(self, in_channels, num_mm, max_len, is_hotshot=False): |
|
super().__init__() |
|
motion_modules = nn.ModuleList([get_motion_module(in_channels, max_len, is_hotshot) for _ in range(num_mm)]) |
|
if is_hotshot: |
|
self.temporal_attentions = motion_modules |
|
else: |
|
self.motion_modules = motion_modules |
|
|
|
|
|
|
|
def get_motion_module(in_channels, max_len, is_hotshot): |
|
vtm = VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding_max_len=max_len, is_hotshot=is_hotshot) |
|
return vtm.temporal_transformer if is_hotshot else vtm |
|
|
|
|
|
class VanillaTemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads = 8, |
|
num_transformer_block = 1, |
|
attention_block_types =( "Temporal_Self", "Temporal_Self" ), |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = True, |
|
temporal_position_encoding_max_len = 24, |
|
temporal_attention_dim_div = 1, |
|
zero_initialize = True, |
|
is_hotshot = False, |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, |
|
num_layers=num_transformer_block, |
|
attention_block_types=attention_block_types, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
is_hotshot=is_hotshot, |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
|
|
def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None): |
|
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask) |
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
|
|
num_layers, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
|
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
is_hotshot = False, |
|
): |
|
super().__init__() |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
attention_block_types=attention_block_types, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
is_hotshot=is_hotshot, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
video_length = hidden_states.shape[0] // (2 if shared.opts.batch_cond_uncond else 1) |
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states).type(hidden_states.dtype) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
return output |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
is_hotshot = False, |
|
): |
|
super().__init__() |
|
|
|
attention_blocks = [] |
|
norms = [] |
|
|
|
for block_name in attention_block_types: |
|
attention_blocks.append( |
|
VersatileAttention( |
|
attention_mode=block_name.split("_")[0], |
|
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, |
|
|
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
is_hotshot=is_hotshot, |
|
) |
|
) |
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
self.norms = nn.ModuleList(norms) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn=='geglu')) |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
for attention_block, norm in zip(self.attention_blocks, self.norms): |
|
norm_hidden_states = norm(hidden_states).type(hidden_states.dtype) |
|
hidden_states = attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, |
|
video_length=video_length, |
|
) + hidden_states |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states).type(hidden_states.dtype)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout = 0., |
|
max_len = 24, |
|
is_hotshot = False, |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('positional_encoding' if is_hotshot else 'pe', pe) |
|
self.is_hotshot = is_hotshot |
|
|
|
def forward(self, x): |
|
x = x + (self.positional_encoding[:, :x.size(1)] if self.is_hotshot else self.pe[:, :x.size(1)]) |
|
return self.dropout(x) |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
|
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
self._slice_size = None |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
self._slice_size = slice_size |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).type(hidden_states.dtype) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
key = self.to_k(hidden_states) |
|
value = self.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"]: |
|
hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, sd_hijack.current_optimizer.name) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
def _attention(self, query, key, value, attention_mask=None): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
attention_scores = torch.baddbmm( |
|
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), |
|
query, |
|
key.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): |
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype |
|
) |
|
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] |
|
for i in range(hidden_states.shape[0] // slice_size): |
|
start_idx = i * slice_size |
|
end_idx = (i + 1) * slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
|
|
if self.upcast_attention: |
|
query_slice = query_slice.float() |
|
key_slice = key_slice.float() |
|
|
|
attn_slice = torch.baddbmm( |
|
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), |
|
query_slice, |
|
key_slice.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_slice = attn_slice + attention_mask[start_idx:end_idx] |
|
|
|
if self.upcast_softmax: |
|
attn_slice = attn_slice.float() |
|
|
|
attn_slice = attn_slice.softmax(dim=-1) |
|
|
|
|
|
attn_slice = attn_slice.to(value.dtype) |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _memory_efficient_attention(self, q, k, v, mask, current_optimizer_name): |
|
|
|
q = q.contiguous() |
|
k = k.contiguous() |
|
v = v.contiguous() |
|
|
|
fallthrough = False |
|
|
|
if current_optimizer_name == "xformers" or fallthrough: |
|
fallthrough = False |
|
try: |
|
import xformers.ops |
|
from modules.sd_hijack_optimizations import get_xformers_flash_attention_op |
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
q, k, v, attn_bias=mask, |
|
op=get_xformers_flash_attention_op(q, k, v)) |
|
except (ImportError, RuntimeError, AttributeError): |
|
fallthrough = True |
|
|
|
if current_optimizer_name == "sdp" or fallthrough: |
|
fallthrough = False |
|
try: |
|
hidden_states = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False |
|
) |
|
except (ImportError, RuntimeError, AttributeError): |
|
fallthrough = True |
|
|
|
if current_optimizer_name == "sdp-no-mem" or fallthrough: |
|
fallthrough = False |
|
try: |
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): |
|
hidden_states = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False |
|
) |
|
except (ImportError, RuntimeError, AttributeError): |
|
fallthrough = True |
|
|
|
if current_optimizer_name == "sub-quadratic" or fallthrough: |
|
fallthrough = False |
|
try: |
|
from modules.sd_hijack_optimizations import sub_quad_attention |
|
from modules import shared |
|
hidden_states = sub_quad_attention( |
|
q, k, v, |
|
q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, |
|
kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, |
|
chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, |
|
use_checkpoint=self.training |
|
) |
|
except (ImportError, RuntimeError, AttributeError): |
|
fallthrough = True |
|
|
|
if fallthrough: |
|
fallthrough = False |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
return hidden_states |
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class VersatileAttention(CrossAttention): |
|
def __init__( |
|
self, |
|
attention_mode = None, |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
is_hotshot = False, |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
assert attention_mode == "Temporal" |
|
|
|
self.attention_mode = attention_mode |
|
self.is_cross_attention = kwargs["cross_attention_dim"] is not None |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
dropout=0., |
|
max_len=temporal_position_encoding_max_len, |
|
is_hotshot=is_hotshot, |
|
) if (temporal_position_encoding and attention_mode == "Temporal") else None |
|
|
|
def extra_repr(self): |
|
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
if self.attention_mode == "Temporal": |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states |
|
else: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).dtype(hidden_states.dtype) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
xformers_option = shared.opts.data.get("animatediff_xformers", "Optimize attention layers with xformers") |
|
optimizer_collections = ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"] |
|
if xformers_option == "Do not optimize attention layers": |
|
optimizer_collections = optimizer_collections[1:] |
|
|
|
|
|
if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in optimizer_collections: |
|
optimizer_name = sd_hijack.current_optimizer.name |
|
if xformers_option == "Optimize attention layers with sdp (torch >= 2.0.0 required)" and optimizer_name == "xformers": |
|
optimizer_name = "sdp" |
|
hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, optimizer_name) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
|
|
if self.attention_mode == "Temporal": |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|