File size: 28,102 Bytes
a9658c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
from enum import Enum
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from modules import sd_hijack, shared
from ldm.modules.attention import FeedForward

from einops import rearrange, repeat
import math


class MotionModuleType(Enum):
    AnimateDiffV1 = "AnimateDiff V1, Yuwei GUo, Shanghai AI Lab"
    AnimateDiffV2 = "AnimateDiff V2, Yuwei Guo, Shanghai AI Lab"
    AnimateDiffV3 = "AnimateDiff V3, Yuwei Guo, Shanghai AI Lab"
    AnimateDiffXL = "AnimateDiff SDXL, Yuwei Guo, Shanghai AI Lab"
    HotShotXL = "HotShot-XL, John Mullan, Natural Synthetics Inc"


    @staticmethod
    def get_mm_type(state_dict: dict[str, torch.Tensor]):
        keys = list(state_dict.keys())
        if any(["mid_block" in k for k in keys]):
            return MotionModuleType.AnimateDiffV2
        elif any(["temporal_attentions" in k for k in keys]):
            return MotionModuleType.HotShotXL
        elif any(["down_blocks.3" in k for k in keys]):
            if 32 in next((state_dict[key] for key in state_dict if 'pe' in key), None).shape:
                return MotionModuleType.AnimateDiffV3
            else:
                return MotionModuleType.AnimateDiffV1
        else:
            return MotionModuleType.AnimateDiffXL


def zero_module(module):
    # Zero out the parameters of a module and return it.
    for p in module.parameters():
        p.detach().zero_()
    return module


class MotionWrapper(nn.Module):
    def __init__(self, mm_name: str, mm_hash: str, mm_type: MotionModuleType):
        super().__init__()
        self.is_v2 = mm_type == MotionModuleType.AnimateDiffV2
        self.is_v3 = mm_type == MotionModuleType.AnimateDiffV3
        self.is_hotshot = mm_type == MotionModuleType.HotShotXL
        self.is_adxl = mm_type == MotionModuleType.AnimateDiffXL
        self.is_xl = self.is_hotshot or self.is_adxl
        max_len = 32 if (self.is_v2 or self.is_adxl or self.is_v3) else 24
        in_channels = (320, 640, 1280) if (self.is_xl) else (320, 640, 1280, 1280)
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])
        for c in in_channels:
            self.down_blocks.append(MotionModule(c, num_mm=2, max_len=max_len, is_hotshot=self.is_hotshot))
            self.up_blocks.insert(0,MotionModule(c, num_mm=3, max_len=max_len, is_hotshot=self.is_hotshot))
        if self.is_v2:
            self.mid_block = MotionModule(1280, num_mm=1, max_len=max_len)
        self.mm_name = mm_name
        self.mm_type = mm_type
        self.mm_hash = mm_hash


    def enable_gn_hack(self):
        return not (self.is_adxl or self.is_v3)


class MotionModule(nn.Module):
    def __init__(self, in_channels, num_mm, max_len, is_hotshot=False):
        super().__init__()
        motion_modules = nn.ModuleList([get_motion_module(in_channels, max_len, is_hotshot) for _ in range(num_mm)])
        if is_hotshot:
            self.temporal_attentions = motion_modules
        else:
            self.motion_modules = motion_modules



def get_motion_module(in_channels, max_len, is_hotshot):
    vtm = VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding_max_len=max_len, is_hotshot=is_hotshot)
    return vtm.temporal_transformer if is_hotshot else vtm


class VanillaTemporalModule(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads                = 8,
        num_transformer_block              = 1,
        attention_block_types              =( "Temporal_Self", "Temporal_Self" ),
        cross_frame_attention_mode         = None,
        temporal_position_encoding         = True,
        temporal_position_encoding_max_len = 24,
        temporal_attention_dim_div         = 1,
        zero_initialize                    = True,
        is_hotshot                            = False,
    ):
        super().__init__()
        
        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_position_encoding=temporal_position_encoding,
            temporal_position_encoding_max_len=temporal_position_encoding_max_len,
            is_hotshot=is_hotshot,
        )
        
        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)


    def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None): # TODO: encoder_hidden_states do seem to be always None
        return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)


class TemporalTransformer3DModel(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,

        num_layers,
        attention_block_types              = ( "Temporal_Self", "Temporal_Self", ),        
        dropout                            = 0.0,
        norm_num_groups                    = 32,
        cross_attention_dim                = 768,
        activation_fn                      = "geglu",
        attention_bias                     = False,
        upcast_attention                   = False,
        
        cross_frame_attention_mode         = None,
        temporal_position_encoding         = False,
        temporal_position_encoding_max_len = 24,
        is_hotshot                            = False,
    ):
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    is_hotshot=is_hotshot,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = nn.Linear(inner_dim, in_channels)    
    
    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
        video_length = hidden_states.shape[0] // (2 if shared.opts.batch_cond_uncond else 1)
        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states).type(hidden_states.dtype)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        hidden_states = self.proj_in(hidden_states)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
        
        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual
        return output


class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_attention_heads,
        attention_head_dim,
        attention_block_types              = ( "Temporal_Self", "Temporal_Self", ),
        dropout                            = 0.0,
        norm_num_groups                    = 32,
        cross_attention_dim                = 768,
        activation_fn                      = "geglu",
        attention_bias                     = False,
        upcast_attention                   = False,
        cross_frame_attention_mode         = None,
        temporal_position_encoding         = False,
        temporal_position_encoding_max_len = 24,
        is_hotshot                            = False,
    ):
        super().__init__()

        attention_blocks = []
        norms = []
        
        for block_name in attention_block_types:
            attention_blocks.append(
                VersatileAttention(
                    attention_mode=block_name.split("_")[0],
                    cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
                    
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    bias=attention_bias,
                    upcast_attention=upcast_attention,
        
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    is_hotshot=is_hotshot,
                )
            )
            norms.append(nn.LayerNorm(dim))
            
        self.attention_blocks = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn=='geglu'))
        self.ff_norm = nn.LayerNorm(dim)


    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
        for attention_block, norm in zip(self.attention_blocks, self.norms):
            norm_hidden_states = norm(hidden_states).type(hidden_states.dtype)
            hidden_states = attention_block(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
                video_length=video_length,
            ) + hidden_states
            
        hidden_states = self.ff(self.ff_norm(hidden_states).type(hidden_states.dtype)) + hidden_states
        
        output = hidden_states  
        return output


class PositionalEncoding(nn.Module):
    def __init__(
        self, 
        d_model, 
        dropout = 0., 
        max_len = 24,
        is_hotshot = False,
    ):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer('positional_encoding' if is_hotshot else 'pe', pe)
        self.is_hotshot = is_hotshot

    def forward(self, x):
        x = x + (self.positional_encoding[:, :x.size(1)] if self.is_hotshot else self.pe[:, :x.size(1)])
        return self.dropout(x)


class CrossAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax

        self.scale = dim_head**-0.5

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads
        self._slice_size = None

        self.added_kv_proj_dim = added_kv_proj_dim

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
        else:
            self.group_norm = None

        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        self._slice_size = slice_size

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

        encoder_hidden_states = encoder_hidden_states

        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).type(hidden_states.dtype)

        query = self.to_q(hidden_states)
        dim = query.shape[-1]
        query = self.reshape_heads_to_batch_dim(query)

        if self.added_kv_proj_dim is not None:
            key = self.to_k(hidden_states)
            value = self.to_v(hidden_states)
            encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)

            key = self.reshape_heads_to_batch_dim(key)
            value = self.reshape_heads_to_batch_dim(value)
            encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
            encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)

            key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
            key = self.to_k(encoder_hidden_states)
            value = self.to_v(encoder_hidden_states)

            key = self.reshape_heads_to_batch_dim(key)
            value = self.reshape_heads_to_batch_dim(value)

        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)

        # attention, what we cannot get enough of
        if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"]:
            hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, sd_hijack.current_optimizer.name)
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
        else:
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)

        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states

    def _attention(self, query, key, value, attention_mask=None):
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )

        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)

        # cast back to the original dtype
        attention_probs = attention_probs.to(value.dtype)

        # compute attention output
        hidden_states = torch.bmm(attention_probs, value)

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]

            if self.upcast_attention:
                query_slice = query_slice.float()
                key_slice = key_slice.float()

            attn_slice = torch.baddbmm(
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
                query_slice,
                key_slice.transpose(-1, -2),
                beta=0,
                alpha=self.scale,
            )

            if attention_mask is not None:
                attn_slice = attn_slice + attention_mask[start_idx:end_idx]

            if self.upcast_softmax:
                attn_slice = attn_slice.float()

            attn_slice = attn_slice.softmax(dim=-1)

            # cast back to the original dtype
            attn_slice = attn_slice.to(value.dtype)
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _memory_efficient_attention(self, q, k, v, mask, current_optimizer_name):
        # TODO attention_mask
        q = q.contiguous()
        k = k.contiguous()
        v = v.contiguous()

        fallthrough = False

        if current_optimizer_name == "xformers" or fallthrough:
            fallthrough = False
            try:
                import xformers.ops
                from modules.sd_hijack_optimizations import get_xformers_flash_attention_op
                hidden_states = xformers.ops.memory_efficient_attention(
                    q, k, v, attn_bias=mask,
                    op=get_xformers_flash_attention_op(q, k, v))
            except (ImportError, RuntimeError, AttributeError):
                fallthrough = True

        if current_optimizer_name == "sdp" or fallthrough:
            fallthrough = False
            try:
                hidden_states = torch.nn.functional.scaled_dot_product_attention(
                    q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
                )
            except (ImportError, RuntimeError, AttributeError):
                fallthrough = True
        
        if current_optimizer_name == "sdp-no-mem" or fallthrough:
            fallthrough = False
            try:
                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
                    hidden_states = torch.nn.functional.scaled_dot_product_attention(
                        q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
                    )
            except (ImportError, RuntimeError, AttributeError):
                fallthrough = True

        if current_optimizer_name == "sub-quadratic" or fallthrough:
            fallthrough = False
            try:
                from modules.sd_hijack_optimizations import sub_quad_attention
                from modules import shared
                hidden_states = sub_quad_attention(
                    q, k, v, 
                    q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, 
                    kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, 
                    chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, 
                    use_checkpoint=self.training
                )
            except (ImportError, RuntimeError, AttributeError):
                fallthrough = True

        if fallthrough:
            fallthrough = False
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
            return hidden_states

        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)        
        return hidden_states


class VersatileAttention(CrossAttention):
    def __init__(
            self,
            attention_mode                     = None,
            cross_frame_attention_mode         = None,
            temporal_position_encoding         = False,
            temporal_position_encoding_max_len = 24,
            is_hotshot                            = False,       
            *args, **kwargs
        ):
        super().__init__(*args, **kwargs)
        assert attention_mode == "Temporal"

        self.attention_mode = attention_mode
        self.is_cross_attention = kwargs["cross_attention_dim"] is not None
        
        self.pos_encoder = PositionalEncoding(
            kwargs["query_dim"],
            dropout=0., 
            max_len=temporal_position_encoding_max_len,
            is_hotshot=is_hotshot,
        ) if (temporal_position_encoding and attention_mode == "Temporal") else None

    def extra_repr(self):
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
        batch_size, sequence_length, _ = hidden_states.shape

        if self.attention_mode == "Temporal":
            d = hidden_states.shape[1]
            hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
            
            if self.pos_encoder is not None:
                hidden_states = self.pos_encoder(hidden_states)
            
            encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
        else:
            raise NotImplementedError

        encoder_hidden_states = encoder_hidden_states

        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2).dtype(hidden_states.dtype)

        query = self.to_q(hidden_states)
        dim = query.shape[-1]
        query = self.reshape_heads_to_batch_dim(query)

        if self.added_kv_proj_dim is not None:
            raise NotImplementedError

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = self.to_k(encoder_hidden_states)
        value = self.to_v(encoder_hidden_states)

        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)

        xformers_option = shared.opts.data.get("animatediff_xformers", "Optimize attention layers with xformers")
        optimizer_collections = ["xformers", "sdp", "sdp-no-mem", "sub-quadratic"]
        if xformers_option == "Do not optimize attention layers": # "Do not optimize attention layers"
            optimizer_collections = optimizer_collections[1:]

        # attention, what we cannot get enough of
        if sd_hijack.current_optimizer is not None and sd_hijack.current_optimizer.name in optimizer_collections:
            optimizer_name = sd_hijack.current_optimizer.name
            if xformers_option == "Optimize attention layers with sdp (torch >= 2.0.0 required)" and optimizer_name == "xformers":
                optimizer_name = "sdp" # "Optimize attention layers with sdp (torch >= 2.0.0 required)"
            hidden_states = self._memory_efficient_attention(query, key, value, attention_mask, optimizer_name)
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
        else:
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)

        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)

        if self.attention_mode == "Temporal":
            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states