File size: 6,718 Bytes
9a2d10c 834175e 9a2d10c b3006e7 9a2d10c df84e85 b3006e7 9bb7d29 b3006e7 834175e b3006e7 834175e 1c5a93c b3006e7 1c5a93c b3006e7 ac92716 b3006e7 ac92716 a3eb791 b3006e7 a3eb791 b3006e7 9a2d10c df84e85 834175e 1c5a93c ac92716 a3eb791 b3006e7 9a2d10c b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 b3006e7 eb089a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
dataset_info:
- config_name: Autonomous Driving
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 134659773
num_examples: 100
- name: test_closed
num_bytes: 67549223
num_examples: 150
download_size: 270416985
dataset_size: 202208996
- config_name: Domestic Robot
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 91702060
num_examples: 100
- name: test_closed
num_bytes: 177827577
num_examples: 200
download_size: 105390299
dataset_size: 269529637
- config_name: Open-World Game
features:
- name: domain
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: actions
sequence: string
- name: answer_index
dtype: int64
- name: reason
dtype: string
- name: key_concept
sequence: string
- name: question_prompt
dtype: string
- name: answer_with_reason
dtype: string
- name: full_meta_data_json
dtype: string
splits:
- name: test_open
num_bytes: 16139511
num_examples: 117
- name: test_closed
num_bytes: 19069366
num_examples: 141
download_size: 34988721
dataset_size: 35208877
configs:
- config_name: Autonomous Driving
data_files:
- split: test_open
path: Autonomous Driving/test_open-*
- split: test_closed
path: Autonomous Driving/test_closed-*
- config_name: Domestic Robot
data_files:
- split: test_open
path: Domestic Robot/test_open-*
- split: test_closed
path: Domestic Robot/test_closed-*
- config_name: Open-World Game
data_files:
- split: test_open
path: Open-World Game/test_open-*
- split: test_closed
path: Open-World Game/test_closed-*
license: apache-2.0
task_categories:
- multiple-choice
- visual-question-answering
language:
- en
pretty_name: PCA-Bench
---
<h1 align="center">PCA-Bench</h1>
<p align="center">
<a href="https://github.com/pkunlp-icler/PCA-EVAL">
<img alt="Static Badge" src="https://img.shields.io/badge/Github-Online-white">
<a href="https://github.com/pkunlp-icler/PCA-EVAL/blob/main/PCA_Bench_Paper.pdf">
<img alt="Static Badge" src="https://img.shields.io/badge/Paper-PCABench-red">
<a href="https://huggingface.co/datasets/PCA-Bench/PCA-Bench-V1">
<img alt="Static Badge" src="https://img.shields.io/badge/HFDataset-PCABenchV1-yellow">
</a>
<a href="https://docs.qq.com/sheet/DVUd4WUpGRHRqUnNV">
<img alt="Static Badge" src="https://img.shields.io/badge/Leaderboard-Online-blue">
</a>
</p>
*PCA-Bench is an innovative benchmark for evaluating and locating errors in Multimodal LLMs when conducting embodied decision making tasks, specifically focusing on perception, cognition, and action.*
## Release
- [2024.02.15] [PCA-Bench-V1](https://github.com/pkunlp-icler/PCA-EVAL) is released. We release the open and closed track data in [huggingface](https://huggingface.co/datasets/PCA-Bench/PCA-Bench-V1). We also set an online [leaderboard ](https://docs.qq.com/sheet/DVUd4WUpGRHRqUnNV) accepting users' submission.
- [2023.12.15] [PCA-EVAL](https://arxiv.org/abs/2310.02071) is accepted to Foundation Model for Decision Making Workshop @NeurIPS 2023. PCA-Evaluation tool is released in github.
## Leaderboard
[Leaderboard with Full Metrics](https://docs.qq.com/sheet/DVUd4WUpGRHRqUnNV)
## Submit Results
📢 For close track evaluaiton and PCA-Evaluation, please follow [this file](https://github.com/pkunlp-icler/PCA-EVAL/blob/main/pca-eval/results/chatgpt_holmes_outputs/Autonomous%20Driving.json) to organize your model output. Submit **Six JSON files** from different domains and different tracks, along with your **model name** and **organization** to us via [email](mailto:[email protected]). Ensure you use the dataset's provided prompt as the default input for fair comparison.
We will send the PCA-Eval results of your model to you and update the leaderboard.
We provide sample code to get the six json files. User only needs to add your model inference code:
```python
# Sample code for PCA-Eval
from datasets import load_dataset
from tqdm import tqdm
import json
import os
def YOUR_INFERENCE_CODE(prompt,image):
"""Simple single round multimodal conversation call.
"""
response = YOUR_MODEL.inference(prompt,image)
return response
output_path = "./Results-DIR-PATH/"
os.mkdir(output_path)
dataset_ad = load_dataset("PCA-Bench/PCA-Bench-V1","Autonomous Driving")
dataset_dr = load_dataset("PCA-Bench/PCA-Bench-V1","Domestic Robot")
dataset_og = load_dataset("PCA-Bench/PCA-Bench-V1","Open-World Game")
test_dataset_dict = {"Autonomous-Driving":dataset_ad,"Domestic-Robot":dataset_dr,"Open-World-Game":dataset_og}
test_split = ["test_closed","test_open"]
test_domain = list(test_dataset_dict.keys())
for domain in test_domain:
for split in test_split:
print("testing on %s:%s"%(domain,split))
prediction_results = []
output_filename = output_path+"%s-%s.json"%(domain,split)
prompts = test_dataset_dict[domain][split]['question_prompt']
images = test_dataset_dict[domain][split]['image']
for prompt_id in tqdm(range(len(prompts))):
user_inputs = prompts[prompt_id] # do not change the prompts for fair comparison
index = prompt_id
image = images[prompt_id]
outputs = YOUR_INFERENCE_CODE(user_inputs,image)
prediction_results.append({
'prompt': user_inputs,
'model_output': outputs,
'index': index,
})
with open(output_filename, 'w') as f:
json.dump(prediction_results, f, indent=4)
# submit the 6 json files in the output_path to our email
```
You could also simply compute the multiple-choice accuracy locally as a comparison metric in your own experiments. However, in the online leaderboard, we only consider the average action score and Genuine PCA score when ranking models.
For more information, refer to the offical [github repo](https://github.com/pkunlp-icler/PCA-EVAL) |