Dataset Viewer
Auto-converted to Parquet
text
stringlengths
52
83
8 0.5043235999388149 0.6587978891276358 0.14761845684858296 0.3088595285562397
6 0.6283931514256712 0.818969877078094 0.18772418918787062 0.21607588185192475
10 0.4775474620393896 0.2720224549954822 0.05067638814106393 0.07621988250158891
4 0.6759694627210777 0.11008981512895559 0.0804851257587245 0.0854703305210608
11 0.3175636378291506 0.5700882615475239 0.10128101055674511 0.2116343561707858
12 0.2518713249103283 0.8090344548949571 0.10079048662782691 0.2134538739768118
9 0.18955571705395455 0.33200034054621635 0.19656965105101865 0.4386214445324039
1 0.6189030190905951 0.4272429479396696 0.11578299692076446 0.2393592272599312
2 0.657547637327472 0.23221944083359444 0.04558929242539118 0.08330394945073939
2 0.30941739656517914 0.9085377024295065 0.04396617361656088 0.07950324360955856
13 0.6950714968331986 0.45607012675012043 0.10010852502848663 0.17178720731014524
0 0.5900726362057346 0.11819679051655514 0.04771808986534722 0.08621106341181993
14 0.5475647899624466 0.46962094398954757 0.10957288756911084 0.2731981439234565
5 0.6651756515797441 0.9890183035720076 0.042100579572409674 0.021963392855984778
3 0.4362847434901552 0.38809975305416095 0.17040987811193406 0.23905059836792528
7 0.5455600623877053 0.8749728851312945 0.1979696860032232 0.2014959313938309
11 0.5181893402499976 0.9557877959869178 0.051669276663518816 0.08842440802616448
8 0.5259668508287293 0.6073670227081855 0.15138121546961325 0.3261027364807007
6 0.6602209944751382 0.7620128204862214 0.19558011049723756 0.22721055795327558
10 0.4908839779005525 0.2010287725049888 0.052486187845303865 0.0803184849534961
4 0.6983425414364641 0.025261655428606623 0.08397790055248619 0.05052331085721325
11 0.3265193370165746 0.5359564403841228 0.10386740331491713 0.22344817417371413
12 0.2610497237569061 0.7969073223549128 0.10331491712707182 0.2253842281734798
9 0.1867403314917127 0.2992781969109839 0.2011049723756906 0.4632527684467777
1 0.6433701657458564 0.3483462776191043 0.11878453038674033 0.25270713268298717
2 0.680939226519337 0.1371688729823469 0.04696132596685083 0.087891205697715
2 0.3237569060773481 0.8953331448450194 0.045303867403314914 0.08387618498581371
13 0.724585635359116 0.36968491892454464 0.10331491712707182 0.18117990597308686
0 0.6074585635359117 0.03502094067208531 0.049171270718232046 0.07004188134417062
14 0.5685082872928177 0.4018262848158813 0.11160220994475138 0.2886813356622596
5 0.7024861878453039 0.945484409228612 0.04364640883977901 0.03860379688687892
3 0.44917127071823204 0.32892349316511443 0.17679558011049723 0.25177902655827616
7 0.573414364640884 0.83130724590551 0.2067127071823205 0.21162736062420487
11 0.5458563535911602 0.9231356936152714 0.05303867403314917 0.09999343291836685
8 0.5145833333333333 0.6268518518518519 0.14270833333333333 0.3
6 0.6411458333333333 0.7791666666666667 0.184375 0.20462962962962963
10 0.48151041666666666 0.24212962962962964 0.049479166666666664 0.07314814814814814
4 0.6770833333333334 0.06805555555555555 0.07916666666666666 0.08055555555555556
11 0.3265625 0.5498148148148148 0.09791666666666667 0.20555555555555555
12 0.26484375 0.7925925925925926 0.09739583333333333 0.2074074074074074
9 0.19479166666666667 0.3199074074074074 0.18958333333333333 0.42685185185185187
1 0.6252604166666667 0.38842592592592595 0.11197916666666667 0.2324074074074074
2 0.6606770833333333 0.1912037037037037 0.044270833333333336 0.08055555555555556
2 0.32395833333333335 0.888425925925926 0.042708333333333334 0.07685185185185185
13 0.7018229166666666 0.4125 0.09739583333333333 0.16574074074074074
0 0.59140625 0.08148148148148149 0.04635416666666667 0.08333333333333333
0 0.5610572916666666 0.9836851851851853 0.05834895833333338 0.032629629629629425
14 0.5546875 0.4351851851851852 0.10520833333333333 0.26666666666666666
5 0.6809895833333334 0.9662037037037037 0.04114583333333333 0.058333333333333334
3 0.4421875 0.36064814814814816 0.16666666666666666 0.22870370370370371
7 0.5593125000000001 0.84025 0.1948697916666667 0.1893981481481481
11 0.533484375 0.9345 0.04988541666666671 0.10899074074074078
8 0.5322027336658969 0.6487004081434432 0.1725869616754131 0.33980761639069035
6 0.6641273189526522 0.8289947585742087 0.2094321326158411 0.24494264893791037
10 0.49928648561764877 0.203334177570275 0.057106182948652835 0.08241298876498253
4 0.7183789896762617 0.04008003748491533 0.08870498361043967 0.05221918114591748
11 0.3318880410055907 0.5261797571204152 0.11496866112120054 0.23784730252282701
12 0.24410258378739738 0.8269968606402365 0.11155034601535302 0.23983308820100135
9 0.18102955044038607 0.29505489036103044 0.23131035811530726 0.4839490002174012
1 0.6510146273330578 0.3902143755778752 0.12352872346223752 0.25550461193493323
2 0.30438525472782524 0.9239747534400263 0.05032345985333254 0.08844217329005549
2 0.6820363627735005 0.18961540888998862 0.050377366969707245 0.09049978645877989
13 0.7400739532988445 0.40543841905624306 0.11417273335734911 0.18539013796878293
0 0.6265331616273815 0.04281222423918495 0.05364663970819989 0.060748194251252705
14 0.5785672545426966 0.43709582148662274 0.12576427319713893 0.2966808178062688
3 0.4569285142305825 0.3393633796459656 0.18364732254927857 0.2762849756255873
7 0.5723751202915027 0.8739019315740348 0.21945162890913525 0.2222713748444512
11 0.5346744401581786 0.9571109654409847 0.0650336344696114 0.08577806911803058
8 0.51953125 0.6291666666666667 0.14739583333333334 0.30277777777777776
6 0.6424479166666667 0.7888888888888889 0.1828125 0.21666666666666667
10 0.47942708333333334 0.22916666666666666 0.049479166666666664 0.07314814814814814
4 0.67265625 0.05925925925925926 0.07864583333333333 0.08333333333333333
11 0.33645833333333336 0.5226851851851851 0.09791666666666667 0.21203703703703702
12 0.26458333333333334 0.7949074074074074 0.09479166666666666 0.21388888888888888
9 0.1953125 0.3175925925925926 0.196875 0.43148148148148147
1 0.6203125 0.39444444444444443 0.10520833333333333 0.22777777777777777
2 0.32109375 0.8810185185185185 0.043229166666666666 0.0787037037037037
2 0.6434895833333333 0.21342592592592594 0.043229166666666666 0.08055555555555556
13 0.70078125 0.4064814814814815 0.0984375 0.1648148148148148
0 0.5901041666666667 0.06620370370370371 0.046875 0.08611111111111111
0 0.55625 0.9763888888888889 0.046875 0.04722222222222222
14 0.55625 0.43796296296296294 0.10625 0.26481481481481484
5 0.6817708333333333 0.9708333333333333 0.041666666666666664 0.049074074074074076
3 0.44453125 0.3523148148148148 0.15885416666666666 0.24537037037037038
7 0.5609739583333333 0.8309907407407408 0.19236979166666662 0.1960648148148148
11 0.529421875 0.9270925925925926 0.05634374999999998 0.11639814814814818
8 0.523890255026362 0.6195609927575337 0.15235424082790502 0.3124015644833653
6 0.649556792115993 0.782229236260019 0.1884285412704619 0.22437458009852207
10 0.4840577964586254 0.20934043467335456 0.05104791901340409 0.07562043139927828
4 0.6830197456701731 0.038026125744881976 0.08101933218906567 0.07605225148976395
11 0.3362801215655383 0.5121892885546352 0.10124721017471063 0.21872029658218603
12 0.2615686552744042 0.7924201445564525 0.09804487630285062 0.22058825572775084
9 0.19204945274368093 0.3031366572606892 0.2035888281774894 0.445056216414963
1 0.6281548645756011 0.37752130638070874 0.10878673055267112 0.23495741599031644
2 0.3193007097276562 0.8802231535540869 0.04464947354755681 0.08125749037481865
2 0.6525598836815057 0.19143870806646204 0.044655695825429546 0.08315863105922941
13 0.7107347406250437 0.3890242962040998 0.10162330144724603 0.17024673938618878
0 0.5982417205477849 0.04265762869916063 0.048417678167069024 0.08531525739832126
0 0.5604334461014019 0.9727832769764764 0.04826834349812458 0.043273388481925794
14 0.5622332399760743 0.42287833401069685 0.10998069482670221 0.27299129019147805
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

This model was trained on images of different types of plastic placed inside a tank connected to a 1080p webcam, located in the Ocean Technology Center at the University of Washington. The goal of this project is to enhance the detection and classification of various types of plastic debris commonly found in marine environments, providing valuable tools for environmental monitoring and research.


license: MIT

Dataset Details

The dataset consists of 4,511 images, capturing diverse types of plastic materials. Plastics were annotated using the YOLOv8 format to facilitate accurate object detection.

The types of plastic materials included are:

  • Black Plastic Cap
  • Blue Nitrile Glove
  • Blue Plastic Cap
  • Brown Multilayer Plastic
  • Green Plastic Cap
  • Orange Plastic Cap
  • Plastic Bottle
  • Purple Insulation Foam
  • Purple Multilayer Plastic Bag
  • Red-Orange BOPP Bag
  • Red Cap
  • Red Netting
  • Red Plastic Straw
  • Yellow Foam
  • Yellow Rope

Pre-processing Steps

The following pre-processing steps were applied to each image:

  1. Auto-orientation of pixel data (with EXIF-orientation stripping) to ensure uniformity across all images.
  2. Resize to 640x360 (stretch) to standardize image dimensions for model training.

No additional image augmentation techniques were applied to this dataset.

Model Configuration

  • Number of Classes (nc): 15
  • Class Names: See the list above for detailed class names.

This model aims to support ongoing research in marine pollution by identifying plastic debris types effectively, helping researchers analyze patterns and develop mitigation strategies.

Downloads last month
12