metadata
dataset_info:
features:
- name: sentence
dtype: string
- name: word_labels
sequence: string
splits:
- name: train
num_bytes: 3906887
num_examples: 9016
download_size: 1113278
dataset_size: 3906887
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
NER Dataset for Symptoms, Diseases, Drugs, Cities, Subway Stations, Gender, and Age
Dataset Overview
This dataset contains Named Entity Recognition (NER) annotations for Russian text, specifically focusing on extracting entities related to medical and geographical contexts. The dataset is annotated with seven entity types:
- SYMPTOMS: Physical or mental characteristics indicating disease or condition.
- DISEASES: Diagnosed medical conditions.
- DRUGS: Medications or substances used for treatment.
- CITIES: Names of urban areas/geographical locations.
- SUBWAY STATIONS: Names of metro stations.
- GENDER: Gender of individuals (e.g., мужчина, женщина).
- AGE: Age of individuals, typically expressed numerically.
The dataset consists of 9,020 sentences. Each word in a sentence is assigned a label that corresponds to one of the entity types or O (non-entity token). This dataset is useful for training and evaluating Named Entity Recognition models in the medical and geographical domains.
Dataset Example
Here is an example sentence from the dataset, along with the corresponding entity labels:
Sentence:
паразитолог в москве рядом с авиамоторная для ребенка с лямблиоз, изменения аппетита и обложенности языка
Word Labels:
['B-SPECIALITY', 'O', 'B-CITY', 'O', 'O', 'B-SUBWAY', 'O', 'B-AGE', 'O', 'B-DISEASE', 'O', 'B-SYMPTOM', 'I-SYMPTOM', 'O', 'B-SYMPTOM', 'I-SYMPTOM']
In this example:
- "паразитолог" (speciality) is tagged as B-SPECIALITY
- "москве" (city) is tagged as B-CITY
- "авиамоторная" (subway) is tagged as B-SUBWAY
- "ребенка" (child) is tagged as B-AGE
- "лямблиоз" (disease) is tagged as B-DISEASE
- изменения аппетита (symptom) is tagged as B-SYMPTOM and I-SYMPTOM
- обложенности языка (symptom) is tagged as B-SYMPTOM and I-SYMPTOM
Dataset Structure
The dataset contains two columns:
- sentence: A string representing the input sentence.
- word_labels: A list of labels assigned to each word in the sentence, using BIO (Beginning, Inside, Outside) tagging format.
Entity Types
Entity Type Description
- SYMPTOMS Symptoms or signs of conditions (e.g., "тяжесть в желудке", "снижения трудоспособности").
- DISEASES Diagnosed medical conditions (e.g., "легкое когнитивное расстройство").
- DRUGS Names of medications or treatments (e.g. "цефепим").
- CITIES Urban areas or geographical locations ("Москва", "Тула").
- SUBWAY STATIONS Names of subway/metro stations ("Шоссе Энтузиастов", "Проспект Мира").
- GENDER Gender references (e.g., "мужчина", "женщина").
- AGE a word potentially indicative of age (e.g. "пожилой", "ребенок").
Labeling Format
The dataset uses the BIO labeling format:
- B- indicates the beginning of an entity.
- I- indicates the inside of an entity.
- O indicates a token that is outside of any entity.
For example:
- B-SYMPTOM marks the first token of a symptom entity.
- I-SYMPTOM marks subsequent tokens of the same symptom entity.
- O marks a token that does not belong to any entity.