File size: 8,043 Bytes
cfec946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Filename: Validate_sudokuCSV_V2.1.py
#
# Description:
# This script validates the 'solutions' column of a sudoku.csv file generated by
# Generate_sudokuCSV_V2.1.py or a similar script. It mathematically checks if each
# solved grid adheres to the rules of Sudoku.
#
# Key Logic:
# 1. **Loads Data:** Reads the 'sudoku.csv' file into a pandas DataFrame.
# 2. **Validates Each Solution:** For every row, it checks the 'solutions' grid to ensure:
# - Each row (1-9) contains exactly one of each digit from 1 to 9.
# - Each column (1-9) contains exactly one of each digit from 1 to 9.
# - Each 3x3 box (1-9) contains exactly one of each digit from 1 to 9.
# 3. **Reports Findings:** Prints a clear summary of how many grids are valid and invalid.
# 4. **Handles Invalid Grids (Colab-Friendly):**
# - If invalid grids are found, it saves their row indices to a file named
# `invalid_sudoku_indices.txt`.
# - It then instructs the user on how to clean the master CSV by changing a
# single configuration flag (`PERFORM_CLEANUP`) and re-running the script.
# 5. **Performs Cleanup (If Enabled):** If the `PERFORM_CLEANUP` flag is set to True
# and the index file exists, it will:
# - Move the invalid rows from 'sudoku.csv' to a new 'invalid_sudokus.csv' file.
# - Overwrite 'sudoku.csv' with a new, clean version.
import pandas as pd
import numpy as np
import os
import sys
# ==============================================================================
# === CONFIGURATION ===
# ==============================================================================
# --- Primary Action ---
# Set this to True AFTER running the script once and seeing an 'invalid' report.
# This will trigger the cleanup process on the next run.
PERFORM_CLEANUP = False
# --- File Paths ---
INPUT_CSV_PATH = 'sudoku.csv'
INVALID_INDICES_FILE = 'invalid_sudoku_indices.txt'
INVALID_CSV_EXPORT_PATH = 'invalid_sudokus.csv'
# ==============================================================================
# === VALIDATION LOGIC ===
# ==============================================================================
def validate_solution_grid(grid_1d: np.ndarray) -> bool:
"""
Mathematically validates a 1D numpy array representing a 9x9 Sudoku solution.
Args:
grid_1d: A numpy array of 81 integers.
Returns:
True if the grid is a valid Sudoku solution, False otherwise.
"""
if grid_1d.shape[0] != 81 or np.any(grid_1d == 0):
# Must be a fully filled 81-cell grid
return False
grid = grid_1d.reshape(9, 9)
# The set of digits {1, 2, 3, 4, 5, 6, 7, 8, 9}
required_set = set(range(1, 10))
# 1. Check all rows
for i in range(9):
if set(grid[i, :]) != required_set:
return False
# 2. Check all columns
for j in range(9):
if set(grid[:, j]) != required_set:
return False
# 3. Check all 3x3 boxes
for box_row_start in range(0, 9, 3):
for box_col_start in range(0, 9, 3):
box = grid[box_row_start:box_row_start+3, box_col_start:box_col_start+3]
if set(box.flatten()) != required_set:
return False
# If all checks pass, the grid is valid
return True
# ==============================================================================
# === MAIN EXECUTION SCRIPT ===
# ==============================================================================
def run_validation():
"""Main function to run the validation and reporting process."""
print("--- Sudoku CSV Validator V2.1 ---")
if not os.path.exists(INPUT_CSV_PATH):
print(f"FATAL ERROR: The file '{INPUT_CSV_PATH}' was not found.")
print("Please make sure you have generated it using 'Generate_sudokuCSV_V2.1.py'.")
sys.exit(1)
print(f"Loading data from '{INPUT_CSV_PATH}'...")
try:
df = pd.read_csv(INPUT_CSV_PATH)
# Ensure columns are treated as strings to preserve leading zeros, then convert to numbers
df['solutions_str'] = df['solutions'].astype(str).str.zfill(81)
except Exception as e:
print(f"Error reading CSV file: {e}")
sys.exit(1)
print("Validating all solution grids...")
valid_indices = []
invalid_indices = []
for index, row in df.iterrows():
try:
# Convert the string of digits into a numpy array of integers
solution_grid_1d = np.array(list(map(int, row['solutions_str'])))
if validate_solution_grid(solution_grid_1d):
valid_indices.append(index)
else:
invalid_indices.append(index)
except (ValueError, TypeError):
# Handle cases where a row might be malformed
invalid_indices.append(index)
# --- Report Findings ---
num_valid = len(valid_indices)
num_invalid = len(invalid_indices)
total_grids = len(df)
print("\n--- VALIDATION REPORT ---")
print(f"Total grids scanned: {total_grids}")
print(f" => Valid solutions: {num_valid}")
print(f" => Invalid solutions: {num_invalid}")
print("-------------------------\n")
if num_invalid > 0:
print(f"Found {num_invalid} invalid grids. Saving their indices to '{INVALID_INDICES_FILE}'.")
# Save indices to the text file, one index per line
with open(INVALID_INDICES_FILE, 'w') as f:
for index in invalid_indices:
f.write(f"{index}\n")
print("\n*** ACTION REQUIRED ***")
print(f"To clean your '{INPUT_CSV_PATH}', please follow these steps:")
print("1. Open this script ('Validate_sudokuCSV_V2.1.py') in the editor.")
print("2. Change the configuration flag at the top from 'PERFORM_CLEANUP = False' to 'PERFORM_CLEANUP = True'.")
print("3. Re-run this script.")
print("This will move the invalid entries to 'invalid_sudokus.csv' and create a clean 'sudoku.csv'.")
else:
print("Congratulations! All solution grids in the CSV are valid.")
# If no invalid grids were found, remove the old index file if it exists
if os.path.exists(INVALID_INDICES_FILE):
os.remove(INVALID_INDICES_FILE)
def run_cleanup():
"""Main function to perform the cleanup process."""
print("--- Sudoku CSV Cleanup Utility ---")
print(f"PERFORM_CLEANUP is set to True. Attempting to clean '{INPUT_CSV_PATH}'.")
if not os.path.exists(INVALID_INDICES_FILE):
print(f"ERROR: The file '{INVALID_INDICES_FILE}' was not found.")
print("Please run the script with 'PERFORM_CLEANUP = False' first to generate the list of invalid indices.")
sys.exit(1)
print(f"Loading master data from '{INPUT_CSV_PATH}'...")
df = pd.read_csv(INPUT_CSV_PATH)
print(f"Loading invalid indices from '{INVALID_INDICES_FILE}'...")
with open(INVALID_INDICES_FILE, 'r') as f:
invalid_indices = [int(line.strip()) for line in f]
print(f"Found {len(invalid_indices)} indices to remove.")
# Separate the DataFrame into invalid and valid parts
df_invalid = df.loc[invalid_indices]
df_valid = df.drop(invalid_indices)
# --- Perform the file operations ---
# 1. Export invalid puzzles and their solutions
print(f"Saving {len(df_invalid)} invalid entries to '{INVALID_CSV_EXPORT_PATH}'...")
df_invalid.to_csv(INVALID_CSV_EXPORT_PATH, index=False)
# 2. Overwrite the original file with only the valid data
print(f"Overwriting '{INPUT_CSV_PATH}' with {len(df_valid)} valid entries...")
df_valid.to_csv(INPUT_CSV_PATH, index=False)
# 3. Clean up the index file
os.remove(INVALID_INDICES_FILE)
print("\n--- Cleanup Complete! ---")
print(f"Your '{INPUT_CSV_PATH}' is now clean.")
print(f"The invalid entries have been moved to '{INVALID_CSV_EXPORT_PATH}'.")
print("Set 'PERFORM_CLEANUP = False' before running validation again.")
if __name__ == '__main__':
if PERFORM_CLEANUP:
run_cleanup()
else:
run_validation() |