Create Validate_sudokuCSV_V2.1.py
Browse files- Validate_sudokuCSV_V2.1.py +201 -0
Validate_sudokuCSV_V2.1.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Filename: Validate_sudokuCSV_V2.1.py
|
| 2 |
+
#
|
| 3 |
+
# Description:
|
| 4 |
+
# This script validates the 'solutions' column of a sudoku.csv file generated by
|
| 5 |
+
# Generate_sudokuCSV_V2.1.py or a similar script. It mathematically checks if each
|
| 6 |
+
# solved grid adheres to the rules of Sudoku.
|
| 7 |
+
#
|
| 8 |
+
# Key Logic:
|
| 9 |
+
# 1. **Loads Data:** Reads the 'sudoku.csv' file into a pandas DataFrame.
|
| 10 |
+
# 2. **Validates Each Solution:** For every row, it checks the 'solutions' grid to ensure:
|
| 11 |
+
# - Each row (1-9) contains exactly one of each digit from 1 to 9.
|
| 12 |
+
# - Each column (1-9) contains exactly one of each digit from 1 to 9.
|
| 13 |
+
# - Each 3x3 box (1-9) contains exactly one of each digit from 1 to 9.
|
| 14 |
+
# 3. **Reports Findings:** Prints a clear summary of how many grids are valid and invalid.
|
| 15 |
+
# 4. **Handles Invalid Grids (Colab-Friendly):**
|
| 16 |
+
# - If invalid grids are found, it saves their row indices to a file named
|
| 17 |
+
# `invalid_sudoku_indices.txt`.
|
| 18 |
+
# - It then instructs the user on how to clean the master CSV by changing a
|
| 19 |
+
# single configuration flag (`PERFORM_CLEANUP`) and re-running the script.
|
| 20 |
+
# 5. **Performs Cleanup (If Enabled):** If the `PERFORM_CLEANUP` flag is set to True
|
| 21 |
+
# and the index file exists, it will:
|
| 22 |
+
# - Move the invalid rows from 'sudoku.csv' to a new 'invalid_sudokus.csv' file.
|
| 23 |
+
# - Overwrite 'sudoku.csv' with a new, clean version.
|
| 24 |
+
|
| 25 |
+
import pandas as pd
|
| 26 |
+
import numpy as np
|
| 27 |
+
import os
|
| 28 |
+
import sys
|
| 29 |
+
|
| 30 |
+
# ==============================================================================
|
| 31 |
+
# === CONFIGURATION ===
|
| 32 |
+
# ==============================================================================
|
| 33 |
+
|
| 34 |
+
# --- Primary Action ---
|
| 35 |
+
# Set this to True AFTER running the script once and seeing an 'invalid' report.
|
| 36 |
+
# This will trigger the cleanup process on the next run.
|
| 37 |
+
PERFORM_CLEANUP = False
|
| 38 |
+
|
| 39 |
+
# --- File Paths ---
|
| 40 |
+
INPUT_CSV_PATH = 'sudoku.csv'
|
| 41 |
+
INVALID_INDICES_FILE = 'invalid_sudoku_indices.txt'
|
| 42 |
+
INVALID_CSV_EXPORT_PATH = 'invalid_sudokus.csv'
|
| 43 |
+
|
| 44 |
+
# ==============================================================================
|
| 45 |
+
# === VALIDATION LOGIC ===
|
| 46 |
+
# ==============================================================================
|
| 47 |
+
|
| 48 |
+
def validate_solution_grid(grid_1d: np.ndarray) -> bool:
|
| 49 |
+
"""
|
| 50 |
+
Mathematically validates a 1D numpy array representing a 9x9 Sudoku solution.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
grid_1d: A numpy array of 81 integers.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
True if the grid is a valid Sudoku solution, False otherwise.
|
| 57 |
+
"""
|
| 58 |
+
if grid_1d.shape[0] != 81 or np.any(grid_1d == 0):
|
| 59 |
+
# Must be a fully filled 81-cell grid
|
| 60 |
+
return False
|
| 61 |
+
|
| 62 |
+
grid = grid_1d.reshape(9, 9)
|
| 63 |
+
|
| 64 |
+
# The set of digits {1, 2, 3, 4, 5, 6, 7, 8, 9}
|
| 65 |
+
required_set = set(range(1, 10))
|
| 66 |
+
|
| 67 |
+
# 1. Check all rows
|
| 68 |
+
for i in range(9):
|
| 69 |
+
if set(grid[i, :]) != required_set:
|
| 70 |
+
return False
|
| 71 |
+
|
| 72 |
+
# 2. Check all columns
|
| 73 |
+
for j in range(9):
|
| 74 |
+
if set(grid[:, j]) != required_set:
|
| 75 |
+
return False
|
| 76 |
+
|
| 77 |
+
# 3. Check all 3x3 boxes
|
| 78 |
+
for box_row_start in range(0, 9, 3):
|
| 79 |
+
for box_col_start in range(0, 9, 3):
|
| 80 |
+
box = grid[box_row_start:box_row_start+3, box_col_start:box_col_start+3]
|
| 81 |
+
if set(box.flatten()) != required_set:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
# If all checks pass, the grid is valid
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
# ==============================================================================
|
| 88 |
+
# === MAIN EXECUTION SCRIPT ===
|
| 89 |
+
# ==============================================================================
|
| 90 |
+
|
| 91 |
+
def run_validation():
|
| 92 |
+
"""Main function to run the validation and reporting process."""
|
| 93 |
+
print("--- Sudoku CSV Validator V2.1 ---")
|
| 94 |
+
|
| 95 |
+
if not os.path.exists(INPUT_CSV_PATH):
|
| 96 |
+
print(f"FATAL ERROR: The file '{INPUT_CSV_PATH}' was not found.")
|
| 97 |
+
print("Please make sure you have generated it using 'Generate_sudokuCSV_V2.1.py'.")
|
| 98 |
+
sys.exit(1)
|
| 99 |
+
|
| 100 |
+
print(f"Loading data from '{INPUT_CSV_PATH}'...")
|
| 101 |
+
try:
|
| 102 |
+
df = pd.read_csv(INPUT_CSV_PATH)
|
| 103 |
+
# Ensure columns are treated as strings to preserve leading zeros, then convert to numbers
|
| 104 |
+
df['solutions_str'] = df['solutions'].astype(str).str.zfill(81)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error reading CSV file: {e}")
|
| 107 |
+
sys.exit(1)
|
| 108 |
+
|
| 109 |
+
print("Validating all solution grids...")
|
| 110 |
+
valid_indices = []
|
| 111 |
+
invalid_indices = []
|
| 112 |
+
|
| 113 |
+
for index, row in df.iterrows():
|
| 114 |
+
try:
|
| 115 |
+
# Convert the string of digits into a numpy array of integers
|
| 116 |
+
solution_grid_1d = np.array(list(map(int, row['solutions_str'])))
|
| 117 |
+
if validate_solution_grid(solution_grid_1d):
|
| 118 |
+
valid_indices.append(index)
|
| 119 |
+
else:
|
| 120 |
+
invalid_indices.append(index)
|
| 121 |
+
except (ValueError, TypeError):
|
| 122 |
+
# Handle cases where a row might be malformed
|
| 123 |
+
invalid_indices.append(index)
|
| 124 |
+
|
| 125 |
+
# --- Report Findings ---
|
| 126 |
+
num_valid = len(valid_indices)
|
| 127 |
+
num_invalid = len(invalid_indices)
|
| 128 |
+
total_grids = len(df)
|
| 129 |
+
|
| 130 |
+
print("\n--- VALIDATION REPORT ---")
|
| 131 |
+
print(f"Total grids scanned: {total_grids}")
|
| 132 |
+
print(f" => Valid solutions: {num_valid}")
|
| 133 |
+
print(f" => Invalid solutions: {num_invalid}")
|
| 134 |
+
print("-------------------------\n")
|
| 135 |
+
|
| 136 |
+
if num_invalid > 0:
|
| 137 |
+
print(f"Found {num_invalid} invalid grids. Saving their indices to '{INVALID_INDICES_FILE}'.")
|
| 138 |
+
# Save indices to the text file, one index per line
|
| 139 |
+
with open(INVALID_INDICES_FILE, 'w') as f:
|
| 140 |
+
for index in invalid_indices:
|
| 141 |
+
f.write(f"{index}\n")
|
| 142 |
+
|
| 143 |
+
print("\n*** ACTION REQUIRED ***")
|
| 144 |
+
print(f"To clean your '{INPUT_CSV_PATH}', please follow these steps:")
|
| 145 |
+
print("1. Open this script ('Validate_sudokuCSV_V2.1.py') in the editor.")
|
| 146 |
+
print("2. Change the configuration flag at the top from 'PERFORM_CLEANUP = False' to 'PERFORM_CLEANUP = True'.")
|
| 147 |
+
print("3. Re-run this script.")
|
| 148 |
+
print("This will move the invalid entries to 'invalid_sudokus.csv' and create a clean 'sudoku.csv'.")
|
| 149 |
+
else:
|
| 150 |
+
print("Congratulations! All solution grids in the CSV are valid.")
|
| 151 |
+
# If no invalid grids were found, remove the old index file if it exists
|
| 152 |
+
if os.path.exists(INVALID_INDICES_FILE):
|
| 153 |
+
os.remove(INVALID_INDICES_FILE)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def run_cleanup():
|
| 157 |
+
"""Main function to perform the cleanup process."""
|
| 158 |
+
print("--- Sudoku CSV Cleanup Utility ---")
|
| 159 |
+
print(f"PERFORM_CLEANUP is set to True. Attempting to clean '{INPUT_CSV_PATH}'.")
|
| 160 |
+
|
| 161 |
+
if not os.path.exists(INVALID_INDICES_FILE):
|
| 162 |
+
print(f"ERROR: The file '{INVALID_INDICES_FILE}' was not found.")
|
| 163 |
+
print("Please run the script with 'PERFORM_CLEANUP = False' first to generate the list of invalid indices.")
|
| 164 |
+
sys.exit(1)
|
| 165 |
+
|
| 166 |
+
print(f"Loading master data from '{INPUT_CSV_PATH}'...")
|
| 167 |
+
df = pd.read_csv(INPUT_CSV_PATH)
|
| 168 |
+
|
| 169 |
+
print(f"Loading invalid indices from '{INVALID_INDICES_FILE}'...")
|
| 170 |
+
with open(INVALID_INDICES_FILE, 'r') as f:
|
| 171 |
+
invalid_indices = [int(line.strip()) for line in f]
|
| 172 |
+
|
| 173 |
+
print(f"Found {len(invalid_indices)} indices to remove.")
|
| 174 |
+
|
| 175 |
+
# Separate the DataFrame into invalid and valid parts
|
| 176 |
+
df_invalid = df.loc[invalid_indices]
|
| 177 |
+
df_valid = df.drop(invalid_indices)
|
| 178 |
+
|
| 179 |
+
# --- Perform the file operations ---
|
| 180 |
+
# 1. Export invalid puzzles and their solutions
|
| 181 |
+
print(f"Saving {len(df_invalid)} invalid entries to '{INVALID_CSV_EXPORT_PATH}'...")
|
| 182 |
+
df_invalid.to_csv(INVALID_CSV_EXPORT_PATH, index=False)
|
| 183 |
+
|
| 184 |
+
# 2. Overwrite the original file with only the valid data
|
| 185 |
+
print(f"Overwriting '{INPUT_CSV_PATH}' with {len(df_valid)} valid entries...")
|
| 186 |
+
df_valid.to_csv(INPUT_CSV_PATH, index=False)
|
| 187 |
+
|
| 188 |
+
# 3. Clean up the index file
|
| 189 |
+
os.remove(INVALID_INDICES_FILE)
|
| 190 |
+
|
| 191 |
+
print("\n--- Cleanup Complete! ---")
|
| 192 |
+
print(f"Your '{INPUT_CSV_PATH}' is now clean.")
|
| 193 |
+
print(f"The invalid entries have been moved to '{INVALID_CSV_EXPORT_PATH}'.")
|
| 194 |
+
print("Set 'PERFORM_CLEANUP = False' before running validation again.")
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
if __name__ == '__main__':
|
| 198 |
+
if PERFORM_CLEANUP:
|
| 199 |
+
run_cleanup()
|
| 200 |
+
else:
|
| 201 |
+
run_validation()
|