Dataset Viewer
Auto-converted to Parquet
path
stringlengths
20
23
classname
stringclasses
15 values
audios/a107_30_40.wav
cafe/restaurant
audios/b020_200_210.wav
beach
audios/b020_20_30.wav
beach
audios/b097_120_130.wav
car
audios/a090_130_140.wav
train
audios/a154_270_280.wav
tram
audios/a020_40_50.wav
park
audios/a025_80_90.wav
beach
audios/b037_160_170.wav
library
audios/b113_220_230.wav
office
audios/a126_220_230.wav
cafe/restaurant
audios/b053_50_60.wav
office
audios/a059_20_30.wav
forest_path
audios/b047_110_120.wav
library
audios/b048_60_70.wav
library
audios/a124_290_300.wav
city_center
audios/b091_122_132.wav
city_center
audios/b102_10_20.wav
grocery_store
audios/b112_173_183.wav
bus
audios/a014_30_40.wav
beach
audios/a113_30_40.wav
grocery_store
audios/a128_41_51.wav
city_center
audios/b030_240_250.wav
home
audios/a038_40_50.wav
home
audios/a140_210_220.wav
bus
audios/a130_10_20.wav
cafe/restaurant
audios/b113_50_60.wav
office
audios/b094_90_100.wav
city_center
audios/b066_20_30.wav
train
audios/a083_0_10.wav
cafe/restaurant
audios/a152_220_230.wav
tram
audios/b089_210_220.wav
car
audios/a096_0_10.wav
forest_path
audios/a066_100_110.wav
forest_path
audios/b008_110_120.wav
residential_area
audios/a112_60_70.wav
bus
audios/a104_90_100.wav
bus
audios/b081_120_130.wav
tram
audios/a026_120_130.wav
beach
audios/a005_0_10.wav
city_center
audios/a011_10_20.wav
residential_area
audios/a025_20_30.wav
beach
audios/a001_50_60.wav
residential_area
audios/b020_160_170.wav
beach
audios/b035_0_10.wav
library
audios/a151_230_240.wav
tram
audios/a112_100_110.wav
bus
audios/a155_260_270.wav
metro_station
audios/a124_250_260.wav
city_center
audios/b015_40_50.wav
park
audios/b064_70_80.wav
train
audios/b007_140_150.wav
residential_area
audios/b096_240_250.wav
car
audios/a089_120_130.wav
metro_station
audios/a057_30_40.wav
forest_path
audios/a105_90_100.wav
grocery_store
audios/b060_100_110.wav
train
audios/a071_170_180.wav
bus
audios/b054_60_70.wav
office
audios/a034_70_80.wav
home
audios/a142_98_108.wav
bus
audios/b069_250_260.wav
metro_station
audios/b008_0_10.wav
residential_area
audios/b002_170_180.wav
residential_area
audios/a082_160_170.wav
cafe/restaurant
audios/b010_130_140.wav
beach
audios/a015_50_60.wav
beach
audios/a059_120_130.wav
forest_path
audios/a001_160_170.wav
residential_area
audios/b078_120_130.wav
tram
audios/b029_220_230.wav
home
audios/a023_90_100.wav
beach
audios/b035_90_100.wav
library
audios/b095_70_80.wav
city_center
audios/b025_90_100.wav
library
audios/a110_100_110.wav
grocery_store
audios/b091_182_192.wav
city_center
audios/b084_200_210.wav
grocery_store
audios/a029_70_80.wav
home
audios/b008_70_80.wav
residential_area
audios/b096_280_290.wav
car
audios/b092_20_30.wav
city_center
audios/a155_200_210.wav
metro_station
audios/a138_40_50.wav
car
audios/a094_60_70.wav
car
audios/b032_20_30.wav
home
audios/a127_260_270.wav
city_center
audios/a008_130_140.wav
residential_area
audios/a147_210_220.wav
tram
audios/b029_40_50.wav
home
audios/a092_190_200.wav
train
audios/a097_100_110.wav
forest_path
audios/a108_190_200.wav
cafe/restaurant
audios/a100_190_200.wav
office
audios/b031_200_210.wav
home
audios/a089_270_280.wav
metro_station
audios/a082_150_160.wav
cafe/restaurant
audios/b010_0_10.wav
beach
audios/a084_202_212.wav
metro_station
audios/b093_50_60.wav
city_center

TUT2017

This is an audio classification dataset for Acoustic Scene Classification.

Classes = 15   ,   Split = four-fold

Structure

  • audios folder contains audio files.
  • csv_files folder contains CSV files for four-fold cross-validation.
  • To perform cross-validation on fold 1, train_1.csv will be used for the training split and test_1.csv for the testing split, with the same pattern followed for the other folds.
  • To perform training and testing witout cross-validation, use csv_files/train.csv and csv_files/test.csv files respectively.

Download

import os
import huggingface_hub
audio_datasets_path = "DATASET_PATH/Audio-Datasets"
if not os.path.exists(audio_datasets_path): print(f"Given {audio_datasets_path=} does not exist. Specify a valid path ending with 'Audio-Datasets' folder.")
huggingface_hub.snapshot_download(repo_id="MahiA/TUT2017", repo_type="dataset", local_dir=os.path.join(audio_datasets_path, "TUT2017"))

Acknowledgment

This dataset is a slightly processed/restructured version of data originally released by Source.
Please refer to the respective source for their licensing details and any additional information.

Contact

For questions or feedback, please create an issue.

Downloads last month
239