|
--- |
|
license: mit |
|
language: |
|
- en |
|
task_categories: |
|
- image-text-to-text |
|
tags: |
|
- embedding |
|
- multimodal |
|
- multilingual |
|
pretty_name: XTD |
|
size_categories: |
|
- 1K<n<10K |
|
configs: |
|
- config_name: it |
|
data_files: |
|
- split: test |
|
path: it/it.parquet |
|
- config_name: es |
|
data_files: |
|
- split: test |
|
path: es/es.parquet |
|
- config_name: ru |
|
data_files: |
|
- split: test |
|
path: ru/ru.parquet |
|
- config_name: zh |
|
data_files: |
|
- split: test |
|
path: zh/zh.parquet |
|
- config_name: pl |
|
data_files: |
|
- split: test |
|
path: pl/pl.parquet |
|
- config_name: tr |
|
data_files: |
|
- split: test |
|
path: tr/tr.parquet |
|
- config_name: ko |
|
data_files: |
|
- split: test |
|
path: ko/ko.parquet |
|
--- |
|
|
|
# XTD Multimodal Multilingual Data With Instruction |
|
|
|
This dataset contains datasets (**with English instruction**) used for evaluating the multilingual capability of a multimodal embedding model, including seven languages: |
|
- **it**, **es**, **ru**, **zh**, **pl**, **tr**, **ko** |
|
|
|
## Dataset Usage |
|
|
|
- The instruction on the query side is: "Retrieve an image of this caption." |
|
- The instruction on the document side is: "Represent the given image." |
|
- Each example contains a query and a set of targets. The first one in the candidate list is the groundtruth target. |
|
|
|
## Image Preparation |
|
|
|
First, you should prepare the images used for evaluation: |
|
|
|
### Image Downloads |
|
|
|
[**XTD10 images**](https://huggingface.co/datasets/Haon-Chen/XTD-10/resolve/main/XTD10_dataset.tar.gz) |
|
|
|
``` |
|
mkdir -p images && cd images |
|
wget https://huggingface.co/datasets/Haon-Chen/XTD-10/resolve/main/XTD10_dataset.tar.gz |
|
tar -I "pigz -d -p 8" -xf XTD10_dataset.tar.gz |
|
``` |
|
|
|
### Image Organization |
|
|
|
``` |
|
images/ |
|
βββ XTD10_dataset/ |
|
βββ ... .jpg |
|
``` |
|
|
|
You can refer to the image paths in each subset to view the image organization. |
|
|
|
You can also customize your image paths by altering the image_path fields. |
|
|
|
## Citation |
|
|
|
If you use this dataset in your research, feel free to cite the original paper of XTD and the mmE5 paper. |
|
|
|
[mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://huggingface.co/papers/2502.08468) |
|
|
|
``` |
|
@article{chen2025mmE5, |
|
title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data}, |
|
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, |
|
journal={arXiv preprint arXiv:2502.08468}, |
|
year={2025} |
|
} |
|
|
|
@article{XTD, |
|
author = {Pranav Aggarwal and |
|
Ajinkya Kale}, |
|
title = {Towards Zero-shot Cross-lingual Image Retrieval}, |
|
journal = {CoRR}, |
|
volume = {abs/2012.05107}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2012.05107}, |
|
eprinttype = {arXiv}, |
|
eprint = {2012.05107}, |
|
timestamp = {Sat, 02 Jan 2021 15:43:30 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2012-05107.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |