GindaChen commited on
Commit
c144018
·
verified ·
1 Parent(s): b2d1963

Upload folder using huggingface_hub

Browse files
attnserver.run_attnserver.slurm.sh.343188.out.log CHANGED
@@ -119674,3 +119674,645 @@ Theoretical memory footprints: weight and optimizer=1206.09 MB
119674
  [Rank 59] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0[Rank 58] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119675
 
119676
  [Rank 37] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29382.0 | max reserved: 29382.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119674
  [Rank 59] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0[Rank 58] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119675
 
119676
  [Rank 37] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29382.0 | max reserved: 29382.0
119677
+ batch tensor: tokens torch.Size([1, 131072])
119678
+ batch tensor: labels torch.Size([1, 131072])
119679
+ batch tensor: loss_mask torch.Size([1, 131072])
119680
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119681
+ batch tensor: position_ids torch.Size([1, 131072])
119682
+ batch tensor after cp: tokens torch.Size([1, 16384])
119683
+ batch tensor after cp: labels torch.Size([1, 16384])
119684
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119685
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119686
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119687
+ batch tensor: tokens torch.Size([1, 131072])
119688
+ batch tensor: labels torch.Size([1, 131072])
119689
+ batch tensor: loss_mask torch.Size([1, 131072])
119690
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119691
+ batch tensor: position_ids torch.Size([1, 131072])
119692
+ batch tensor after cp: tokens torch.Size([1, 16384])
119693
+ batch tensor after cp: labels torch.Size([1, 16384])
119694
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119695
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119696
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119697
+ batch tensor: tokens torch.Size([1, 131072])
119698
+ batch tensor: labels torch.Size([1, 131072])
119699
+ batch tensor: loss_mask torch.Size([1, 131072])
119700
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119701
+ batch tensor: position_ids torch.Size([1, 131072])
119702
+ batch tensor after cp: tokens torch.Size([1, 16384])
119703
+ batch tensor after cp: labels torch.Size([1, 16384])
119704
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119705
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119706
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119707
+ batch tensor: tokens torch.Size([1, 131072])
119708
+ batch tensor: labels torch.Size([1, 131072])
119709
+ batch tensor: loss_mask torch.Size([1, 131072])
119710
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119711
+ batch tensor: position_ids torch.Size([1, 131072])
119712
+ batch tensor after cp: tokens torch.Size([1, 16384])
119713
+ batch tensor after cp: labels torch.Size([1, 16384])
119714
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119715
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119716
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119717
+ batch tensor: tokens torch.Size([1, 131072])
119718
+ batch tensor: labels torch.Size([1, 131072])
119719
+ batch tensor: loss_mask torch.Size([1, 131072])
119720
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119721
+ batch tensor: position_ids torch.Size([1, 131072])
119722
+ batch tensor after cp: tokens torch.Size([1, 16384])
119723
+ batch tensor after cp: labels torch.Size([1, 16384])
119724
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119725
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119726
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119727
+ batch tensor: tokens torch.Size([1, 131072])
119728
+ batch tensor: labels torch.Size([1, 131072])
119729
+ batch tensor: loss_mask torch.Size([1, 131072])
119730
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119731
+ batch tensor: position_ids torch.Size([1, 131072])
119732
+ batch tensor after cp: tokens torch.Size([1, 16384])
119733
+ batch tensor after cp: labels torch.Size([1, 16384])
119734
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119735
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119736
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119737
+ batch tensor: tokens torch.Size([1, 131072])
119738
+ batch tensor: labels torch.Size([1, 131072])
119739
+ batch tensor: loss_mask torch.Size([1, 131072])
119740
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119741
+ batch tensor: position_ids torch.Size([1, 131072])
119742
+ batch tensor after cp: tokens torch.Size([1, 16384])
119743
+ batch tensor after cp: labels torch.Size([1, 16384])
119744
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119745
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119746
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119747
+ batch tensor: tokens torch.Size([1, 131072])
119748
+ batch tensor: labels torch.Size([1, 131072])
119749
+ batch tensor: loss_mask torch.Size([1, 131072])
119750
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119751
+ batch tensor: position_ids torch.Size([1, 131072])
119752
+ batch tensor after cp: tokens torch.Size([1, 16384])
119753
+ batch tensor after cp: labels torch.Size([1, 16384])
119754
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119755
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119756
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119757
+ batch tensor: tokens torch.Size([1, 131072])
119758
+ batch tensor: labels torch.Size([1, 131072])
119759
+ batch tensor: loss_mask torch.Size([1, 131072])
119760
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119761
+ batch tensor: position_ids torch.Size([1, 131072])
119762
+ batch tensor after cp: tokens torch.Size([1, 16384])
119763
+ batch tensor after cp: labels torch.Size([1, 16384])
119764
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119765
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119766
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119767
+ batch tensor: tokens torch.Size([1, 131072])
119768
+ batch tensor: labels torch.Size([1, 131072])
119769
+ batch tensor: loss_mask torch.Size([1, 131072])
119770
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119771
+ batch tensor: position_ids torch.Size([1, 131072])
119772
+ batch tensor after cp: tokens torch.Size([1, 16384])
119773
+ batch tensor after cp: labels torch.Size([1, 16384])
119774
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119775
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119776
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119777
+ batch tensor: tokens torch.Size([1, 131072])
119778
+ batch tensor: labels torch.Size([1, 131072])
119779
+ batch tensor: loss_mask torch.Size([1, 131072])
119780
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119781
+ batch tensor: position_ids torch.Size([1, 131072])
119782
+ batch tensor after cp: tokens torch.Size([1, 16384])
119783
+ batch tensor after cp: labels torch.Size([1, 16384])
119784
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119785
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119786
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119787
+ batch tensor: tokens torch.Size([1, 131072])
119788
+ batch tensor: labels torch.Size([1, 131072])
119789
+ batch tensor: loss_mask torch.Size([1, 131072])
119790
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119791
+ batch tensor: position_ids torch.Size([1, 131072])
119792
+ batch tensor after cp: tokens torch.Size([1, 16384])
119793
+ batch tensor after cp: labels torch.Size([1, 16384])
119794
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119795
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119796
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119797
+ batch tensor: tokens torch.Size([1, 131072])
119798
+ batch tensor: labels torch.Size([1, 131072])
119799
+ batch tensor: loss_mask torch.Size([1, 131072])
119800
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119801
+ batch tensor: position_ids torch.Size([1, 131072])
119802
+ batch tensor after cp: tokens torch.Size([1, 16384])
119803
+ batch tensor after cp: labels torch.Size([1, 16384])
119804
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119805
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119806
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119807
+ batch tensor: tokens torch.Size([1, 131072])
119808
+ batch tensor: labels torch.Size([1, 131072])
119809
+ batch tensor: loss_mask torch.Size([1, 131072])
119810
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119811
+ batch tensor: position_ids torch.Size([1, 131072])
119812
+ batch tensor after cp: tokens torch.Size([1, 16384])
119813
+ batch tensor after cp: labels torch.Size([1, 16384])
119814
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119815
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119816
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119817
+ batch tensor: tokens torch.Size([1, 131072])
119818
+ batch tensor: labels torch.Size([1, 131072])
119819
+ batch tensor: loss_mask torch.Size([1, 131072])
119820
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119821
+ batch tensor: position_ids torch.Size([1, 131072])
119822
+ batch tensor: tokens torch.Size([1, 131072])
119823
+ batch tensor: labels torch.Size([1, 131072])
119824
+ batch tensor: loss_mask torch.Size([1, 131072])
119825
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119826
+ batch tensor: position_ids torch.Size([1, 131072])
119827
+ batch tensor after cp: tokens torch.Size([1, 16384])
119828
+ batch tensor after cp: labels torch.Size([1, 16384])
119829
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119830
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119831
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119832
+ batch tensor after cp: tokens torch.Size([1, 16384])
119833
+ batch tensor after cp: labels torch.Size([1, 16384])
119834
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119835
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119836
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119837
+ batch tensor: tokens torch.Size([1, 131072])
119838
+ batch tensor: labels torch.Size([1, 131072])
119839
+ batch tensor: loss_mask torch.Size([1, 131072])
119840
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119841
+ batch tensor: position_ids torch.Size([1, 131072])
119842
+ batch tensor after cp: tokens torch.Size([1, 16384])
119843
+ batch tensor after cp: labels torch.Size([1, 16384])
119844
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119845
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119846
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119847
+ batch tensor: tokens torch.Size([1, 131072])
119848
+ batch tensor: labels torch.Size([1, 131072])
119849
+ batch tensor: loss_mask torch.Size([1, 131072])
119850
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119851
+ batch tensor: position_ids torch.Size([1, 131072])
119852
+ batch tensor: tokens torch.Size([1, 131072])
119853
+ batch tensor: labels torch.Size([1, 131072])
119854
+ batch tensor: loss_mask torch.Size([1, 131072])
119855
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119856
+ batch tensor: position_ids torch.Size([1, 131072])
119857
+ batch tensor after cp: tokens torch.Size([1, 16384])
119858
+ batch tensor after cp: labels torch.Size([1, 16384])
119859
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119860
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119861
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119862
+ batch tensor: tokens torch.Size([1, 131072])
119863
+ batch tensor: labels torch.Size([1, 131072])
119864
+ batch tensor: loss_mask torch.Size([1, 131072])
119865
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119866
+ batch tensor: position_ids torch.Size([1, 131072])
119867
+ batch tensor after cp: tokens torch.Size([1, 16384])
119868
+ batch tensor after cp: labels torch.Size([1, 16384])
119869
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119870
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119871
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119872
+ batch tensor: tokens torch.Size([1, 131072])
119873
+ batch tensor: labels torch.Size([1, 131072])
119874
+ batch tensor: loss_mask torch.Size([1, 131072])
119875
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119876
+ batch tensor: position_ids torch.Size([1, 131072])
119877
+ batch tensor after cp: tokens torch.Size([1, 16384])
119878
+ batch tensor after cp: labels torch.Size([1, 16384])
119879
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119880
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119881
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119882
+ batch tensor: tokens torch.Size([1, 131072])
119883
+ batch tensor: labels torch.Size([1, 131072])
119884
+ batch tensor: loss_mask torch.Size([1, 131072])
119885
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119886
+ batch tensor: position_ids torch.Size([1, 131072])
119887
+ batch tensor after cp: tokens torch.Size([1, 16384])
119888
+ batch tensor after cp: labels torch.Size([1, 16384])
119889
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119890
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119891
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119892
+ batch tensor: tokens torch.Size([1, 131072])
119893
+ batch tensor: labels torch.Size([1, 131072])
119894
+ batch tensor: loss_mask torch.Size([1, 131072])
119895
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119896
+ batch tensor: position_ids torch.Size([1, 131072])
119897
+ batch tensor after cp: tokens torch.Size([1, 16384])
119898
+ batch tensor after cp: labels torch.Size([1, 16384])
119899
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119900
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119901
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119902
+ batch tensor: tokens torch.Size([1, 131072])
119903
+ batch tensor: labels torch.Size([1, 131072])
119904
+ batch tensor: loss_mask torch.Size([1, 131072])
119905
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119906
+ batch tensor: position_ids torch.Size([1, 131072])
119907
+ batch tensor after cp: tokens torch.Size([1, 16384])
119908
+ batch tensor after cp: labels torch.Size([1, 16384])
119909
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119910
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119911
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119912
+ batch tensor: tokens torch.Size([1, 131072])
119913
+ batch tensor: labels torch.Size([1, 131072])
119914
+ batch tensor: loss_mask torch.Size([1, 131072])
119915
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119916
+ batch tensor: position_ids torch.Size([1, 131072])
119917
+ batch tensor after cp: tokens torch.Size([1, 16384])
119918
+ batch tensor after cp: labels torch.Size([1, 16384])
119919
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119920
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119921
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119922
+ batch tensor: tokens torch.Size([1, 131072])
119923
+ batch tensor: labels torch.Size([1, 131072])
119924
+ batch tensor: loss_mask torch.Size([1, 131072])
119925
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119926
+ batch tensor: position_ids torch.Size([1, 131072])
119927
+ batch tensor after cp: tokens torch.Size([1, 16384])
119928
+ batch tensor after cp: labels torch.Size([1, 16384])
119929
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119930
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119931
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119932
+ batch tensor: tokens torch.Size([1, 131072])
119933
+ batch tensor: labels torch.Size([1, 131072])
119934
+ batch tensor: loss_mask torch.Size([1, 131072])
119935
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119936
+ batch tensor: position_ids torch.Size([1, 131072])
119937
+ batch tensor after cp: tokens torch.Size([1, 16384])
119938
+ batch tensor after cp: labels torch.Size([1, 16384])
119939
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119940
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119941
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119942
+ batch tensor: tokens torch.Size([1, 131072])
119943
+ batch tensor: labels torch.Size([1, 131072])
119944
+ batch tensor: loss_mask torch.Size([1, 131072])
119945
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119946
+ batch tensor: position_ids torch.Size([1, 131072])
119947
+ batch tensor after cp: tokens torch.Size([1, 16384])
119948
+ batch tensor after cp: labels torch.Size([1, 16384])
119949
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119950
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119951
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119952
+ batch tensor: tokens torch.Size([1, 131072])
119953
+ batch tensor: labels torch.Size([1, 131072])
119954
+ batch tensor: loss_mask torch.Size([1, 131072])
119955
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119956
+ batch tensor: position_ids torch.Size([1, 131072])
119957
+ batch tensor after cp: tokens torch.Size([1, 16384])
119958
+ batch tensor after cp: labels torch.Size([1, 16384])
119959
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119960
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119961
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119962
+ batch tensor: tokens torch.Size([1, 131072])
119963
+ batch tensor: labels torch.Size([1, 131072])
119964
+ batch tensor: loss_mask torch.Size([1, 131072])
119965
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119966
+ batch tensor: position_ids torch.Size([1, 131072])
119967
+ batch tensor after cp: tokens torch.Size([1, 16384])
119968
+ batch tensor after cp: labels torch.Size([1, 16384])
119969
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119970
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119971
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119972
+ batch tensor: tokens torch.Size([1, 131072])
119973
+ batch tensor: labels torch.Size([1, 131072])
119974
+ batch tensor: loss_mask torch.Size([1, 131072])
119975
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119976
+ batch tensor: position_ids torch.Size([1, 131072])
119977
+ batch tensor after cp: tokens torch.Size([1, 16384])
119978
+ batch tensor after cp: labels torch.Size([1, 16384])
119979
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119980
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119981
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119982
+ batch tensor: tokens torch.Size([1, 131072])
119983
+ batch tensor: labels torch.Size([1, 131072])
119984
+ batch tensor: loss_mask torch.Size([1, 131072])
119985
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119986
+ batch tensor: position_ids torch.Size([1, 131072])
119987
+ batch tensor after cp: tokens torch.Size([1, 16384])
119988
+ batch tensor after cp: labels torch.Size([1, 16384])
119989
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119990
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119991
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119992
+ batch tensor: tokens torch.Size([1, 131072])
119993
+ batch tensor: labels torch.Size([1, 131072])
119994
+ batch tensor: loss_mask torch.Size([1, 131072])
119995
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119996
+ batch tensor: position_ids torch.Size([1, 131072])
119997
+ batch tensor after cp: tokens torch.Size([1, 16384])
119998
+ batch tensor after cp: labels torch.Size([1, 16384])
119999
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120000
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120001
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120002
+ batch tensor: tokens torch.Size([1, 131072])
120003
+ batch tensor: labels torch.Size([1, 131072])
120004
+ batch tensor: loss_mask torch.Size([1, 131072])
120005
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120006
+ batch tensor: position_ids torch.Size([1, 131072])
120007
+ batch tensor after cp: tokens torch.Size([1, 16384])
120008
+ batch tensor after cp: labels torch.Size([1, 16384])
120009
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120010
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120011
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120012
+ batch tensor: tokens torch.Size([1, 131072])
120013
+ batch tensor: labels torch.Size([1, 131072])
120014
+ batch tensor: loss_mask torch.Size([1, 131072])
120015
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120016
+ batch tensor: position_ids torch.Size([1, 131072])
120017
+ batch tensor after cp: tokens torch.Size([1, 16384])
120018
+ batch tensor after cp: labels torch.Size([1, 16384])
120019
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120020
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120021
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120022
+ batch tensor: tokens torch.Size([1, 131072])
120023
+ batch tensor: labels torch.Size([1, 131072])
120024
+ batch tensor: loss_mask torch.Size([1, 131072])
120025
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120026
+ batch tensor: position_ids torch.Size([1, 131072])
120027
+ batch tensor after cp: tokens torch.Size([1, 16384])
120028
+ batch tensor after cp: labels torch.Size([1, 16384])
120029
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120030
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120031
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120032
+ batch tensor: tokens torch.Size([1, 131072])
120033
+ batch tensor: labels torch.Size([1, 131072])
120034
+ batch tensor: loss_mask torch.Size([1, 131072])
120035
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120036
+ batch tensor: position_ids torch.Size([1, 131072])
120037
+ batch tensor after cp: tokens torch.Size([1, 16384])
120038
+ batch tensor after cp: labels torch.Size([1, 16384])
120039
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120040
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120041
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120042
+ batch tensor: tokens torch.Size([1, 131072])
120043
+ batch tensor: labels torch.Size([1, 131072])
120044
+ batch tensor: loss_mask torch.Size([1, 131072])
120045
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120046
+ batch tensor: position_ids torch.Size([1, 131072])
120047
+ batch tensor after cp: tokens torch.Size([1, 16384])
120048
+ batch tensor after cp: labels torch.Size([1, 16384])
120049
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120050
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120051
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120052
+ batch tensor: tokens torch.Size([1, 131072])
120053
+ batch tensor: labels torch.Size([1, 131072])
120054
+ batch tensor: loss_mask torch.Size([1, 131072])
120055
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120056
+ batch tensor: position_ids torch.Size([1, 131072])
120057
+ batch tensor after cp: tokens torch.Size([1, 16384])
120058
+ batch tensor after cp: labels torch.Size([1, 16384])
120059
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120060
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120061
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120062
+ batch tensor: tokens torch.Size([1, 131072])
120063
+ batch tensor: labels torch.Size([1, 131072])
120064
+ batch tensor: loss_mask torch.Size([1, 131072])
120065
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120066
+ batch tensor: position_ids torch.Size([1, 131072])
120067
+ batch tensor after cp: tokens torch.Size([1, 16384])
120068
+ batch tensor after cp: labels torch.Size([1, 16384])
120069
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120070
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120071
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120072
+ batch tensor: tokens torch.Size([1, 131072])
120073
+ batch tensor: labels torch.Size([1, 131072])
120074
+ batch tensor: loss_mask torch.Size([1, 131072])
120075
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120076
+ batch tensor: position_ids torch.Size([1, 131072])
120077
+ batch tensor after cp: tokens torch.Size([1, 16384])
120078
+ batch tensor after cp: labels torch.Size([1, 16384])
120079
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120080
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120081
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120082
+ batch tensor: tokens torch.Size([1, 131072])
120083
+ batch tensor: labels torch.Size([1, 131072])
120084
+ batch tensor: loss_mask torch.Size([1, 131072])
120085
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120086
+ batch tensor: position_ids torch.Size([1, 131072])
120087
+ batch tensor after cp: tokens torch.Size([1, 16384])
120088
+ batch tensor after cp: labels torch.Size([1, 16384])
120089
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120090
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120091
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120092
+ batch tensor: tokens torch.Size([1, 131072])
120093
+ batch tensor: labels torch.Size([1, 131072])
120094
+ batch tensor: loss_mask torch.Size([1, 131072])
120095
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120096
+ batch tensor: position_ids torch.Size([1, 131072])
120097
+ batch tensor after cp: tokens torch.Size([1, 16384])
120098
+ batch tensor after cp: labels torch.Size([1, 16384])
120099
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120100
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120101
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120102
+ batch tensor: tokens torch.Size([1, 131072])
120103
+ batch tensor: labels torch.Size([1, 131072])
120104
+ batch tensor: loss_mask torch.Size([1, 131072])
120105
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120106
+ batch tensor: position_ids torch.Size([1, 131072])
120107
+ batch tensor after cp: tokens torch.Size([1, 16384])
120108
+ batch tensor after cp: labels torch.Size([1, 16384])
120109
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120110
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120111
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120112
+ batch tensor: tokens torch.Size([1, 131072])
120113
+ batch tensor: labels torch.Size([1, 131072])
120114
+ batch tensor: loss_mask torch.Size([1, 131072])
120115
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120116
+ batch tensor: position_ids torch.Size([1, 131072])
120117
+ batch tensor after cp: tokens torch.Size([1, 16384])
120118
+ batch tensor after cp: labels torch.Size([1, 16384])
120119
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120120
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120121
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120122
+ batch tensor: tokens torch.Size([1, 131072])
120123
+ batch tensor: labels torch.Size([1, 131072])
120124
+ batch tensor: loss_mask torch.Size([1, 131072])
120125
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120126
+ batch tensor: position_ids torch.Size([1, 131072])
120127
+ batch tensor after cp: tokens torch.Size([1, 16384])
120128
+ batch tensor after cp: labels torch.Size([1, 16384])
120129
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120130
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120131
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120132
+ batch tensor: tokens torch.Size([1, 131072])
120133
+ batch tensor: labels torch.Size([1, 131072])
120134
+ batch tensor: loss_mask torch.Size([1, 131072])
120135
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120136
+ batch tensor: position_ids torch.Size([1, 131072])
120137
+ batch tensor after cp: tokens torch.Size([1, 16384])
120138
+ batch tensor after cp: labels torch.Size([1, 16384])
120139
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120140
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120141
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120142
+ batch tensor: tokens torch.Size([1, 131072])
120143
+ batch tensor: labels torch.Size([1, 131072])
120144
+ batch tensor: loss_mask torch.Size([1, 131072])
120145
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120146
+ batch tensor: position_ids torch.Size([1, 131072])
120147
+ batch tensor after cp: tokens torch.Size([1, 16384])
120148
+ batch tensor after cp: labels torch.Size([1, 16384])
120149
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120150
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120151
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120152
+ batch tensor: tokens torch.Size([1, 131072])
120153
+ batch tensor: labels torch.Size([1, 131072])
120154
+ batch tensor: loss_mask torch.Size([1, 131072])
120155
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120156
+ batch tensor: position_ids torch.Size([1, 131072])
120157
+ batch tensor after cp: tokens torch.Size([1, 16384])
120158
+ batch tensor after cp: labels torch.Size([1, 16384])
120159
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120160
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120161
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120162
+ batch tensor: tokens torch.Size([1, 131072])
120163
+ batch tensor: labels torch.Size([1, 131072])
120164
+ batch tensor: loss_mask torch.Size([1, 131072])
120165
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120166
+ batch tensor: position_ids torch.Size([1, 131072])
120167
+ batch tensor after cp: tokens torch.Size([1, 16384])
120168
+ batch tensor after cp: labels torch.Size([1, 16384])
120169
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120170
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120171
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120172
+ batch tensor: tokens torch.Size([1, 131072])
120173
+ batch tensor: labels torch.Size([1, 131072])
120174
+ batch tensor: loss_mask torch.Size([1, 131072])
120175
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120176
+ batch tensor: position_ids torch.Size([1, 131072])
120177
+ batch tensor after cp: tokens torch.Size([1, 16384])
120178
+ batch tensor after cp: labels torch.Size([1, 16384])
120179
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120180
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120181
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120182
+ batch tensor: tokens torch.Size([1, 131072])
120183
+ batch tensor: labels torch.Size([1, 131072])
120184
+ batch tensor: loss_mask torch.Size([1, 131072])
120185
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120186
+ batch tensor: position_ids torch.Size([1, 131072])
120187
+ batch tensor after cp: tokens torch.Size([1, 16384])
120188
+ batch tensor after cp: labels torch.Size([1, 16384])
120189
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120190
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120191
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120192
+ batch tensor: tokens torch.Size([1, 131072])
120193
+ batch tensor: labels torch.Size([1, 131072])
120194
+ batch tensor: loss_mask torch.Size([1, 131072])
120195
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120196
+ batch tensor: position_ids torch.Size([1, 131072])
120197
+ batch tensor after cp: tokens torch.Size([1, 16384])
120198
+ batch tensor after cp: labels torch.Size([1, 16384])
120199
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120200
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120201
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120202
+ batch tensor: tokens torch.Size([1, 131072])
120203
+ batch tensor: labels torch.Size([1, 131072])
120204
+ batch tensor: loss_mask torch.Size([1, 131072])
120205
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120206
+ batch tensor: position_ids torch.Size([1, 131072])
120207
+ batch tensor after cp: tokens torch.Size([1, 16384])
120208
+ batch tensor after cp: labels torch.Size([1, 16384])
120209
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120210
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120211
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120212
+ batch tensor: tokens torch.Size([1, 131072])
120213
+ batch tensor: labels torch.Size([1, 131072])
120214
+ batch tensor: loss_mask torch.Size([1, 131072])
120215
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120216
+ batch tensor: position_ids torch.Size([1, 131072])
120217
+ batch tensor after cp: tokens torch.Size([1, 16384])
120218
+ batch tensor after cp: labels torch.Size([1, 16384])
120219
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120220
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120221
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120222
+ batch tensor: tokens torch.Size([1, 131072])
120223
+ batch tensor: labels torch.Size([1, 131072])
120224
+ batch tensor: loss_mask torch.Size([1, 131072])
120225
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120226
+ batch tensor: position_ids torch.Size([1, 131072])
120227
+ batch tensor after cp: tokens torch.Size([1, 16384])
120228
+ batch tensor after cp: labels torch.Size([1, 16384])
120229
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120230
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120231
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120232
+ batch tensor: tokens torch.Size([1, 131072])
120233
+ batch tensor: labels torch.Size([1, 131072])
120234
+ batch tensor: loss_mask torch.Size([1, 131072])
120235
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120236
+ batch tensor: position_ids torch.Size([1, 131072])
120237
+ batch tensor after cp: tokens torch.Size([1, 16384])
120238
+ batch tensor after cp: labels torch.Size([1, 16384])
120239
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120240
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120241
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120242
+ batch tensor: tokens torch.Size([1, 131072])
120243
+ batch tensor: labels torch.Size([1, 131072])
120244
+ batch tensor: loss_mask torch.Size([1, 131072])
120245
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120246
+ batch tensor: position_ids torch.Size([1, 131072])
120247
+ batch tensor after cp: tokens torch.Size([1, 16384])
120248
+ batch tensor after cp: labels torch.Size([1, 16384])
120249
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120250
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120251
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120252
+ batch tensor: tokens torch.Size([1, 131072])
120253
+ batch tensor: labels torch.Size([1, 131072])
120254
+ batch tensor: loss_mask torch.Size([1, 131072])
120255
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120256
+ batch tensor: position_ids torch.Size([1, 131072])
120257
+ batch tensor after cp: tokens torch.Size([1, 16384])
120258
+ batch tensor after cp: labels torch.Size([1, 16384])
120259
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120260
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120261
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120262
+ batch tensor: tokens torch.Size([1, 131072])
120263
+ batch tensor: labels torch.Size([1, 131072])
120264
+ batch tensor: loss_mask torch.Size([1, 131072])
120265
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120266
+ batch tensor: position_ids torch.Size([1, 131072])
120267
+ batch tensor after cp: tokens torch.Size([1, 16384])
120268
+ batch tensor after cp: labels torch.Size([1, 16384])
120269
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120270
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120271
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120272
+ batch tensor: tokens torch.Size([1, 131072])
120273
+ batch tensor: labels torch.Size([1, 131072])
120274
+ batch tensor: loss_mask torch.Size([1, 131072])
120275
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120276
+ batch tensor: position_ids torch.Size([1, 131072])
120277
+ batch tensor after cp: tokens torch.Size([1, 16384])
120278
+ batch tensor after cp: labels torch.Size([1, 16384])
120279
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120280
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120281
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120282
+ batch tensor after cp: tokens torch.Size([1, 16384])
120283
+ batch tensor after cp: labels torch.Size([1, 16384])
120284
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120285
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120286
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120287
+ batch tensor: tokens torch.Size([1, 131072])
120288
+ batch tensor: labels torch.Size([1, 131072])
120289
+ batch tensor: loss_mask torch.Size([1, 131072])
120290
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120291
+ batch tensor: position_ids torch.Size([1, 131072])
120292
+ batch tensor after cp: tokens torch.Size([1, 16384])
120293
+ batch tensor after cp: labels torch.Size([1, 16384])
120294
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120295
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120296
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120297
+ batch tensor: tokens torch.Size([1, 131072])
120298
+ batch tensor: labels torch.Size([1, 131072])
120299
+ batch tensor: loss_mask torch.Size([1, 131072])
120300
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120301
+ batch tensor: position_ids torch.Size([1, 131072])
120302
+ batch tensor after cp: tokens torch.Size([1, 16384])
120303
+ batch tensor after cp: labels torch.Size([1, 16384])
120304
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120305
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120306
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120307
+ batch tensor: tokens torch.Size([1, 131072])
120308
+ batch tensor: labels torch.Size([1, 131072])
120309
+ batch tensor: loss_mask torch.Size([1, 131072])
120310
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
120311
+ batch tensor: position_ids torch.Size([1, 131072])
120312
+ batch tensor after cp: tokens torch.Size([1, 16384])
120313
+ batch tensor after cp: labels torch.Size([1, 16384])
120314
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
120315
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
120316
+ batch tensor after cp: position_ids torch.Size([1, 16384])
120317
+ Start exporting trace 1
120318
+ Done exporting trace 1
attnserver.run_attnserver.slurm.sh.343194.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343194.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343195.out.log CHANGED
@@ -63261,3 +63261,326 @@ batch tensor after cp: labels torch.Size([1, 24576])
63261
  batch tensor after cp: loss_mask torch.Size([1, 24576])
63262
  batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63263
  batch tensor after cp: position_ids torch.Size([1, 24576])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63261
  batch tensor after cp: loss_mask torch.Size([1, 24576])
63262
  batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63263
  batch tensor after cp: position_ids torch.Size([1, 24576])
63264
+ batch tensor: tokens torch.Size([1, 98304])
63265
+ batch tensor: labels torch.Size([1, 98304])
63266
+ batch tensor: loss_mask torch.Size([1, 98304])
63267
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63268
+ batch tensor: position_ids torch.Size([1, 98304])
63269
+ batch tensor after cp: tokens torch.Size([1, 24576])
63270
+ batch tensor after cp: labels torch.Size([1, 24576])
63271
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63272
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63273
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63274
+ batch tensor: tokens torch.Size([1, 98304])
63275
+ batch tensor: labels torch.Size([1, 98304])
63276
+ batch tensor: loss_mask torch.Size([1, 98304])
63277
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63278
+ batch tensor: position_ids torch.Size([1, 98304])
63279
+ batch tensor after cp: tokens torch.Size([1, 24576])
63280
+ batch tensor after cp: labels torch.Size([1, 24576])
63281
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63282
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63283
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63284
+ Start exporting trace 5
63285
+ Done exporting trace 5
63286
+ [2025-06-21 20:54:04] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 82380.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
63287
+ batch tensor: tokens torch.Size([1, 98304])
63288
+ batch tensor: labels torch.Size([1, 98304])
63289
+ batch tensor: loss_mask torch.Size([1, 98304])
63290
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63291
+ batch tensor: position_ids torch.Size([1, 98304])
63292
+ batch tensor after cp: tokens torch.Size([1, 24576])
63293
+ batch tensor after cp: labels torch.Size([1, 24576])
63294
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63295
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63296
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63297
+ batch tensor: tokens torch.Size([1, 98304])
63298
+ batch tensor: labels torch.Size([1, 98304])
63299
+ batch tensor: loss_mask torch.Size([1, 98304])
63300
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63301
+ batch tensor: position_ids torch.Size([1, 98304])
63302
+ batch tensor after cp: tokens torch.Size([1, 24576])
63303
+ batch tensor after cp: labels torch.Size([1, 24576])
63304
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63305
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63306
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63307
+ batch tensor: tokens torch.Size([1, 98304])
63308
+ batch tensor: labels torch.Size([1, 98304])
63309
+ batch tensor: loss_mask torch.Size([1, 98304])
63310
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63311
+ batch tensor: position_ids torch.Size([1, 98304])
63312
+ batch tensor after cp: tokens torch.Size([1, 24576])
63313
+ batch tensor after cp: labels torch.Size([1, 24576])
63314
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63315
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63316
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63317
+ batch tensor: tokens torch.Size([1, 98304])
63318
+ batch tensor: labels torch.Size([1, 98304])
63319
+ batch tensor: loss_mask torch.Size([1, 98304])
63320
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63321
+ batch tensor: position_ids torch.Size([1, 98304])
63322
+ batch tensor after cp: tokens torch.Size([1, 24576])
63323
+ batch tensor after cp: labels torch.Size([1, 24576])
63324
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63325
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63326
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63327
+ batch tensor: tokens torch.Size([1, 98304])
63328
+ batch tensor: labels torch.Size([1, 98304])
63329
+ batch tensor: loss_mask torch.Size([1, 98304])
63330
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63331
+ batch tensor: position_ids torch.Size([1, 98304])
63332
+ batch tensor after cp: tokens torch.Size([1, 24576])
63333
+ batch tensor after cp: labels torch.Size([1, 24576])
63334
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63335
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63336
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63337
+ batch tensor: tokens torch.Size([1, 98304])
63338
+ batch tensor: labels torch.Size([1, 98304])
63339
+ batch tensor: loss_mask torch.Size([1, 98304])
63340
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63341
+ batch tensor: position_ids torch.Size([1, 98304])
63342
+ batch tensor after cp: tokens torch.Size([1, 24576])
63343
+ batch tensor after cp: labels torch.Size([1, 24576])
63344
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63345
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63346
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63347
+ batch tensor: tokens torch.Size([1, 98304])
63348
+ batch tensor: labels torch.Size([1, 98304])
63349
+ batch tensor: loss_mask torch.Size([1, 98304])
63350
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63351
+ batch tensor: position_ids torch.Size([1, 98304])
63352
+ batch tensor after cp: tokens torch.Size([1, 24576])
63353
+ batch tensor after cp: labels torch.Size([1, 24576])
63354
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63355
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63356
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63357
+ batch tensor: tokens torch.Size([1, 98304])
63358
+ batch tensor: labels torch.Size([1, 98304])
63359
+ batch tensor: loss_mask torch.Size([1, 98304])
63360
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63361
+ batch tensor: position_ids torch.Size([1, 98304])
63362
+ batch tensor after cp: tokens torch.Size([1, 24576])
63363
+ batch tensor after cp: labels torch.Size([1, 24576])
63364
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63365
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63366
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63367
+ batch tensor: tokens torch.Size([1, 98304])
63368
+ batch tensor: labels torch.Size([1, 98304])
63369
+ batch tensor: loss_mask torch.Size([1, 98304])
63370
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63371
+ batch tensor: position_ids torch.Size([1, 98304])
63372
+ batch tensor after cp: tokens torch.Size([1, 24576])
63373
+ batch tensor after cp: labels torch.Size([1, 24576])
63374
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63375
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63376
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63377
+ batch tensor: tokens torch.Size([1, 98304])
63378
+ batch tensor: labels torch.Size([1, 98304])
63379
+ batch tensor: loss_mask torch.Size([1, 98304])
63380
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63381
+ batch tensor: position_ids torch.Size([1, 98304])
63382
+ batch tensor after cp: tokens torch.Size([1, 24576])
63383
+ batch tensor after cp: labels torch.Size([1, 24576])
63384
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63385
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63386
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63387
+ batch tensor: tokens torch.Size([1, 98304])
63388
+ batch tensor: labels torch.Size([1, 98304])
63389
+ batch tensor: loss_mask torch.Size([1, 98304])
63390
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63391
+ batch tensor: position_ids torch.Size([1, 98304])
63392
+ batch tensor after cp: tokens torch.Size([1, 24576])
63393
+ batch tensor after cp: labels torch.Size([1, 24576])
63394
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63395
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63396
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63397
+ batch tensor: tokens torch.Size([1, 98304])
63398
+ batch tensor: labels torch.Size([1, 98304])
63399
+ batch tensor: loss_mask torch.Size([1, 98304])
63400
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63401
+ batch tensor: position_ids torch.Size([1, 98304])
63402
+ batch tensor after cp: tokens torch.Size([1, 24576])
63403
+ batch tensor after cp: labels torch.Size([1, 24576])
63404
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63405
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63406
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63407
+ batch tensor: tokens torch.Size([1, 98304])
63408
+ batch tensor: labels torch.Size([1, 98304])
63409
+ batch tensor: loss_mask torch.Size([1, 98304])
63410
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63411
+ batch tensor: position_ids torch.Size([1, 98304])
63412
+ batch tensor after cp: tokens torch.Size([1, 24576])
63413
+ batch tensor after cp: labels torch.Size([1, 24576])
63414
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63415
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63416
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63417
+ batch tensor: tokens torch.Size([1, 98304])
63418
+ batch tensor: labels torch.Size([1, 98304])
63419
+ batch tensor: loss_mask torch.Size([1, 98304])
63420
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63421
+ batch tensor: position_ids torch.Size([1, 98304])
63422
+ batch tensor after cp: tokens torch.Size([1, 24576])
63423
+ batch tensor after cp: labels torch.Size([1, 24576])
63424
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63425
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63426
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63427
+ batch tensor: tokens torch.Size([1, 98304])
63428
+ batch tensor: labels torch.Size([1, 98304])
63429
+ batch tensor: loss_mask torch.Size([1, 98304])
63430
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63431
+ batch tensor: position_ids torch.Size([1, 98304])
63432
+ batch tensor: tokens torch.Size([1, 98304])
63433
+ batch tensor after cp: tokens torch.Size([1, 24576])
63434
+ batch tensor after cp: labels torch.Size([1, 24576])
63435
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63436
+ batch tensor: labels torch.Size([1, 98304])
63437
+ batch tensor: loss_mask torch.Size([1, 98304])
63438
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63439
+ batch tensor: position_ids torch.Size([1, 98304])
63440
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63441
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63442
+ batch tensor after cp: tokens torch.Size([1, 24576])
63443
+ batch tensor after cp: labels torch.Size([1, 24576])
63444
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63445
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63446
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63447
+ batch tensor: tokens torch.Size([1, 98304])
63448
+ batch tensor: labels torch.Size([1, 98304])
63449
+ batch tensor: loss_mask torch.Size([1, 98304])
63450
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63451
+ batch tensor: position_ids torch.Size([1, 98304])
63452
+ batch tensor after cp: tokens torch.Size([1, 24576])
63453
+ batch tensor after cp: labels torch.Size([1, 24576])
63454
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63455
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63456
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63457
+ batch tensor: tokens torch.Size([1, 98304])
63458
+ batch tensor: labels torch.Size([1, 98304])
63459
+ batch tensor: loss_mask torch.Size([1, 98304])
63460
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63461
+ batch tensor: position_ids torch.Size([1, 98304])
63462
+ batch tensor after cp: tokens torch.Size([1, 24576])
63463
+ batch tensor after cp: labels torch.Size([1, 24576])
63464
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63465
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63466
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63467
+ batch tensor: tokens torch.Size([1, 98304])
63468
+ batch tensor: labels torch.Size([1, 98304])
63469
+ batch tensor: loss_mask torch.Size([1, 98304])
63470
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63471
+ batch tensor: position_ids torch.Size([1, 98304])
63472
+ batch tensor after cp: tokens torch.Size([1, 24576])
63473
+ batch tensor after cp: labels torch.Size([1, 24576])
63474
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63475
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63476
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63477
+ batch tensor: tokens torch.Size([1, 98304])
63478
+ batch tensor: labels torch.Size([1, 98304])
63479
+ batch tensor: loss_mask torch.Size([1, 98304])
63480
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63481
+ batch tensor: position_ids torch.Size([1, 98304])
63482
+ batch tensor after cp: tokens torch.Size([1, 24576])
63483
+ batch tensor after cp: labels torch.Size([1, 24576])
63484
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63485
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63486
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63487
+ batch tensor: tokens torch.Size([1, 98304])
63488
+ batch tensor: labels torch.Size([1, 98304])
63489
+ batch tensor: loss_mask torch.Size([1, 98304])
63490
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63491
+ batch tensor: position_ids torch.Size([1, 98304])
63492
+ batch tensor after cp: tokens torch.Size([1, 24576])
63493
+ batch tensor after cp: labels torch.Size([1, 24576])
63494
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63495
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63496
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63497
+ batch tensor: tokens torch.Size([1, 98304])
63498
+ batch tensor: labels torch.Size([1, 98304])
63499
+ batch tensor: loss_mask torch.Size([1, 98304])
63500
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63501
+ batch tensor: position_ids torch.Size([1, 98304])
63502
+ batch tensor after cp: tokens torch.Size([1, 24576])
63503
+ batch tensor after cp: labels torch.Size([1, 24576])
63504
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63505
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63506
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63507
+ batch tensor: tokens torch.Size([1, 98304])
63508
+ batch tensor: labels torch.Size([1, 98304])
63509
+ batch tensor: loss_mask torch.Size([1, 98304])
63510
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63511
+ batch tensor: position_ids torch.Size([1, 98304])
63512
+ batch tensor after cp: tokens torch.Size([1, 24576])
63513
+ batch tensor after cp: labels torch.Size([1, 24576])
63514
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63515
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63516
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63517
+ batch tensor: tokens torch.Size([1, 98304])
63518
+ batch tensor: labels torch.Size([1, 98304])
63519
+ batch tensor: loss_mask torch.Size([1, 98304])
63520
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63521
+ batch tensor: position_ids torch.Size([1, 98304])
63522
+ batch tensor after cp: tokens torch.Size([1, 24576])
63523
+ batch tensor after cp: labels torch.Size([1, 24576])
63524
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63525
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63526
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63527
+ batch tensor: tokens torch.Size([1, 98304])
63528
+ batch tensor: labels torch.Size([1, 98304])
63529
+ batch tensor: loss_mask torch.Size([1, 98304])
63530
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63531
+ batch tensor: position_ids torch.Size([1, 98304])
63532
+ batch tensor after cp: tokens torch.Size([1, 24576])
63533
+ batch tensor after cp: labels torch.Size([1, 24576])
63534
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63535
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63536
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63537
+ batch tensor: tokens torch.Size([1, 98304])
63538
+ batch tensor: labels torch.Size([1, 98304])
63539
+ batch tensor: loss_mask torch.Size([1, 98304])
63540
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63541
+ batch tensor: position_ids torch.Size([1, 98304])
63542
+ batch tensor after cp: tokens torch.Size([1, 24576])
63543
+ batch tensor after cp: labels torch.Size([1, 24576])
63544
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63545
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63546
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63547
+ batch tensor: tokens torch.Size([1, 98304])
63548
+ batch tensor: labels torch.Size([1, 98304])
63549
+ batch tensor: loss_mask torch.Size([1, 98304])
63550
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63551
+ batch tensor: position_ids torch.Size([1, 98304])
63552
+ batch tensor after cp: tokens torch.Size([1, 24576])
63553
+ batch tensor after cp: labels torch.Size([1, 24576])
63554
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63555
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63556
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63557
+ batch tensor: tokens torch.Size([1, 98304])
63558
+ batch tensor: labels torch.Size([1, 98304])
63559
+ batch tensor: loss_mask torch.Size([1, 98304])
63560
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63561
+ batch tensor: position_ids torch.Size([1, 98304])
63562
+ batch tensor after cp: tokens torch.Size([1, 24576])
63563
+ batch tensor after cp: labels torch.Size([1, 24576])
63564
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63565
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63566
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63567
+ batch tensor: tokens torch.Size([1, 98304])
63568
+ batch tensor: labels torch.Size([1, 98304])
63569
+ batch tensor: loss_mask torch.Size([1, 98304])
63570
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63571
+ batch tensor: position_ids torch.Size([1, 98304])
63572
+ batch tensor after cp: tokens torch.Size([1, 24576])
63573
+ batch tensor after cp: labels torch.Size([1, 24576])
63574
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63575
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63576
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63577
+ batch tensor: tokens torch.Size([1, 98304])
63578
+ batch tensor: labels torch.Size([1, 98304])
63579
+ batch tensor: loss_mask torch.Size([1, 98304])
63580
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63581
+ batch tensor: position_ids torch.Size([1, 98304])
63582
+ batch tensor after cp: tokens torch.Size([1, 24576])
63583
+ batch tensor after cp: labels torch.Size([1, 24576])
63584
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63585
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63586
+ batch tensor after cp: position_ids torch.Size([1, 24576])
attnserver.run_attnserver.slurm.sh.343196.err.log CHANGED
@@ -184,3 +184,284 @@ W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766]
184
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
185
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
185
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
  W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
187
+ [rank16]:[W621 20:53:32.279096536 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 16] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
188
+ [rank24]:[W621 20:53:32.363909187 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 24] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
189
+ [rank0]:[W621 20:53:32.051519772 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
190
+ [rank5]:[W621 20:53:32.436188333 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
191
+ [rank29]:[W621 20:53:32.819664263 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 29] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
192
+ [rank21]:[W621 20:53:32.743476734 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 21] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
193
+ [rank13]:[W621 20:53:32.654256940 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
194
+ [rank2]:[W621 20:53:32.449061221 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
195
+ [rank22]:[W621 20:53:32.756792811 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 22] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
196
+ [rank18]:[W621 20:53:32.756862251 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 18] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
197
+ [rank6]:[W621 20:53:32.451596822 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
198
+ [rank26]:[W621 20:53:32.837211917 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 26] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
199
+ [rank14]:[W621 20:53:32.669149161 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
200
+ [rank10]:[W621 20:53:32.669192753 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
201
+ [rank30]:[W621 20:53:32.838954953 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 30] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
202
+ [rank15]:[W621 20:53:32.675110418 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
203
+ [rank7]:[W621 20:53:32.463604525 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
204
+ [rank31]:[W621 20:53:32.846247510 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 31] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
205
+ [rank23]:[W621 20:53:32.770166045 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 23] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
206
+ [rank11]:[W621 20:53:32.682046853 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
207
+ [rank9]:[W621 20:53:32.682127974 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
208
+ [rank27]:[W621 20:53:32.851364172 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 27] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
209
+ [rank25]:[W621 20:53:32.851527033 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 25] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
210
+ [rank1]:[W621 20:53:32.468677631 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
211
+ [rank3]:[W621 20:53:32.468693698 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
212
+ [rank17]:[W621 20:53:32.775797003 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 17] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
213
+ [rank19]:[W621 20:53:32.775852770 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 19] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
214
+ [rank8]:[W621 20:53:32.701045847 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
215
+ [rank12]:[W621 20:53:32.708214824 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
216
+ [rank28]:[W621 20:53:32.877280260 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 28] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
217
+ [rank4]:[W621 20:53:32.499692504 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
218
+ [rank20]:[W621 20:53:32.807377963 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 20] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
219
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
220
+ warnings.warn(
221
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
222
+ warnings.warn(
223
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
224
+ warnings.warn(
225
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
226
+ warnings.warn(
227
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
228
+ warnings.warn(
229
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
230
+ warnings.warn(
231
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
232
+ warnings.warn(
233
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
234
+ warnings.warn(
235
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
236
+ warnings.warn(
237
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
238
+ warnings.warn(
239
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
240
+ warnings.warn(
241
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
242
+ warnings.warn(
243
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
244
+ warnings.warn(
245
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
246
+ warnings.warn(
247
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
248
+ warnings.warn(
249
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
250
+ warnings.warn(
251
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
252
+ warnings.warn(
253
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
254
+ warnings.warn(
255
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
256
+ warnings.warn(
257
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
258
+ warnings.warn(
259
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
260
+ warnings.warn(
261
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
262
+ warnings.warn(
263
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
264
+ warnings.warn(
265
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
266
+ warnings.warn(
267
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
268
+ warnings.warn(
269
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
270
+ warnings.warn(
271
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
272
+ warnings.warn(
273
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
274
+ warnings.warn(
275
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
276
+ warnings.warn(
277
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
278
+ warnings.warn(
279
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
280
+ warnings.warn(
281
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
282
+ warnings.warn(
283
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
284
+ warnings.warn(
285
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
286
+ warnings.warn(
287
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
288
+ warnings.warn(
289
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
290
+ warnings.warn(
291
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
292
+ warnings.warn(
293
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
294
+ warnings.warn(
295
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
296
+ warnings.warn(
297
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
298
+ warnings.warn(
299
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
300
+ warnings.warn(
301
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
302
+ warnings.warn(
303
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
304
+ warnings.warn(
305
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
306
+ warnings.warn(
307
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
308
+ warnings.warn(
309
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
310
+ warnings.warn(
311
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
312
+ warnings.warn(
313
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
314
+ warnings.warn(
315
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
316
+ warnings.warn(
317
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
318
+ warnings.warn(
319
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
320
+ warnings.warn(
321
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
322
+ warnings.warn(
323
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
324
+ warnings.warn(
325
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
326
+ warnings.warn(
327
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
328
+ warnings.warn(
329
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
330
+ warnings.warn(
331
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
332
+ warnings.warn(
333
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
334
+ warnings.warn(
335
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
336
+ warnings.warn(
337
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
338
+ warnings.warn(
339
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
340
+ warnings.warn(
341
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
342
+ warnings.warn(
343
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
344
+ warnings.warn(
345
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
346
+ warnings.warn(
347
+ [rank7]:[W621 20:54:05.852469863 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
348
+ [rank6]:[W621 20:54:05.957029135 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
349
+ [rank5]:[W621 20:54:05.012904183 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
350
+ [rank2]:[W621 20:54:05.023179044 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
351
+ [rank3]:[W621 20:54:05.095949824 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
352
+ [rank1]:[W621 20:54:05.156542055 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
353
+ [rank4]:[W621 20:54:05.261689988 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
354
+ [rank0]:[W621 20:54:05.381962495 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
355
+ [rank28]:[W621 20:54:05.931318464 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
356
+ [rank14]:[W621 20:54:05.779361497 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
357
+ [rank31]:[W621 20:54:05.985568953 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
358
+ [rank23]:[W621 20:54:05.928259412 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
359
+ [rank10]:[W621 20:54:05.855658903 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
360
+ [rank30]:[W621 20:54:05.059286001 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
361
+ [rank25]:[W621 20:54:05.070427109 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
362
+ [rank27]:[W621 20:54:05.071332041 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
363
+ [rank15]:[W621 20:54:05.927669030 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
364
+ [rank22]:[W621 20:54:05.022212298 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
365
+ [rank11]:[W621 20:54:05.932691566 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
366
+ [rank9]:[W621 20:54:05.941872807 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
367
+ [rank13]:[W621 20:54:05.942988962 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
368
+ [rank20]:[W621 20:54:05.035175231 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
369
+ [rank29]:[W621 20:54:05.122233118 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
370
+ [rank24]:[W621 20:54:05.132815528 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
371
+ [rank12]:[W621 20:54:05.964062011 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
372
+ [rank17]:[W621 20:54:05.073793095 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
373
+ [rank26]:[W621 20:54:05.175702868 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
374
+ [rank16]:[W621 20:54:06.105576035 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
375
+ [rank18]:[W621 20:54:06.128356475 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
376
+ [rank19]:[W621 20:54:06.134867285 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
377
+ [rank8]:[W621 20:54:06.094994586 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
378
+ [rank21]:[W621 20:54:06.316765263 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
379
+ + set +x
380
+ + set +x
381
+ + set +x
382
+ + set +x
383
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
384
+ + export PROF_CTX_LENGTH=2048
385
+ + PROF_CTX_LENGTH=2048
386
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp4.bs2.json'
387
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp4.bs2.json' ']'
388
+ + echo 'Running ctx_length=2048, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=2'
389
+ + srun bash ./attnserver.sh
390
+ + which python3
391
+ + which python3
392
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
393
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
394
+ + which python3
395
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
396
+ + which python3
397
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
398
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
399
+ and will be removed in future. Use torchrun.
400
+ Note that --use-env is set by default in torchrun.
401
+ If your script expects `--local-rank` argument to be set, please
402
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
403
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
404
+ further instructions
405
+
406
+ main()
407
+ W0621 20:54:12.173000 1956323 site-packages/torch/distributed/run.py:766]
408
+ W0621 20:54:12.173000 1956323 site-packages/torch/distributed/run.py:766] *****************************************
409
+ W0621 20:54:12.173000 1956323 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
410
+ W0621 20:54:12.173000 1956323 site-packages/torch/distributed/run.py:766] *****************************************
411
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
412
+ and will be removed in future. Use torchrun.
413
+ Note that --use-env is set by default in torchrun.
414
+ If your script expects `--local-rank` argument to be set, please
415
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
416
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
417
+ further instructions
418
+
419
+ main()
420
+ W0621 20:54:12.274000 1139880 site-packages/torch/distributed/run.py:766]
421
+ W0621 20:54:12.274000 1139880 site-packages/torch/distributed/run.py:766] *****************************************
422
+ W0621 20:54:12.274000 1139880 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
423
+ W0621 20:54:12.274000 1139880 site-packages/torch/distributed/run.py:766] *****************************************
424
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
425
+ and will be removed in future. Use torchrun.
426
+ Note that --use-env is set by default in torchrun.
427
+ If your script expects `--local-rank` argument to be set, please
428
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
429
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
430
+ further instructions
431
+
432
+ main()
433
+ W0621 20:54:12.359000 1484017 site-packages/torch/distributed/run.py:766]
434
+ W0621 20:54:12.359000 1484017 site-packages/torch/distributed/run.py:766] *****************************************
435
+ W0621 20:54:12.359000 1484017 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
436
+ W0621 20:54:12.359000 1484017 site-packages/torch/distributed/run.py:766] *****************************************
437
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
438
+ and will be removed in future. Use torchrun.
439
+ Note that --use-env is set by default in torchrun.
440
+ If your script expects `--local-rank` argument to be set, please
441
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
442
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
443
+ further instructions
444
+
445
+ main()
446
+ W0621 20:54:12.445000 1281491 site-packages/torch/distributed/run.py:766]
447
+ W0621 20:54:12.445000 1281491 site-packages/torch/distributed/run.py:766] *****************************************
448
+ W0621 20:54:12.445000 1281491 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
449
+ W0621 20:54:12.445000 1281491 site-packages/torch/distributed/run.py:766] *****************************************
450
+ [rank8]:[W621 20:54:38.038379846 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
451
+ [rank16]:[W621 20:54:38.135510632 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 16] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
452
+ [rank0]:[W621 20:54:38.871244986 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
453
+ [rank24]:[W621 20:54:38.537586267 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 24] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
454
+ [rank5]:[W621 20:54:38.181728316 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
455
+ [rank7]:[W621 20:54:38.181922829 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
456
+ [rank2]:[W621 20:54:38.181931209 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
457
+ [rank4]:[W621 20:54:38.182004179 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
458
+ [rank18]:[W621 20:54:38.488096925 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 18] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
459
+ [rank23]:[W621 20:54:38.488106584 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 23] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
460
+ [rank21]:[W621 20:54:38.488118308 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 21] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
461
+ [rank26]:[W621 20:54:38.565763990 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 26] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
462
+ [rank20]:[W621 20:54:38.488286233 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 20] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
463
+ [rank28]:[W621 20:54:38.565817999 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 28] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
464
+ [rank6]:[W621 20:54:38.183551244 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
465
+ [rank10]:[W621 20:54:38.397740736 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
466
+ [rank15]:[W621 20:54:38.397740704 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
467
+ [rank29]:[W621 20:54:38.567030553 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 29] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
attnserver.run_attnserver.slurm.sh.343196.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343197.err.log CHANGED
@@ -184,3 +184,266 @@ W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766]
184
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
185
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
185
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
  W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
187
+ [rank0]:[W621 20:53:36.476389910 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
188
+ [rank8]:[W621 20:53:36.397410647 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
189
+ [rank16]:[W621 20:53:36.909565270 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 16] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
190
+ [rank7]:[W621 20:53:37.214991830 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
191
+ [rank15]:[W621 20:53:37.103476459 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
192
+ [rank23]:[W621 20:53:37.556635144 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 23] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
193
+ [rank31]:[W621 20:53:37.626428569 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 31] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
194
+ [rank24]:[W621 20:53:37.689221072 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 24] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
195
+ [rank4]:[W621 20:53:37.287112172 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
196
+ [rank2]:[W621 20:53:37.287117402 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
197
+ [rank26]:[W621 20:53:37.696026079 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 26] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
198
+ [rank20]:[W621 20:53:37.628797877 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 20] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
199
+ [rank12]:[W621 20:53:37.176861429 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
200
+ [rank18]:[W621 20:53:37.633084211 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 18] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
201
+ [rank3]:[W621 20:53:37.294993219 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
202
+ [rank10]:[W621 20:53:37.181751478 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
203
+ [rank5]:[W621 20:53:37.295509111 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
204
+ [rank29]:[W621 20:53:37.704865500 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 29] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
205
+ [rank27]:[W621 20:53:37.704869504 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 27] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
206
+ [rank28]:[W621 20:53:37.705096442 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 28] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
207
+ [rank11]:[W621 20:53:37.191090393 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
208
+ [rank19]:[W621 20:53:37.645800975 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 19] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
209
+ [rank21]:[W621 20:53:37.646140458 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 21] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
210
+ [rank1]:[W621 20:53:37.309853849 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
211
+ [rank9]:[W621 20:53:37.197524871 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
212
+ [rank17]:[W621 20:53:37.647656849 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 17] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
213
+ [rank6]:[W621 20:53:37.317487619 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
214
+ [rank13]:[W621 20:53:37.200277507 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
215
+ [rank25]:[W621 20:53:37.720994991 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 25] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
216
+ [rank22]:[W621 20:53:37.664677490 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 22] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
217
+ [rank14]:[W621 20:53:37.208867094 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
218
+ [rank30]:[W621 20:53:37.725932637 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 30] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
219
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
220
+ warnings.warn(
221
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
222
+ warnings.warn(
223
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
224
+ warnings.warn(
225
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
226
+ warnings.warn(
227
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
228
+ warnings.warn(
229
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
230
+ warnings.warn(
231
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
232
+ warnings.warn(
233
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
234
+ warnings.warn(
235
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
236
+ warnings.warn(
237
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
238
+ warnings.warn(
239
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
240
+ warnings.warn(
241
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
242
+ warnings.warn(
243
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
244
+ warnings.warn(
245
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
246
+ warnings.warn(
247
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
248
+ warnings.warn(
249
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
250
+ warnings.warn(
251
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
252
+ warnings.warn(
253
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
254
+ warnings.warn(
255
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
256
+ warnings.warn(
257
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
258
+ warnings.warn(
259
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
260
+ warnings.warn(
261
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
262
+ warnings.warn(
263
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
264
+ warnings.warn(
265
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
266
+ warnings.warn(
267
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
268
+ warnings.warn(
269
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
270
+ warnings.warn(
271
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
272
+ warnings.warn(
273
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
274
+ warnings.warn(
275
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
276
+ warnings.warn(
277
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
278
+ warnings.warn(
279
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
280
+ warnings.warn(
281
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
282
+ warnings.warn(
283
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
284
+ warnings.warn(
285
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
286
+ warnings.warn(
287
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
288
+ warnings.warn(
289
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
290
+ warnings.warn(
291
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
292
+ warnings.warn(
293
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
294
+ warnings.warn(
295
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
296
+ warnings.warn(
297
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
298
+ warnings.warn(
299
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
300
+ warnings.warn(
301
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
302
+ warnings.warn(
303
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
304
+ warnings.warn(
305
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
306
+ warnings.warn(
307
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
308
+ warnings.warn(
309
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
310
+ warnings.warn(
311
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
312
+ warnings.warn(
313
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
314
+ warnings.warn(
315
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
316
+ warnings.warn(
317
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
318
+ warnings.warn(
319
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
320
+ warnings.warn(
321
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
322
+ warnings.warn(
323
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
324
+ warnings.warn(
325
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
326
+ warnings.warn(
327
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
328
+ warnings.warn(
329
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
330
+ warnings.warn(
331
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
332
+ warnings.warn(
333
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
334
+ warnings.warn(
335
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
336
+ warnings.warn(
337
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
338
+ warnings.warn(
339
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
340
+ warnings.warn(
341
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
342
+ warnings.warn(
343
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
344
+ warnings.warn(
345
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
346
+ warnings.warn(
347
+ [rank4]:[W621 20:54:13.424066979 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
348
+ [rank5]:[W621 20:54:13.521024731 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
349
+ [rank7]:[W621 20:54:13.539679935 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
350
+ [rank6]:[W621 20:54:13.548186503 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
351
+ [rank2]:[W621 20:54:13.552759866 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
352
+ [rank3]:[W621 20:54:13.612504683 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
353
+ [rank1]:[W621 20:54:13.686343546 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
354
+ [rank0]:[W621 20:54:13.721086784 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
355
+ [rank9]:[W621 20:54:13.791768962 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
356
+ [rank25]:[W621 20:54:14.454751915 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
357
+ [rank13]:[W621 20:54:14.967778716 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
358
+ [rank8]:[W621 20:54:14.979701392 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
359
+ [rank27]:[W621 20:54:14.507683165 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
360
+ [rank31]:[W621 20:54:14.523350337 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
361
+ [rank26]:[W621 20:54:14.526671273 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
362
+ [rank28]:[W621 20:54:14.528885182 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
363
+ [rank23]:[W621 20:54:14.475122137 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
364
+ [rank20]:[W621 20:54:14.510825805 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
365
+ [rank24]:[W621 20:54:14.632187007 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
366
+ [rank16]:[W621 20:54:14.573884922 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
367
+ [rank17]:[W621 20:54:14.628522551 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
368
+ [rank30]:[W621 20:54:14.716619743 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
369
+ [rank29]:[W621 20:54:14.721612508 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
370
+ [rank15]:[W621 20:54:14.213641707 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
371
+ [rank19]:[W621 20:54:14.671145596 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
372
+ [rank21]:[W621 20:54:14.683378062 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
373
+ [rank18]:[W621 20:54:14.710130671 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
374
+ [rank10]:[W621 20:54:14.267877352 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
375
+ [rank22]:[W621 20:54:14.749166904 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
376
+ [rank12]:[W621 20:54:14.299484416 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
377
+ [rank14]:[W621 20:54:14.306472709 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
378
+ [rank11]:[W621 20:54:14.308930759 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
379
+ + set +x
380
+ + set +x
381
+ + set +x
382
+ + set +x
383
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
384
+ + export PROF_CTX_LENGTH=2048
385
+ + PROF_CTX_LENGTH=2048
386
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp4.bs4.json'
387
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp4.bs4.json' ']'
388
+ + echo 'Running ctx_length=2048, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=4'
389
+ + srun bash ./attnserver.sh
390
+ + which python3
391
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
392
+ + which python3
393
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
394
+ + which python3
395
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
396
+ + which python3
397
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
398
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
399
+ and will be removed in future. Use torchrun.
400
+ Note that --use-env is set by default in torchrun.
401
+ If your script expects `--local-rank` argument to be set, please
402
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
403
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
404
+ further instructions
405
+
406
+ main()
407
+ W0621 20:54:20.099000 3375010 site-packages/torch/distributed/run.py:766]
408
+ W0621 20:54:20.099000 3375010 site-packages/torch/distributed/run.py:766] *****************************************
409
+ W0621 20:54:20.099000 3375010 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
410
+ W0621 20:54:20.099000 3375010 site-packages/torch/distributed/run.py:766] *****************************************
411
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
412
+ and will be removed in future. Use torchrun.
413
+ Note that --use-env is set by default in torchrun.
414
+ If your script expects `--local-rank` argument to be set, please
415
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
416
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
417
+ further instructions
418
+
419
+ main()
420
+ W0621 20:54:20.165000 3306626 site-packages/torch/distributed/run.py:766]
421
+ W0621 20:54:20.165000 3306626 site-packages/torch/distributed/run.py:766] *****************************************
422
+ W0621 20:54:20.165000 3306626 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
423
+ W0621 20:54:20.165000 3306626 site-packages/torch/distributed/run.py:766] *****************************************
424
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
425
+ and will be removed in future. Use torchrun.
426
+ Note that --use-env is set by default in torchrun.
427
+ If your script expects `--local-rank` argument to be set, please
428
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
429
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
430
+ further instructions
431
+
432
+ main()
433
+ W0621 20:54:20.250000 87332 site-packages/torch/distributed/run.py:766]
434
+ W0621 20:54:20.250000 87332 site-packages/torch/distributed/run.py:766] *****************************************
435
+ W0621 20:54:20.250000 87332 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
436
+ W0621 20:54:20.250000 87332 site-packages/torch/distributed/run.py:766] *****************************************
437
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
438
+ and will be removed in future. Use torchrun.
439
+ Note that --use-env is set by default in torchrun.
440
+ If your script expects `--local-rank` argument to be set, please
441
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
442
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
443
+ further instructions
444
+
445
+ main()
446
+ W0621 20:54:20.309000 2008025 site-packages/torch/distributed/run.py:766]
447
+ W0621 20:54:20.309000 2008025 site-packages/torch/distributed/run.py:766] *****************************************
448
+ W0621 20:54:20.309000 2008025 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
449
+ W0621 20:54:20.309000 2008025 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343197.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343201.out.log CHANGED
@@ -37843,3 +37843,189 @@ batch tensor after cp: labels torch.Size([1, 65536])
37843
  batch tensor after cp: loss_mask torch.Size([1, 65536])
37844
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37845
  batch tensor after cp: position_ids torch.Size([1, 65536])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37843
  batch tensor after cp: loss_mask torch.Size([1, 65536])
37844
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37845
  batch tensor after cp: position_ids torch.Size([1, 65536])
37846
+ batch tensor: tokens torch.Size([1, 131072])
37847
+ batch tensor: labels torch.Size([1, 131072])
37848
+ batch tensor: loss_mask torch.Size([1, 131072])
37849
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37850
+ batch tensor: position_ids torch.Size([1, 131072])
37851
+ batch tensor after cp: tokens torch.Size([1, 65536])
37852
+ batch tensor after cp: labels torch.Size([1, 65536])
37853
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37854
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37855
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37856
+ batch tensor: tokens torch.Size([1, 131072])
37857
+ batch tensor: labels torch.Size([1, 131072])
37858
+ batch tensor: loss_mask torch.Size([1, 131072])
37859
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37860
+ batch tensor: position_ids torch.Size([1, 131072])
37861
+ batch tensor after cp: tokens torch.Size([1, 65536])
37862
+ batch tensor after cp: labels torch.Size([1, 65536])
37863
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37864
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37865
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37866
+ Start exporting trace 7
37867
+ Done exporting trace 7
37868
+ [2025-06-21 20:53:31] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 40195.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
37869
+ batch tensor: tokens torch.Size([1, 131072])
37870
+ batch tensor: labels torch.Size([1, 131072])
37871
+ batch tensor: loss_mask torch.Size([1, 131072])
37872
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37873
+ batch tensor: position_ids torch.Size([1, 131072])
37874
+ batch tensor after cp: tokens torch.Size([1, 65536])
37875
+ batch tensor after cp: labels torch.Size([1, 65536])
37876
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37877
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37878
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37879
+ batch tensor: tokens torch.Size([1, 131072])
37880
+ batch tensor: labels torch.Size([1, 131072])
37881
+ batch tensor: loss_mask torch.Size([1, 131072])
37882
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37883
+ batch tensor: position_ids torch.Size([1, 131072])
37884
+ batch tensor after cp: tokens torch.Size([1, 65536])
37885
+ batch tensor after cp: labels torch.Size([1, 65536])
37886
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37887
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37888
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37889
+ batch tensor: tokens torch.Size([1, 131072])
37890
+ batch tensor: labels torch.Size([1, 131072])
37891
+ batch tensor: loss_mask torch.Size([1, 131072])
37892
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37893
+ batch tensor: position_ids torch.Size([1, 131072])
37894
+ batch tensor after cp: tokens torch.Size([1, 65536])
37895
+ batch tensor after cp: labels torch.Size([1, 65536])
37896
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37897
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37898
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37899
+ batch tensor: tokens torch.Size([1, 131072])
37900
+ batch tensor: labels torch.Size([1, 131072])
37901
+ batch tensor: loss_mask torch.Size([1, 131072])
37902
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37903
+ batch tensor: position_ids torch.Size([1, 131072])
37904
+ batch tensor after cp: tokens torch.Size([1, 65536])
37905
+ batch tensor after cp: labels torch.Size([1, 65536])
37906
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37907
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37908
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37909
+ batch tensor: tokens torch.Size([1, 131072])
37910
+ batch tensor: labels torch.Size([1, 131072])
37911
+ batch tensor: loss_mask torch.Size([1, 131072])
37912
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37913
+ batch tensor: position_ids torch.Size([1, 131072])
37914
+ batch tensor after cp: tokens torch.Size([1, 65536])
37915
+ batch tensor after cp: labels torch.Size([1, 65536])
37916
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37917
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37918
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37919
+ batch tensor: tokens torch.Size([1, 131072])
37920
+ batch tensor: labels torch.Size([1, 131072])
37921
+ batch tensor: loss_mask torch.Size([1, 131072])
37922
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37923
+ batch tensor: position_ids torch.Size([1, 131072])
37924
+ batch tensor after cp: tokens torch.Size([1, 65536])
37925
+ batch tensor after cp: labels torch.Size([1, 65536])
37926
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37927
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37928
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37929
+ batch tensor: tokens torch.Size([1, 131072])
37930
+ batch tensor: labels torch.Size([1, 131072])
37931
+ batch tensor: loss_mask torch.Size([1, 131072])
37932
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37933
+ batch tensor: position_ids torch.Size([1, 131072])
37934
+ batch tensor after cp: tokens torch.Size([1, 65536])
37935
+ batch tensor after cp: labels torch.Size([1, 65536])
37936
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37937
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37938
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37939
+ batch tensor: tokens torch.Size([1, 131072])
37940
+ batch tensor: labels torch.Size([1, 131072])
37941
+ batch tensor: loss_mask torch.Size([1, 131072])
37942
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37943
+ batch tensor: position_ids torch.Size([1, 131072])
37944
+ batch tensor after cp: tokens torch.Size([1, 65536])
37945
+ batch tensor after cp: labels torch.Size([1, 65536])
37946
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37947
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37948
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37949
+ batch tensor: tokens torch.Size([1, 131072])
37950
+ batch tensor: labels torch.Size([1, 131072])
37951
+ batch tensor: loss_mask torch.Size([1, 131072])
37952
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37953
+ batch tensor: position_ids torch.Size([1, 131072])
37954
+ batch tensor after cp: tokens torch.Size([1, 65536])
37955
+ batch tensor after cp: labels torch.Size([1, 65536])
37956
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37957
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37958
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37959
+ batch tensor: tokens torch.Size([1, 131072])
37960
+ batch tensor: labels torch.Size([1, 131072])
37961
+ batch tensor: loss_mask torch.Size([1, 131072])
37962
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37963
+ batch tensor: position_ids torch.Size([1, 131072])
37964
+ batch tensor after cp: tokens torch.Size([1, 65536])
37965
+ batch tensor after cp: labels torch.Size([1, 65536])
37966
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37967
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37968
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37969
+ batch tensor: tokens torch.Size([1, 131072])
37970
+ batch tensor: labels torch.Size([1, 131072])
37971
+ batch tensor: loss_mask torch.Size([1, 131072])
37972
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37973
+ batch tensor: position_ids torch.Size([1, 131072])
37974
+ batch tensor after cp: tokens torch.Size([1, 65536])
37975
+ batch tensor after cp: labels torch.Size([1, 65536])
37976
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37977
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37978
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37979
+ batch tensor: tokens torch.Size([1, 131072])
37980
+ batch tensor: labels torch.Size([1, 131072])
37981
+ batch tensor: loss_mask torch.Size([1, 131072])
37982
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37983
+ batch tensor: position_ids torch.Size([1, 131072])
37984
+ batch tensor after cp: tokens torch.Size([1, 65536])
37985
+ batch tensor after cp: labels torch.Size([1, 65536])
37986
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37987
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37988
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37989
+ batch tensor: tokens torch.Size([1, 131072])
37990
+ batch tensor: labels torch.Size([1, 131072])
37991
+ batch tensor: loss_mask torch.Size([1, 131072])
37992
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37993
+ batch tensor: position_ids torch.Size([1, 131072])
37994
+ batch tensor after cp: tokens torch.Size([1, 65536])
37995
+ batch tensor after cp: labels torch.Size([1, 65536])
37996
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37997
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37998
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37999
+ batch tensor: tokens torch.Size([1, 131072])
38000
+ batch tensor: labels torch.Size([1, 131072])
38001
+ batch tensor: loss_mask torch.Size([1, 131072])
38002
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
38003
+ batch tensor: position_ids torch.Size([1, 131072])
38004
+ batch tensor after cp: tokens torch.Size([1, 65536])
38005
+ batch tensor after cp: labels torch.Size([1, 65536])
38006
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
38007
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
38008
+ batch tensor after cp: position_ids torch.Size([1, 65536])
38009
+ batch tensor: tokens torch.Size([1, 131072])
38010
+ batch tensor: labels torch.Size([1, 131072])
38011
+ batch tensor: loss_mask torch.Size([1, 131072])
38012
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
38013
+ batch tensor: position_ids torch.Size([1, 131072])
38014
+ batch tensor after cp: tokens torch.Size([1, 65536])
38015
+ batch tensor after cp: labels torch.Size([1, 65536])
38016
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
38017
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
38018
+ batch tensor after cp: position_ids torch.Size([1, 65536])
38019
+ batch tensor: tokens torch.Size([1, 131072])
38020
+ batch tensor: labels torch.Size([1, 131072])
38021
+ batch tensor: loss_mask torch.Size([1, 131072])
38022
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
38023
+ batch tensor: position_ids torch.Size([1, 131072])
38024
+ batch tensor after cp: tokens torch.Size([1, 65536])
38025
+ batch tensor after cp: labels torch.Size([1, 65536])
38026
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
38027
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
38028
+ batch tensor after cp: position_ids torch.Size([1, 65536])
38029
+ Start exporting trace 8
38030
+ Done exporting trace 8
38031
+ [2025-06-21 20:54:11] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 39801.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |