GindaChen commited on
Commit
b2d1963
·
verified ·
1 Parent(s): cf7161e

Upload folder using huggingface_hub

Browse files
attnserver.run_attnserver.slurm.sh.343188.err.log CHANGED
@@ -75705,3 +75705,29 @@ W0621 20:51:35.866000 2709588 site-packages/torch/distributed/run.py:766] ******
75705
  warnings.warn(
75706
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75707
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75705
  warnings.warn(
75706
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75707
  warnings.warn(
75708
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75709
+ warnings.warn(
75710
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75711
+ warnings.warn(
75712
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75713
+ warnings.warn(
75714
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75715
+ warnings.warn(
75716
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75717
+ warnings.warn(
75718
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75719
+ warnings.warn(
75720
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75721
+ warnings.warn(
75722
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75723
+ warnings.warn(
75724
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75725
+ warnings.warn(
75726
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75727
+ warnings.warn(
75728
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75729
+ warnings.warn(
75730
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75731
+ warnings.warn(
75732
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
75733
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343188.out.log CHANGED
@@ -118868,3 +118868,809 @@ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
118868
  >>> decoder
118869
  >>> output_layer
118870
  > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118868
  >>> decoder
118869
  >>> output_layer
118870
  > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
118871
+ >>> embedding
118872
+ >>> decoder
118873
+ >>> output_layer
118874
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
118875
+ >>> embedding
118876
+ >>> decoder
118877
+ >>> output_layer
118878
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
118879
+ >>> embedding
118880
+ >>> decoder
118881
+ >>> output_layer
118882
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
118883
+ >>> embedding
118884
+ >>> decoder
118885
+ >>> output_layer
118886
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
118887
+ >>> embedding
118888
+ >>> decoder
118889
+ >>> output_layer
118890
+ >>> embedding
118891
+ >>> decoder
118892
+ >>> output_layer
118893
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
118894
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
118895
+ >>> embedding
118896
+ >>> decoder
118897
+ >>> output_layer
118898
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
118899
+ >>> embedding
118900
+ >>> decoder
118901
+ >>> output_layer
118902
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
118903
+ >>> embedding
118904
+ >>> decoder
118905
+ >>> output_layer
118906
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
118907
+ >>> embedding
118908
+ >>> decoder
118909
+ >>> output_layer
118910
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
118911
+ >>> embedding
118912
+ >>> decoder
118913
+ >>> output_layer
118914
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
118915
+ >>> embedding
118916
+ >>> decoder
118917
+ >>> output_layer
118918
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
118919
+ >>> embedding
118920
+ >>> decoder
118921
+ >>> output_layer
118922
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
118923
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
118924
+ will not load any checkpoints and will start from random
118925
+ (min, max) time across ranks (ms):
118926
+ load-checkpoint ................................: (2.59, 4.79)
118927
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 20:52:19
118928
+ > building train, validation, and test datasets ...
118929
+ > datasets target sizes (minimum size):
118930
+ train: 10
118931
+ validation: 1
118932
+ test: 1
118933
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
118934
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
118935
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
118936
+ > building train, validation, and test datasets for GPT ...
118937
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x15009ca5ca70>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
118938
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
118939
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
118940
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
118941
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.006857 seconds
118942
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
118943
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
118944
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
118945
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
118946
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
118947
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.002077 seconds
118948
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
118949
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
118950
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
118951
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
118952
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
118953
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001803 seconds
118954
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
118955
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
118956
+ > finished creating GPT datasets ...
118957
+ [after dataloaders are built] datetime: 2025-06-21 20:52:19
118958
+ done with setup ...
118959
+ training ...
118960
+ Setting rerun_state_machine.current_iteration to 0...
118961
+ (min, max) time across ranks (ms):
118962
+ model-and-optimizer-setup ......................: (8111.51, 8142.85)
118963
+ train/valid/test-data-iterators-setup ..........: (21.81, 165.55)
118964
+ [before the start of training step] datetime: 2025-06-21 20:52:19
118965
+ batch tensor: tokens torch.Size([1, 131072])
118966
+ batch tensor: labels torch.Size([1, 131072])
118967
+ batch tensor: loss_mask torch.Size([1, 131072])
118968
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
118969
+ batch tensor: position_ids torch.Size([1, 131072])
118970
+ batch tensor after cp: tokens torch.Size([1, 16384])
118971
+ batch tensor after cp: labels torch.Size([1, 16384])
118972
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
118973
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
118974
+ batch tensor after cp: position_ids torch.Size([1, 16384])
118975
+ batch tensor: tokens torch.Size([1, 131072])
118976
+ batch tensor: labels torch.Size([1, 131072])
118977
+ batch tensor: loss_mask torch.Size([1, 131072])
118978
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
118979
+ batch tensor: position_ids torch.Size([1, 131072])
118980
+ batch tensor: tokens torch.Size([1, 131072])
118981
+ batch tensor: labels torch.Size([1, 131072])
118982
+ batch tensor: loss_mask torch.Size([1, 131072])
118983
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
118984
+ batch tensor: position_ids torch.Size([1, 131072])
118985
+ batch tensor after cp: tokens torch.Size([1, 16384])
118986
+ batch tensor after cp: labels torch.Size([1, 16384])
118987
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
118988
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
118989
+ batch tensor after cp: position_ids torch.Size([1, 16384])
118990
+ batch tensor after cp: tokens torch.Size([1, 16384])
118991
+ batch tensor after cp: labels torch.Size([1, 16384])
118992
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
118993
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
118994
+ batch tensor after cp: position_ids torch.Size([1, 16384])
118995
+ batch tensor: tokens torch.Size([1, 131072])
118996
+ batch tensor: labels torch.Size([1, 131072])
118997
+ batch tensor: loss_mask torch.Size([1, 131072])
118998
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
118999
+ batch tensor: position_ids torch.Size([1, 131072])
119000
+ batch tensor after cp: tokens torch.Size([1, 16384])
119001
+ batch tensor after cp: labels torch.Size([1, 16384])
119002
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119003
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119004
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119005
+ batch tensor: tokens torch.Size([1, 131072])
119006
+ batch tensor: labels torch.Size([1, 131072])
119007
+ batch tensor: loss_mask torch.Size([1, 131072])
119008
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119009
+ batch tensor: position_ids torch.Size([1, 131072])
119010
+ batch tensor after cp: tokens torch.Size([1, 16384])
119011
+ batch tensor after cp: labels torch.Size([1, 16384])
119012
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119013
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119014
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119015
+ batch tensor: tokens torch.Size([1, 131072])
119016
+ batch tensor: labels torch.Size([1, 131072])
119017
+ batch tensor: loss_mask torch.Size([1, 131072])
119018
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119019
+ batch tensor: position_ids torch.Size([1, 131072])
119020
+ batch tensor after cp: tokens torch.Size([1, 16384])
119021
+ batch tensor after cp: labels torch.Size([1, 16384])
119022
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119023
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119024
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119025
+ batch tensor: tokens torch.Size([1, 131072])
119026
+ batch tensor: labels torch.Size([1, 131072])
119027
+ batch tensor: loss_mask torch.Size([1, 131072])
119028
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119029
+ batch tensor: position_ids torch.Size([1, 131072])
119030
+ batch tensor after cp: tokens torch.Size([1, 16384])
119031
+ batch tensor after cp: labels torch.Size([1, 16384])
119032
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119033
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119034
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119035
+ batch tensor: tokens torch.Size([1, 131072])
119036
+ batch tensor: labels torch.Size([1, 131072])
119037
+ batch tensor: loss_mask torch.Size([1, 131072])
119038
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119039
+ batch tensor: position_ids torch.Size([1, 131072])
119040
+ batch tensor after cp: tokens torch.Size([1, 16384])
119041
+ batch tensor after cp: labels torch.Size([1, 16384])
119042
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119043
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119044
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119045
+ batch tensor: tokens torch.Size([1, 131072])
119046
+ batch tensor: labels torch.Size([1, 131072])
119047
+ batch tensor: loss_mask torch.Size([1, 131072])
119048
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119049
+ batch tensor: position_ids torch.Size([1, 131072])
119050
+ batch tensor: tokens torch.Size([1, 131072])
119051
+ batch tensor: labels torch.Size([1, 131072])
119052
+ batch tensor: loss_mask torch.Size([1, 131072])
119053
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119054
+ batch tensor: position_ids torch.Size([1, 131072])
119055
+ batch tensor after cp: tokens torch.Size([1, 16384])
119056
+ batch tensor after cp: labels torch.Size([1, 16384])
119057
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119058
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119059
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119060
+ batch tensor: tokens torch.Size([1, 131072])
119061
+ batch tensor: labels torch.Size([1, 131072])
119062
+ batch tensor: loss_mask torch.Size([1, 131072])
119063
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119064
+ batch tensor: position_ids torch.Size([1, 131072])
119065
+ batch tensor after cp: tokens torch.Size([1, 16384])
119066
+ batch tensor after cp: labels torch.Size([1, 16384])
119067
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119068
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119069
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119070
+ batch tensor after cp: tokens torch.Size([1, 16384])
119071
+ batch tensor after cp: labels torch.Size([1, 16384])
119072
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119073
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119074
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119075
+ batch tensor: tokens torch.Size([1, 131072])
119076
+ batch tensor: labels torch.Size([1, 131072])
119077
+ batch tensor: loss_mask torch.Size([1, 131072])
119078
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119079
+ batch tensor: position_ids torch.Size([1, 131072])
119080
+ batch tensor: tokens torch.Size([1, 131072])
119081
+ batch tensor: labels torch.Size([1, 131072])
119082
+ batch tensor: loss_mask torch.Size([1, 131072])
119083
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119084
+ batch tensor: position_ids torch.Size([1, 131072])
119085
+ batch tensor after cp: tokens torch.Size([1, 16384])
119086
+ batch tensor after cp: labels torch.Size([1, 16384])
119087
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119088
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119089
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119090
+ batch tensor after cp: tokens torch.Size([1, 16384])
119091
+ batch tensor after cp: labels torch.Size([1, 16384])
119092
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119093
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119094
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119095
+ batch tensor: tokens torch.Size([1, 131072])
119096
+ batch tensor: labels torch.Size([1, 131072])
119097
+ batch tensor: loss_mask torch.Size([1, 131072])
119098
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119099
+ batch tensor: position_ids torch.Size([1, 131072])
119100
+ batch tensor after cp: tokens torch.Size([1, 16384])
119101
+ batch tensor after cp: labels torch.Size([1, 16384])
119102
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119103
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119104
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119105
+ batch tensor: tokens torch.Size([1, 131072])
119106
+ batch tensor: labels torch.Size([1, 131072])
119107
+ batch tensor: loss_mask torch.Size([1, 131072])
119108
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119109
+ batch tensor: position_ids torch.Size([1, 131072])
119110
+ batch tensor after cp: tokens torch.Size([1, 16384])
119111
+ batch tensor after cp: labels torch.Size([1, 16384])
119112
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119113
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119114
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119115
+ batch tensor: tokens torch.Size([1, 131072])
119116
+ batch tensor: labels torch.Size([1, 131072])
119117
+ batch tensor: loss_mask torch.Size([1, 131072])
119118
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119119
+ batch tensor: position_ids torch.Size([1, 131072])
119120
+ batch tensor: tokens torch.Size([1, 131072])
119121
+ batch tensor: labels torch.Size([1, 131072])
119122
+ batch tensor: loss_mask torch.Size([1, 131072])
119123
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119124
+ batch tensor: position_ids torch.Size([1, 131072])
119125
+ batch tensor: tokens torch.Size([1, 131072])
119126
+ batch tensor: labels torch.Size([1, 131072])
119127
+ batch tensor: loss_mask torch.Size([1, 131072])
119128
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119129
+ batch tensor: position_ids torch.Size([1, 131072])
119130
+ batch tensor after cp: tokens torch.Size([1, 16384])
119131
+ batch tensor after cp: labels torch.Size([1, 16384])
119132
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119133
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119134
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119135
+ batch tensor after cp: tokens torch.Size([1, 16384])
119136
+ batch tensor after cp: labels torch.Size([1, 16384])
119137
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119138
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119139
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119140
+ batch tensor after cp: tokens torch.Size([1, 16384])
119141
+ batch tensor after cp: labels torch.Size([1, 16384])
119142
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119143
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119144
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119145
+ batch tensor: tokens torch.Size([1, 131072])
119146
+ batch tensor: labels torch.Size([1, 131072])
119147
+ batch tensor: loss_mask torch.Size([1, 131072])
119148
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119149
+ batch tensor: position_ids torch.Size([1, 131072])
119150
+ batch tensor after cp: tokens torch.Size([1, 16384])
119151
+ batch tensor after cp: labels torch.Size([1, 16384])
119152
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119153
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119154
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119155
+ batch tensor: tokens torch.Size([1, 131072])
119156
+ batch tensor: labels torch.Size([1, 131072])
119157
+ batch tensor: loss_mask torch.Size([1, 131072])
119158
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119159
+ batch tensor: position_ids torch.Size([1, 131072])
119160
+ batch tensor: tokens torch.Size([1, 131072])
119161
+ batch tensor: labels torch.Size([1, 131072])
119162
+ batch tensor: loss_mask torch.Size([1, 131072])
119163
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119164
+ batch tensor: position_ids torch.Size([1, 131072])
119165
+ batch tensor after cp: tokens torch.Size([1, 16384])
119166
+ batch tensor after cp: labels torch.Size([1, 16384])
119167
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119168
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119169
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119170
+ batch tensor: tokens torch.Size([1, 131072])
119171
+ batch tensor: labels torch.Size([1, 131072])
119172
+ batch tensor: loss_mask torch.Size([1, 131072])
119173
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119174
+ batch tensor: position_ids torch.Size([1, 131072])
119175
+ batch tensor: tokens torch.Size([1, 131072])
119176
+ batch tensor: labels torch.Size([1, 131072])
119177
+ batch tensor: loss_mask torch.Size([1, 131072])
119178
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119179
+ batch tensor: position_ids torch.Size([1, 131072])
119180
+ batch tensor: tokens torch.Size([1, 131072])
119181
+ batch tensor: labels torch.Size([1, 131072])
119182
+ batch tensor: loss_mask torch.Size([1, 131072])
119183
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119184
+ batch tensor: position_ids torch.Size([1, 131072])
119185
+ batch tensor: tokens torch.Size([1, 131072])
119186
+ batch tensor: labels torch.Size([1, 131072])
119187
+ batch tensor: loss_mask torch.Size([1, 131072])
119188
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119189
+ batch tensor: position_ids torch.Size([1, 131072])
119190
+ batch tensor after cp: tokens torch.Size([1, 16384])
119191
+ batch tensor after cp: labels torch.Size([1, 16384])
119192
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119193
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119194
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119195
+ batch tensor after cp: tokens torch.Size([1, 16384])
119196
+ batch tensor after cp: tokens torch.Size([1, 16384])
119197
+ batch tensor after cp: labels torch.Size([1, 16384])
119198
+ batch tensor after cp: labels torch.Size([1, 16384])
119199
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119200
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119201
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119202
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119203
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119204
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119205
+ batch tensor after cp: tokens torch.Size([1, 16384])
119206
+ batch tensor after cp: tokens torch.Size([1, 16384])
119207
+ batch tensor after cp: labels torch.Size([1, 16384])
119208
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119209
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119210
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119211
+ batch tensor after cp: labels torch.Size([1, 16384])
119212
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119213
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119214
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119215
+ batch tensor: tokens torch.Size([1, 131072])
119216
+ batch tensor: labels torch.Size([1, 131072])
119217
+ batch tensor: loss_mask torch.Size([1, 131072])
119218
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119219
+ batch tensor: position_ids torch.Size([1, 131072])
119220
+ batch tensor: tokens torch.Size([1, 131072])
119221
+ batch tensor: labels torch.Size([1, 131072])
119222
+ batch tensor: loss_mask torch.Size([1, 131072])
119223
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119224
+ batch tensor: position_ids torch.Size([1, 131072])
119225
+ batch tensor: tokens torch.Size([1, 131072])
119226
+ batch tensor: labels torch.Size([1, 131072])
119227
+ batch tensor: loss_mask torch.Size([1, 131072])
119228
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119229
+ batch tensor: position_ids torch.Size([1, 131072])
119230
+ batch tensor after cp: tokens torch.Size([1, 16384])
119231
+ batch tensor after cp: labels torch.Size([1, 16384])
119232
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119233
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119234
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119235
+ batch tensor: tokens torch.Size([1, 131072])
119236
+ batch tensor: labels torch.Size([1, 131072])
119237
+ batch tensor: loss_mask torch.Size([1, 131072])
119238
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119239
+ batch tensor: position_ids torch.Size([1, 131072])
119240
+ batch tensor after cp: tokens torch.Size([1, 16384])
119241
+ batch tensor after cp: labels torch.Size([1, 16384])
119242
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119243
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119244
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119245
+ batch tensor after cp: tokens torch.Size([1, 16384])
119246
+ batch tensor after cp: labels torch.Size([1, 16384])
119247
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119248
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119249
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119250
+ batch tensor: tokens torch.Size([1, 131072])
119251
+ batch tensor: labels torch.Size([1, 131072])
119252
+ batch tensor: loss_mask torch.Size([1, 131072])
119253
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119254
+ batch tensor: position_ids torch.Size([1, 131072])
119255
+ batch tensor: tokens torch.Size([1, 131072])
119256
+ batch tensor: labels torch.Size([1, 131072])
119257
+ batch tensor: loss_mask torch.Size([1, 131072])
119258
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119259
+ batch tensor: position_ids torch.Size([1, 131072])
119260
+ batch tensor after cp: tokens torch.Size([1, 16384])
119261
+ batch tensor after cp: labels torch.Size([1, 16384])
119262
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119263
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119264
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119265
+ batch tensor after cp: tokens torch.Size([1, 16384])
119266
+ batch tensor after cp: labels torch.Size([1, 16384])
119267
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119268
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119269
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119270
+ batch tensor after cp: tokens torch.Size([1, 16384])
119271
+ batch tensor after cp: labels torch.Size([1, 16384])
119272
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119273
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119274
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119275
+ batch tensor: tokens torch.Size([1, 131072])
119276
+ batch tensor: labels torch.Size([1, 131072])
119277
+ batch tensor: loss_mask torch.Size([1, 131072])
119278
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119279
+ batch tensor: position_ids torch.Size([1, 131072])
119280
+ batch tensor: tokens torch.Size([1, 131072])
119281
+ batch tensor: labels torch.Size([1, 131072])
119282
+ batch tensor: loss_mask torch.Size([1, 131072])
119283
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119284
+ batch tensor: position_ids torch.Size([1, 131072])
119285
+ batch tensor: tokens torch.Size([1, 131072])
119286
+ batch tensor: labels torch.Size([1, 131072])
119287
+ batch tensor: loss_mask torch.Size([1, 131072])
119288
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119289
+ batch tensor: position_ids torch.Size([1, 131072])
119290
+ batch tensor: tokens torch.Size([1, 131072])
119291
+ batch tensor: labels torch.Size([1, 131072])
119292
+ batch tensor: loss_mask torch.Size([1, 131072])
119293
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119294
+ batch tensor: position_ids torch.Size([1, 131072])
119295
+ batch tensor after cp: tokens torch.Size([1, 16384])
119296
+ batch tensor after cp: labels torch.Size([1, 16384])
119297
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119298
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119299
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119300
+ batch tensor: tokens torch.Size([1, 131072])
119301
+ batch tensor: labels torch.Size([1, 131072])
119302
+ batch tensor: loss_mask torch.Size([1, 131072])
119303
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119304
+ batch tensor: position_ids torch.Size([1, 131072])
119305
+ batch tensor after cp: tokens torch.Size([1, 16384])
119306
+ batch tensor after cp: labels torch.Size([1, 16384])
119307
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119308
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119309
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119310
+ batch tensor after cp: tokens torch.Size([1, 16384])
119311
+ batch tensor after cp: labels torch.Size([1, 16384])
119312
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119313
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119314
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119315
+ batch tensor after cp: tokens torch.Size([1, 16384])
119316
+ batch tensor after cp: labels torch.Size([1, 16384])
119317
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119318
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119319
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119320
+ batch tensor: tokens torch.Size([1, 131072])
119321
+ batch tensor: labels torch.Size([1, 131072])
119322
+ batch tensor: loss_mask torch.Size([1, 131072])
119323
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119324
+ batch tensor: position_ids torch.Size([1, 131072])
119325
+ batch tensor: tokens torch.Size([1, 131072])
119326
+ batch tensor: labels torch.Size([1, 131072])
119327
+ batch tensor: loss_mask torch.Size([1, 131072])
119328
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119329
+ batch tensor: position_ids torch.Size([1, 131072])
119330
+ batch tensor after cp: tokens torch.Size([1, 16384])
119331
+ batch tensor after cp: labels torch.Size([1, 16384])
119332
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119333
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119334
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119335
+ batch tensor: tokens torch.Size([1, 131072])
119336
+ batch tensor: labels torch.Size([1, 131072])
119337
+ batch tensor: loss_mask torch.Size([1, 131072])
119338
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119339
+ batch tensor: position_ids torch.Size([1, 131072])
119340
+ batch tensor after cp: tokens torch.Size([1, 16384])
119341
+ batch tensor after cp: labels torch.Size([1, 16384])
119342
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119343
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119344
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119345
+ batch tensor: tokens torch.Size([1, 131072])
119346
+ batch tensor: labels torch.Size([1, 131072])
119347
+ batch tensor: loss_mask torch.Size([1, 131072])
119348
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119349
+ batch tensor: position_ids torch.Size([1, 131072])
119350
+ batch tensor after cp: tokens torch.Size([1, 16384])
119351
+ batch tensor after cp: labels torch.Size([1, 16384])
119352
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119353
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119354
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119355
+ batch tensor after cp: tokens torch.Size([1, 16384])
119356
+ batch tensor after cp: labels torch.Size([1, 16384])
119357
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119358
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119359
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119360
+ batch tensor: tokens torch.Size([1, 131072])
119361
+ batch tensor: labels torch.Size([1, 131072])
119362
+ batch tensor: loss_mask torch.Size([1, 131072])
119363
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119364
+ batch tensor: position_ids torch.Size([1, 131072])
119365
+ batch tensor after cp: tokens torch.Size([1, 16384])
119366
+ batch tensor after cp: labels torch.Size([1, 16384])
119367
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119368
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119369
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119370
+ batch tensor: tokens torch.Size([1, 131072])
119371
+ batch tensor: labels torch.Size([1, 131072])
119372
+ batch tensor: loss_mask torch.Size([1, 131072])
119373
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119374
+ batch tensor: position_ids torch.Size([1, 131072])
119375
+ batch tensor: tokens torch.Size([1, 131072])
119376
+ batch tensor: labels torch.Size([1, 131072])
119377
+ batch tensor: loss_mask torch.Size([1, 131072])
119378
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119379
+ batch tensor: position_ids torch.Size([1, 131072])
119380
+ batch tensor: tokens torch.Size([1, 131072])
119381
+ batch tensor: labels torch.Size([1, 131072])
119382
+ batch tensor: loss_mask torch.Size([1, 131072])
119383
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119384
+ batch tensor: position_ids torch.Size([1, 131072])
119385
+ batch tensor: tokens torch.Size([1, 131072])
119386
+ batch tensor: labels torch.Size([1, 131072])
119387
+ batch tensor: loss_mask torch.Size([1, 131072])
119388
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119389
+ batch tensor: position_ids torch.Size([1, 131072])
119390
+ batch tensor: tokens torch.Size([1, 131072])
119391
+ batch tensor: labels torch.Size([1, 131072])
119392
+ batch tensor: loss_mask torch.Size([1, 131072])
119393
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119394
+ batch tensor: position_ids torch.Size([1, 131072])
119395
+ batch tensor after cp: tokens torch.Size([1, 16384])
119396
+ batch tensor after cp: labels torch.Size([1, 16384])
119397
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119398
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119399
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119400
+ batch tensor after cp: tokens torch.Size([1, 16384])
119401
+ batch tensor after cp: labels torch.Size([1, 16384])
119402
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119403
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119404
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119405
+ batch tensor after cp: tokens torch.Size([1, 16384])
119406
+ batch tensor after cp: labels torch.Size([1, 16384])
119407
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119408
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119409
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119410
+ batch tensor after cp: tokens torch.Size([1, 16384])
119411
+ batch tensor after cp: labels torch.Size([1, 16384])
119412
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119413
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119414
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119415
+ batch tensor after cp: tokens torch.Size([1, 16384])
119416
+ batch tensor after cp: labels torch.Size([1, 16384])
119417
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119418
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119419
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119420
+ batch tensor after cp: tokens torch.Size([1, 16384])
119421
+ batch tensor after cp: labels torch.Size([1, 16384])
119422
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119423
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119424
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119425
+ batch tensor: tokens torch.Size([1, 131072])
119426
+ batch tensor: labels torch.Size([1, 131072])
119427
+ batch tensor: loss_mask torch.Size([1, 131072])
119428
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119429
+ batch tensor: position_ids torch.Size([1, 131072])
119430
+ batch tensor: tokens torch.Size([1, 131072])
119431
+ batch tensor: labels torch.Size([1, 131072])
119432
+ batch tensor: loss_mask torch.Size([1, 131072])
119433
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119434
+ batch tensor: position_ids torch.Size([1, 131072])
119435
+ batch tensor: tokens torch.Size([1, 131072])
119436
+ batch tensor: labels torch.Size([1, 131072])
119437
+ batch tensor: loss_mask torch.Size([1, 131072])
119438
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119439
+ batch tensor: position_ids torch.Size([1, 131072])
119440
+ batch tensor after cp: tokens torch.Size([1, 16384])
119441
+ batch tensor after cp: labels torch.Size([1, 16384])
119442
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119443
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119444
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119445
+ batch tensor after cp: tokens torch.Size([1, 16384])
119446
+ batch tensor after cp: labels torch.Size([1, 16384])
119447
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119448
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119449
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119450
+ batch tensor after cp: tokens torch.Size([1, 16384])
119451
+ batch tensor after cp: labels torch.Size([1, 16384])
119452
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119453
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119454
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119455
+ batch tensor: tokens torch.Size([1, 131072])
119456
+ batch tensor: labels torch.Size([1, 131072])
119457
+ batch tensor: loss_mask torch.Size([1, 131072])
119458
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119459
+ batch tensor: position_ids torch.Size([1, 131072])
119460
+ batch tensor after cp: tokens torch.Size([1, 16384])
119461
+ batch tensor after cp: labels torch.Size([1, 16384])
119462
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119463
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119464
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119465
+ batch tensor: tokens torch.Size([1, 131072])
119466
+ batch tensor: labels torch.Size([1, 131072])
119467
+ batch tensor: loss_mask torch.Size([1, 131072])
119468
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119469
+ batch tensor: position_ids torch.Size([1, 131072])
119470
+ batch tensor: tokens torch.Size([1, 131072])
119471
+ batch tensor: labels torch.Size([1, 131072])
119472
+ batch tensor: loss_mask torch.Size([1, 131072])
119473
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119474
+ batch tensor: position_ids torch.Size([1, 131072])
119475
+ batch tensor after cp: tokens torch.Size([1, 16384])
119476
+ batch tensor after cp: labels torch.Size([1, 16384])
119477
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119478
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119479
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119480
+ batch tensor after cp: tokens torch.Size([1, 16384])
119481
+ batch tensor after cp: labels torch.Size([1, 16384])
119482
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119483
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119484
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119485
+ batch tensor: tokens torch.Size([1, 131072])
119486
+ batch tensor: labels torch.Size([1, 131072])
119487
+ batch tensor: loss_mask torch.Size([1, 131072])
119488
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119489
+ batch tensor: position_ids torch.Size([1, 131072])
119490
+ batch tensor: tokens torch.Size([1, 131072])
119491
+ batch tensor: labels torch.Size([1, 131072])
119492
+ batch tensor: loss_mask torch.Size([1, 131072])
119493
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119494
+ batch tensor: position_ids torch.Size([1, 131072])
119495
+ batch tensor: tokens torch.Size([1, 131072])
119496
+ batch tensor: labels torch.Size([1, 131072])
119497
+ batch tensor: loss_mask torch.Size([1, 131072])
119498
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119499
+ batch tensor: position_ids torch.Size([1, 131072])
119500
+ batch tensor after cp: tokens torch.Size([1, 16384])
119501
+ batch tensor after cp: labels torch.Size([1, 16384])
119502
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119503
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119504
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119505
+ batch tensor after cp: tokens torch.Size([1, 16384])
119506
+ batch tensor after cp: labels torch.Size([1, 16384])
119507
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119508
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119509
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119510
+ batch tensor after cp: tokens torch.Size([1, 16384])
119511
+ batch tensor after cp: labels torch.Size([1, 16384])
119512
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119513
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119514
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119515
+ batch tensor: tokens torch.Size([1, 131072])
119516
+ batch tensor: labels torch.Size([1, 131072])
119517
+ batch tensor: loss_mask torch.Size([1, 131072])
119518
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119519
+ batch tensor: position_ids torch.Size([1, 131072])
119520
+ batch tensor after cp: tokens torch.Size([1, 16384])
119521
+ batch tensor after cp: labels torch.Size([1, 16384])
119522
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119523
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119524
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119525
+ batch tensor: tokens torch.Size([1, 131072])
119526
+ batch tensor: labels torch.Size([1, 131072])
119527
+ batch tensor: loss_mask torch.Size([1, 131072])
119528
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119529
+ batch tensor: position_ids torch.Size([1, 131072])
119530
+ batch tensor after cp: tokens torch.Size([1, 16384])
119531
+ batch tensor after cp: labels torch.Size([1, 16384])
119532
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119533
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119534
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119535
+ batch tensor: tokens torch.Size([1, 131072])
119536
+ batch tensor: labels torch.Size([1, 131072])
119537
+ batch tensor: loss_mask torch.Size([1, 131072])
119538
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119539
+ batch tensor: position_ids torch.Size([1, 131072])
119540
+ batch tensor after cp: tokens torch.Size([1, 16384])
119541
+ batch tensor after cp: labels torch.Size([1, 16384])
119542
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119543
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119544
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119545
+ batch tensor: tokens torch.Size([1, 131072])
119546
+ batch tensor: labels torch.Size([1, 131072])
119547
+ batch tensor: loss_mask torch.Size([1, 131072])
119548
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119549
+ batch tensor: position_ids torch.Size([1, 131072])
119550
+ batch tensor after cp: tokens torch.Size([1, 16384])
119551
+ batch tensor after cp: labels torch.Size([1, 16384])
119552
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119553
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119554
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119555
+ batch tensor: tokens torch.Size([1, 131072])
119556
+ batch tensor: labels torch.Size([1, 131072])
119557
+ batch tensor: loss_mask torch.Size([1, 131072])
119558
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119559
+ batch tensor: position_ids torch.Size([1, 131072])
119560
+ batch tensor after cp: tokens torch.Size([1, 16384])
119561
+ batch tensor after cp: labels torch.Size([1, 16384])
119562
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119563
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119564
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119565
+ batch tensor: tokens torch.Size([1, 131072])
119566
+ batch tensor: labels torch.Size([1, 131072])
119567
+ batch tensor: loss_mask torch.Size([1, 131072])
119568
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119569
+ batch tensor: position_ids torch.Size([1, 131072])
119570
+ batch tensor after cp: tokens torch.Size([1, 16384])
119571
+ batch tensor after cp: labels torch.Size([1, 16384])
119572
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119573
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119574
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119575
+ batch tensor: tokens torch.Size([1, 131072])
119576
+ batch tensor: labels torch.Size([1, 131072])
119577
+ batch tensor: loss_mask torch.Size([1, 131072])
119578
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119579
+ batch tensor: position_ids torch.Size([1, 131072])
119580
+ batch tensor after cp: tokens torch.Size([1, 16384])
119581
+ batch tensor after cp: labels torch.Size([1, 16384])
119582
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119583
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119584
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119585
+ batch tensor: tokens torch.Size([1, 131072])
119586
+ batch tensor: labels torch.Size([1, 131072])
119587
+ batch tensor: loss_mask torch.Size([1, 131072])
119588
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119589
+ batch tensor: position_ids torch.Size([1, 131072])
119590
+ batch tensor after cp: tokens torch.Size([1, 16384])
119591
+ batch tensor after cp: labels torch.Size([1, 16384])
119592
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119593
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119594
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119595
+ batch tensor: tokens torch.Size([1, 131072])
119596
+ batch tensor: labels torch.Size([1, 131072])
119597
+ batch tensor: loss_mask torch.Size([1, 131072])
119598
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
119599
+ batch tensor: position_ids torch.Size([1, 131072])
119600
+ batch tensor after cp: tokens torch.Size([1, 16384])
119601
+ batch tensor after cp: labels torch.Size([1, 16384])
119602
+ batch tensor after cp: loss_mask torch.Size([1, 16384])
119603
+ batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
119604
+ batch tensor after cp: position_ids torch.Size([1, 16384])
119605
+ Start exporting trace 0
119606
+ Done exporting trace 0
119607
+ Number of parameters in transformer block in billions: 0.35
119608
+ Number of parameters in embedding layers in billions: 0.21
119609
+ Total number of parameters in billions: 0.56
119610
+ Number of parameters in most loaded shard in billions: 0.0703
119611
+ Theoretical memory footprints: weight and optimizer=1206.09 MB
119612
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0
119613
+ [2025-06-21 20:53:18] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 58790.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
119614
+ [Rank 16] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28228.0 | max reserved: 28228.0
119615
+ [Rank 20] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0
119616
+ [Rank 17] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0
119617
+ [Rank 23] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0[Rank 21] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0
119618
+
119619
+ [Rank 19] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0
119620
+ [Rank 9] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29192.0 | max reserved: 29192.0
119621
+ [Rank 12] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0[Rank 10] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29192.0 | max reserved: 29192.0
119622
+
119623
+ [Rank 11] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0
119624
+ [Rank 13] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0
119625
+ [Rank 8] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29192.0 | max reserved: 29192.0
119626
+ [Rank 32] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29254.0 | max reserved: 29254.0
119627
+ [Rank 34] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29254.0 | max reserved: 29254.0[Rank 33] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119628
+
119629
+ [Rank 35] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119630
+ [Rank 28] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0[Rank 29] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0[Rank 25] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0
119631
+
119632
+
119633
+ [Rank 24] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0
119634
+ [Rank 27] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0
119635
+ [Rank 30] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0
119636
+ [Rank 48] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119637
+ [Rank 49] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119638
+ [Rank 51] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29446.0 | max reserved: 29446.0
119639
+ [Rank 50] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119640
+ [Rank 53] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29446.0 | max reserved: 29446.0
119641
+ [Rank 42] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0[Rank 47] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0
119642
+
119643
+ [Rank 44] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0
119644
+ [Rank 40] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0[Rank 43] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0
119645
+
119646
+ [Rank 46] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0
119647
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0
119648
+ [Rank 60] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119649
+ [Rank 61] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119650
+ [Rank 62] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119651
+ [Rank 63] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119652
+ [Rank 56] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29258.0 | max reserved: 29258.0
119653
+ [Rank 22] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29380.0 | max reserved: 29380.0
119654
+ [Rank 18] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28228.0 | max reserved: 28228.0
119655
+ [Rank 15] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0
119656
+ [Rank 36] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29254.0 | max reserved: 29254.0
119657
+ [Rank 31] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0
119658
+ [Rank 55] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29446.0 | max reserved: 29446.0
119659
+ [Rank 54] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29446.0 | max reserved: 29446.0
119660
+ [Rank 45] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29322.0 | max reserved: 29322.0
119661
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29176.0 | max reserved: 29176.0
119662
+ [Rank 5] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0
119663
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0
119664
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0[Rank 6] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29304.0 | max reserved: 29304.0
119665
+
119666
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29176.0 | max reserved: 29176.0
119667
+ [Rank 57] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119668
+ [Rank 14] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29320.0 | max reserved: 29320.0
119669
+ [Rank 39] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29382.0 | max reserved: 29382.0[Rank 38] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29254.0 | max reserved: 29254.0
119670
+
119671
+ [Rank 26] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 28168.0 | max reserved: 28168.0
119672
+ [Rank 52] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29318.0 | max reserved: 29318.0
119673
+ [Rank 41] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29194.0 | max reserved: 29194.0
119674
+ [Rank 59] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0[Rank 58] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29386.0 | max reserved: 29386.0
119675
+
119676
+ [Rank 37] (after 1 iterations) memory (MB) | allocated: 25522.66455078125 | max allocated: 25670.65087890625 | reserved: 29382.0 | max reserved: 29382.0
attnserver.run_attnserver.slurm.sh.343193.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343193.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343194.err.log CHANGED
@@ -308,3 +308,523 @@ W0621 20:51:40.779000 3429108 site-packages/torch/distributed/run.py:766] ******
308
  [rank37]:[W621 20:52:05.826219975 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 37] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
309
  [rank53]:[W621 20:52:05.543290982 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 53] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
310
  [rank51]:[W621 20:52:05.543465839 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 51] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
  [rank37]:[W621 20:52:05.826219975 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 37] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
309
  [rank53]:[W621 20:52:05.543290982 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 53] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
310
  [rank51]:[W621 20:52:05.543465839 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 51] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
311
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
312
+ warnings.warn(
313
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
314
+ warnings.warn(
315
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
316
+ warnings.warn(
317
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
318
+ warnings.warn(
319
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
320
+ warnings.warn(
321
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
322
+ warnings.warn(
323
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
324
+ warnings.warn(
325
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
326
+ warnings.warn(
327
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
328
+ warnings.warn(
329
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
330
+ warnings.warn(
331
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
332
+ warnings.warn(
333
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
334
+ warnings.warn(
335
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
336
+ warnings.warn(
337
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
338
+ warnings.warn(
339
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
340
+ warnings.warn(
341
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
342
+ warnings.warn(
343
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
344
+ warnings.warn(
345
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
346
+ warnings.warn(
347
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
348
+ warnings.warn(
349
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
350
+ warnings.warn(
351
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
352
+ warnings.warn(
353
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
354
+ warnings.warn(
355
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
356
+ warnings.warn(
357
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
358
+ warnings.warn(
359
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
360
+ warnings.warn(
361
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
362
+ warnings.warn(
363
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
364
+ warnings.warn(
365
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
366
+ warnings.warn(
367
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
368
+ warnings.warn(
369
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
370
+ warnings.warn(
371
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
372
+ warnings.warn(
373
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
374
+ warnings.warn(
375
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
376
+ warnings.warn(
377
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
378
+ warnings.warn(
379
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
380
+ warnings.warn(
381
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
382
+ warnings.warn(
383
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
384
+ warnings.warn(
385
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
386
+ warnings.warn(
387
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
388
+ warnings.warn(
389
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
390
+ warnings.warn(
391
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
392
+ warnings.warn(
393
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
394
+ warnings.warn(
395
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
396
+ warnings.warn(
397
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
398
+ warnings.warn(
399
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
400
+ warnings.warn(
401
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
402
+ warnings.warn(
403
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
404
+ warnings.warn(
405
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
406
+ warnings.warn(
407
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
408
+ warnings.warn(
409
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
410
+ warnings.warn(
411
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
412
+ warnings.warn(
413
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
414
+ warnings.warn(
415
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
416
+ warnings.warn(
417
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
418
+ warnings.warn(
419
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
420
+ warnings.warn(
421
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
422
+ warnings.warn(
423
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
424
+ warnings.warn(
425
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
426
+ warnings.warn(
427
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
428
+ warnings.warn(
429
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
430
+ warnings.warn(
431
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
432
+ warnings.warn(
433
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
434
+ warnings.warn(
435
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
436
+ warnings.warn(
437
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
438
+ warnings.warn(
439
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
440
+ warnings.warn(
441
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
442
+ warnings.warn(
443
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
444
+ warnings.warn(
445
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
446
+ warnings.warn(
447
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
448
+ warnings.warn(
449
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
450
+ warnings.warn(
451
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
452
+ warnings.warn(
453
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
454
+ warnings.warn(
455
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
456
+ warnings.warn(
457
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
458
+ warnings.warn(
459
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
460
+ warnings.warn(
461
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
462
+ warnings.warn(
463
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
464
+ warnings.warn(
465
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
466
+ warnings.warn(
467
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
468
+ warnings.warn(
469
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
470
+ warnings.warn(
471
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
472
+ warnings.warn(
473
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
474
+ warnings.warn(
475
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
476
+ warnings.warn(
477
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
478
+ warnings.warn(
479
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
480
+ warnings.warn(
481
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
482
+ warnings.warn(
483
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
484
+ warnings.warn(
485
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
486
+ warnings.warn(
487
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
488
+ warnings.warn(
489
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
490
+ warnings.warn(
491
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
492
+ warnings.warn(
493
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
494
+ warnings.warn(
495
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
496
+ warnings.warn(
497
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
498
+ warnings.warn(
499
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
500
+ warnings.warn(
501
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
502
+ warnings.warn(
503
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
504
+ warnings.warn(
505
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
506
+ warnings.warn(
507
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
508
+ warnings.warn(
509
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
510
+ warnings.warn(
511
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
512
+ warnings.warn(
513
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
514
+ warnings.warn(
515
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
516
+ warnings.warn(
517
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
518
+ warnings.warn(
519
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
520
+ warnings.warn(
521
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
522
+ warnings.warn(
523
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
524
+ warnings.warn(
525
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
526
+ warnings.warn(
527
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
528
+ warnings.warn(
529
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
530
+ warnings.warn(
531
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
532
+ warnings.warn(
533
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
534
+ warnings.warn(
535
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
536
+ warnings.warn(
537
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
538
+ warnings.warn(
539
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
540
+ warnings.warn(
541
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
542
+ warnings.warn(
543
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
544
+ warnings.warn(
545
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
546
+ warnings.warn(
547
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
548
+ warnings.warn(
549
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
550
+ warnings.warn(
551
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
552
+ warnings.warn(
553
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
554
+ warnings.warn(
555
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
556
+ warnings.warn(
557
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
558
+ warnings.warn(
559
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
560
+ warnings.warn(
561
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
562
+ warnings.warn(
563
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
564
+ warnings.warn(
565
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
566
+ warnings.warn(
567
+ [rank5]:[W621 20:52:49.302671899 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
568
+ [rank3]:[W621 20:52:49.400487419 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
569
+ [rank1]:[W621 20:52:49.410954144 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
570
+ [rank4]:[W621 20:52:49.441484082 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
571
+ [rank2]:[W621 20:52:50.511513018 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
572
+ [rank6]:[W621 20:52:50.564241583 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
573
+ [rank7]:[W621 20:52:50.670236423 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
574
+ [rank0]:[W621 20:52:50.783530196 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
575
+ [rank16]:[W621 20:52:50.994493903 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
576
+ [rank43]:[W621 20:52:50.551322715 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
577
+ [rank10]:[W621 20:52:50.802008541 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
578
+ [rank45]:[W621 20:52:50.587635318 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
579
+ [rank57]:[W621 20:52:50.596365945 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
580
+ [rank53]:[W621 20:52:50.568609949 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
581
+ [rank34]:[W621 20:52:50.858596999 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
582
+ [rank12]:[W621 20:52:50.843371178 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
583
+ [rank40]:[W621 20:52:50.611859999 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
584
+ [rank48]:[W621 20:52:50.582606740 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
585
+ [rank56]:[W621 20:52:50.619916078 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
586
+ [rank19]:[W621 20:52:50.196459498 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
587
+ [rank51]:[W621 20:52:50.603261422 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
588
+ [rank52]:[W621 20:52:50.604579897 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
589
+ [rank9]:[W621 20:52:50.878985644 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
590
+ [rank54]:[W621 20:52:50.623500640 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
591
+ [rank36]:[W621 20:52:50.909543800 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
592
+ [rank20]:[W621 20:52:50.238422497 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
593
+ [rank49]:[W621 20:52:50.630054888 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
594
+ [rank32]:[W621 20:52:50.917995476 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
595
+ [rank22]:[W621 20:52:50.247424040 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
596
+ [rank24]:[W621 20:52:50.779110266 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
597
+ [rank11]:[W621 20:52:50.912445174 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
598
+ [rank38]:[W621 20:52:50.938757529 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
599
+ [rank18]:[W621 20:52:50.267792366 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
600
+ [rank39]:[W621 20:52:50.948779142 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
601
+ [rank62]:[W621 20:52:50.701099576 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
602
+ [rank23]:[W621 20:52:50.279350944 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
603
+ [rank21]:[W621 20:52:50.282885602 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
604
+ [rank50]:[W621 20:52:50.674724218 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
605
+ [rank58]:[W621 20:52:50.712251972 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
606
+ [rank55]:[W621 20:52:50.675675511 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
607
+ [rank25]:[W621 20:52:50.816280798 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
608
+ [rank14]:[W621 20:52:50.963160899 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
609
+ [rank17]:[W621 20:52:50.314449149 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
610
+ [rank29]:[W621 20:52:50.845450881 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
611
+ [rank46]:[W621 20:52:50.743715759 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
612
+ [rank37]:[W621 20:52:50.004689507 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
613
+ [rank26]:[W621 20:52:50.860526446 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
614
+ [rank42]:[W621 20:52:50.754693858 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
615
+ [rank44]:[W621 20:52:50.764999164 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
616
+ [rank27]:[W621 20:52:50.880201702 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
617
+ [rank13]:[W621 20:52:50.019038934 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
618
+ [rank61]:[W621 20:52:50.787444315 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
619
+ [rank30]:[W621 20:52:50.890781806 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
620
+ [rank60]:[W621 20:52:50.793390260 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
621
+ [rank41]:[W621 20:52:50.790563478 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
622
+ [rank33]:[W621 20:52:50.046228843 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
623
+ [rank47]:[W621 20:52:50.805686681 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
624
+ [rank63]:[W621 20:52:50.813749915 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
625
+ [rank59]:[W621 20:52:50.862246599 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
626
+ [rank31]:[W621 20:52:50.963043951 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
627
+ [rank8]:[W621 20:52:50.103504668 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
628
+ [rank28]:[W621 20:52:50.012889995 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
629
+ [rank35]:[W621 20:52:50.190632941 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
630
+ [rank15]:[W621 20:52:50.187025231 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
631
+ + set +x
632
+ + set +x
633
+ + set +x
634
+ + set +x
635
+ + set +x
636
+ + set +x
637
+ + set +x
638
+ + set +x
639
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
640
+ + export PROF_CTX_LENGTH=2048
641
+ + PROF_CTX_LENGTH=2048
642
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp8.bs32.json'
643
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp8.cp8.bs32.json' ']'
644
+ + echo 'Running ctx_length=2048, TP_SIZE=8, CP_SIZE=8, BATCH_SIZE=32'
645
+ + srun bash ./attnserver.sh
646
+ rm: cannot remove 'gpt-checkpoint/iter_0000010': Directory not empty
647
+ + which python3
648
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 2 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
649
+ + which python3
650
+ + which python3
651
+ + which python3
652
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 7 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
653
+ + which python3
654
+ + which python3
655
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 6 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
656
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 5 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
657
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 1 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
658
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 0 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
659
+ + which python3
660
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 4 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
661
+ + which python3
662
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 8 --node_rank 3 --rdzv_id 343194 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-020:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
663
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
664
+ and will be removed in future. Use torchrun.
665
+ Note that --use-env is set by default in torchrun.
666
+ If your script expects `--local-rank` argument to be set, please
667
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
668
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
669
+ further instructions
670
+
671
+ main()
672
+ W0621 20:52:57.927000 3446454 site-packages/torch/distributed/run.py:766]
673
+ W0621 20:52:57.927000 3446454 site-packages/torch/distributed/run.py:766] *****************************************
674
+ W0621 20:52:57.927000 3446454 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
675
+ W0621 20:52:57.927000 3446454 site-packages/torch/distributed/run.py:766] *****************************************
676
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
677
+ and will be removed in future. Use torchrun.
678
+ Note that --use-env is set by default in torchrun.
679
+ If your script expects `--local-rank` argument to be set, please
680
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
681
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
682
+ further instructions
683
+
684
+ main()
685
+ W0621 20:52:57.939000 1538959 site-packages/torch/distributed/run.py:766]
686
+ W0621 20:52:57.939000 1538959 site-packages/torch/distributed/run.py:766] *****************************************
687
+ W0621 20:52:57.939000 1538959 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
688
+ W0621 20:52:57.939000 1538959 site-packages/torch/distributed/run.py:766] *****************************************
689
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
690
+ and will be removed in future. Use torchrun.
691
+ Note that --use-env is set by default in torchrun.
692
+ If your script expects `--local-rank` argument to be set, please
693
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
694
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
695
+ further instructions
696
+
697
+ main()
698
+ W0621 20:52:57.943000 231096 site-packages/torch/distributed/run.py:766]
699
+ W0621 20:52:57.943000 231096 site-packages/torch/distributed/run.py:766] *****************************************
700
+ W0621 20:52:57.943000 231096 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
701
+ W0621 20:52:57.943000 231096 site-packages/torch/distributed/run.py:766] *****************************************
702
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
703
+ and will be removed in future. Use torchrun.
704
+ Note that --use-env is set by default in torchrun.
705
+ If your script expects `--local-rank` argument to be set, please
706
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
707
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
708
+ further instructions
709
+
710
+ main()
711
+ W0621 20:52:57.952000 3677133 site-packages/torch/distributed/run.py:766]
712
+ W0621 20:52:57.952000 3677133 site-packages/torch/distributed/run.py:766] *****************************************
713
+ W0621 20:52:57.952000 3677133 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
714
+ W0621 20:52:57.952000 3677133 site-packages/torch/distributed/run.py:766] *****************************************
715
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
716
+ and will be removed in future. Use torchrun.
717
+ Note that --use-env is set by default in torchrun.
718
+ If your script expects `--local-rank` argument to be set, please
719
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
720
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
721
+ further instructions
722
+
723
+ main()
724
+ W0621 20:52:57.956000 3434855 site-packages/torch/distributed/run.py:766]
725
+ W0621 20:52:57.956000 3434855 site-packages/torch/distributed/run.py:766] *****************************************
726
+ W0621 20:52:57.956000 3434855 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
727
+ W0621 20:52:57.956000 3434855 site-packages/torch/distributed/run.py:766] *****************************************
728
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
729
+ and will be removed in future. Use torchrun.
730
+ Note that --use-env is set by default in torchrun.
731
+ If your script expects `--local-rank` argument to be set, please
732
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
733
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
734
+ further instructions
735
+
736
+ main()
737
+ W0621 20:52:58.066000 3432906 site-packages/torch/distributed/run.py:766]
738
+ W0621 20:52:58.066000 3432906 site-packages/torch/distributed/run.py:766] *****************************************
739
+ W0621 20:52:58.066000 3432906 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
740
+ W0621 20:52:58.066000 3432906 site-packages/torch/distributed/run.py:766] *****************************************
741
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
742
+ and will be removed in future. Use torchrun.
743
+ Note that --use-env is set by default in torchrun.
744
+ If your script expects `--local-rank` argument to be set, please
745
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
746
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
747
+ further instructions
748
+
749
+ main()
750
+ W0621 20:52:58.065000 2043156 site-packages/torch/distributed/run.py:766]
751
+ W0621 20:52:58.065000 2043156 site-packages/torch/distributed/run.py:766] *****************************************
752
+ W0621 20:52:58.065000 2043156 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
753
+ W0621 20:52:58.065000 2043156 site-packages/torch/distributed/run.py:766] *****************************************
754
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
755
+ and will be removed in future. Use torchrun.
756
+ Note that --use-env is set by default in torchrun.
757
+ If your script expects `--local-rank` argument to be set, please
758
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
759
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
760
+ further instructions
761
+
762
+ main()
763
+ W0621 20:52:58.164000 3617981 site-packages/torch/distributed/run.py:766]
764
+ W0621 20:52:58.164000 3617981 site-packages/torch/distributed/run.py:766] *****************************************
765
+ W0621 20:52:58.164000 3617981 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
766
+ W0621 20:52:58.164000 3617981 site-packages/torch/distributed/run.py:766] *****************************************
767
+ [rank1]:[W621 20:53:20.483356718 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
768
+ [rank9]:[W621 20:53:21.248678126 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
769
+ [rank57]:[W621 20:53:21.017352228 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 57] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
770
+ [rank25]:[W621 20:53:21.116080696 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 25] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
771
+ [rank33]:[W621 20:53:21.265864302 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 33] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
772
+ [rank41]:[W621 20:53:21.010588077 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 41] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
773
+ [rank17]:[W621 20:53:21.595133589 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 17] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
774
+ [rank49]:[W621 20:53:21.984959050 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 49] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
775
+ [rank32]:[W621 20:53:21.359439586 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 32] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
776
+ [rank48]:[W621 20:53:21.074547220 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 48] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
777
+ [rank40]:[W621 20:53:21.106867881 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 40] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
778
+ [rank16]:[W621 20:53:21.695095250 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 16] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
779
+ [rank56]:[W621 20:53:21.118909304 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 56] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
780
+ [rank24]:[W621 20:53:21.220551620 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 24] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
781
+ [rank0]:[W621 20:53:21.625249065 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
782
+ [rank8]:[W621 20:53:21.695227593 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
783
+ [rank3]:[W621 20:53:21.969838878 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
784
+ [rank4]:[W621 20:53:21.970274234 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
785
+ [rank44]:[W621 20:53:21.495065733 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 44] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
786
+ [rank59]:[W621 20:53:21.503167582 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 59] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
787
+ [rank60]:[W621 20:53:21.503286536 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 60] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
788
+ [rank63]:[W621 20:53:21.503374004 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 63] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
789
+ [rank51]:[W621 20:53:21.466454089 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 51] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
790
+ [rank52]:[W621 20:53:21.466567089 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 52] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
791
+ [rank19]:[W621 20:53:21.080074830 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 19] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
792
+ [rank11]:[W621 20:53:21.735453655 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
793
+ [rank7]:[W621 20:53:21.971803996 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
794
+ [rank28]:[W621 20:53:21.602482832 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 28] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
795
+ [rank27]:[W621 20:53:21.602500501 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 27] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
796
+ [rank12]:[W621 20:53:21.735747682 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
797
+ [rank15]:[W621 20:53:21.736373864 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
798
+ [rank42]:[W621 20:53:21.496993612 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 42] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
799
+ [rank61]:[W621 20:53:21.505073165 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 61] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
800
+ [rank58]:[W621 20:53:21.505100729 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 58] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
801
+ [rank23]:[W621 20:53:21.081626134 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 23] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
802
+ [rank5]:[W621 20:53:21.973227986 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
803
+ [rank31]:[W621 20:53:21.603958663 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 31] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
804
+ [rank55]:[W621 20:53:21.468727590 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 55] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
805
+ [rank20]:[W621 20:53:21.082403431 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 20] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
806
+ [rank13]:[W621 20:53:21.737869029 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
807
+ [rank18]:[W621 20:53:21.082671928 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 18] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
808
+ [rank6]:[W621 20:53:21.974172883 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
809
+ [rank10]:[W621 20:53:21.738126291 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
810
+ [rank47]:[W621 20:53:21.498593781 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 47] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
811
+ [rank62]:[W621 20:53:21.506686810 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 62] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
812
+ [rank29]:[W621 20:53:21.605576322 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 29] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
813
+ [rank26]:[W621 20:53:21.605640247 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 26] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
814
+ [rank21]:[W621 20:53:21.083551543 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 21] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
815
+ [rank14]:[W621 20:53:21.739068525 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
816
+ [rank35]:[W621 20:53:21.755170339 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 35] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
817
+ [rank39]:[W621 20:53:21.755229540 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 39] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
818
+ [rank53]:[W621 20:53:21.470499105 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 53] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
819
+ [rank50]:[W621 20:53:21.470570725 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 50] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
820
+ [rank45]:[W621 20:53:21.499804275 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 45] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
821
+ [rank37]:[W621 20:53:21.755613608 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 37] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
822
+ [rank36]:[W621 20:53:21.755680530 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 36] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
823
+ [rank43]:[W621 20:53:21.500032643 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 43] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
824
+ [rank22]:[W621 20:53:21.084740632 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 22] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
825
+ [rank46]:[W621 20:53:21.501018261 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 46] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
826
+ [rank54]:[W621 20:53:21.472720555 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 54] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
827
+ [rank34]:[W621 20:53:21.758072425 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 34] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
828
+ [rank38]:[W621 20:53:21.759360647 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 38] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
829
+ [rank2]:[W621 20:53:21.982343589 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
830
+ [rank30]:[W621 20:53:21.619183287 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 30] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
attnserver.run_attnserver.slurm.sh.343194.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343195.out.log CHANGED
@@ -62948,3 +62948,316 @@ batch tensor after cp: labels torch.Size([1, 24576])
62948
  batch tensor after cp: loss_mask torch.Size([1, 24576])
62949
  batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62950
  batch tensor after cp: position_ids torch.Size([1, 24576])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62948
  batch tensor after cp: loss_mask torch.Size([1, 24576])
62949
  batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62950
  batch tensor after cp: position_ids torch.Size([1, 24576])
62951
+ batch tensor: tokens torch.Size([1, 98304])
62952
+ batch tensor: labels torch.Size([1, 98304])
62953
+ batch tensor: loss_mask torch.Size([1, 98304])
62954
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
62955
+ batch tensor: position_ids torch.Size([1, 98304])
62956
+ batch tensor after cp: tokens torch.Size([1, 24576])
62957
+ batch tensor after cp: labels torch.Size([1, 24576])
62958
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
62959
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62960
+ batch tensor after cp: position_ids torch.Size([1, 24576])
62961
+ Start exporting trace 4
62962
+ Done exporting trace 4
62963
+ [2025-06-21 20:52:42] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 108731.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
62964
+ batch tensor: tokens torch.Size([1, 98304])
62965
+ batch tensor: labels torch.Size([1, 98304])
62966
+ batch tensor: loss_mask torch.Size([1, 98304])
62967
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
62968
+ batch tensor: position_ids torch.Size([1, 98304])
62969
+ batch tensor after cp: tokens torch.Size([1, 24576])
62970
+ batch tensor after cp: labels torch.Size([1, 24576])
62971
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
62972
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62973
+ batch tensor after cp: position_ids torch.Size([1, 24576])
62974
+ batch tensor: tokens torch.Size([1, 98304])
62975
+ batch tensor: labels torch.Size([1, 98304])
62976
+ batch tensor: loss_mask torch.Size([1, 98304])
62977
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
62978
+ batch tensor: position_ids torch.Size([1, 98304])
62979
+ batch tensor after cp: tokens torch.Size([1, 24576])
62980
+ batch tensor after cp: labels torch.Size([1, 24576])
62981
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
62982
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62983
+ batch tensor after cp: position_ids torch.Size([1, 24576])
62984
+ batch tensor: tokens torch.Size([1, 98304])
62985
+ batch tensor: labels torch.Size([1, 98304])
62986
+ batch tensor: loss_mask torch.Size([1, 98304])
62987
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
62988
+ batch tensor: position_ids torch.Size([1, 98304])
62989
+ batch tensor after cp: tokens torch.Size([1, 24576])
62990
+ batch tensor after cp: labels torch.Size([1, 24576])
62991
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
62992
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
62993
+ batch tensor after cp: position_ids torch.Size([1, 24576])
62994
+ batch tensor: tokens torch.Size([1, 98304])
62995
+ batch tensor: labels torch.Size([1, 98304])
62996
+ batch tensor: loss_mask torch.Size([1, 98304])
62997
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
62998
+ batch tensor: position_ids torch.Size([1, 98304])
62999
+ batch tensor after cp: tokens torch.Size([1, 24576])
63000
+ batch tensor after cp: labels torch.Size([1, 24576])
63001
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63002
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63003
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63004
+ batch tensor: tokens torch.Size([1, 98304])
63005
+ batch tensor: labels torch.Size([1, 98304])
63006
+ batch tensor: loss_mask torch.Size([1, 98304])
63007
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63008
+ batch tensor: position_ids torch.Size([1, 98304])
63009
+ batch tensor after cp: tokens torch.Size([1, 24576])
63010
+ batch tensor after cp: labels torch.Size([1, 24576])
63011
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63012
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63013
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63014
+ batch tensor: tokens torch.Size([1, 98304])
63015
+ batch tensor: labels torch.Size([1, 98304])
63016
+ batch tensor: loss_mask torch.Size([1, 98304])
63017
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63018
+ batch tensor: position_ids torch.Size([1, 98304])
63019
+ batch tensor after cp: tokens torch.Size([1, 24576])
63020
+ batch tensor after cp: labels torch.Size([1, 24576])
63021
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63022
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63023
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63024
+ batch tensor: tokens torch.Size([1, 98304])
63025
+ batch tensor: labels torch.Size([1, 98304])
63026
+ batch tensor: loss_mask torch.Size([1, 98304])
63027
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63028
+ batch tensor: position_ids torch.Size([1, 98304])
63029
+ batch tensor after cp: tokens torch.Size([1, 24576])
63030
+ batch tensor after cp: labels torch.Size([1, 24576])
63031
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63032
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63033
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63034
+ batch tensor: tokens torch.Size([1, 98304])
63035
+ batch tensor: labels torch.Size([1, 98304])
63036
+ batch tensor: loss_mask torch.Size([1, 98304])
63037
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63038
+ batch tensor: position_ids torch.Size([1, 98304])
63039
+ batch tensor after cp: tokens torch.Size([1, 24576])
63040
+ batch tensor after cp: labels torch.Size([1, 24576])
63041
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63042
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63043
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63044
+ batch tensor: tokens torch.Size([1, 98304])
63045
+ batch tensor: labels torch.Size([1, 98304])
63046
+ batch tensor: loss_mask torch.Size([1, 98304])
63047
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63048
+ batch tensor: position_ids torch.Size([1, 98304])
63049
+ batch tensor after cp: tokens torch.Size([1, 24576])
63050
+ batch tensor after cp: labels torch.Size([1, 24576])
63051
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63052
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63053
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63054
+ batch tensor: tokens torch.Size([1, 98304])
63055
+ batch tensor: labels torch.Size([1, 98304])
63056
+ batch tensor: loss_mask torch.Size([1, 98304])
63057
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63058
+ batch tensor: position_ids torch.Size([1, 98304])
63059
+ batch tensor after cp: tokens torch.Size([1, 24576])
63060
+ batch tensor after cp: labels torch.Size([1, 24576])
63061
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63062
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63063
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63064
+ batch tensor: tokens torch.Size([1, 98304])
63065
+ batch tensor: labels torch.Size([1, 98304])
63066
+ batch tensor: loss_mask torch.Size([1, 98304])
63067
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63068
+ batch tensor: position_ids torch.Size([1, 98304])
63069
+ batch tensor after cp: tokens torch.Size([1, 24576])
63070
+ batch tensor after cp: labels torch.Size([1, 24576])
63071
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63072
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63073
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63074
+ batch tensor: tokens torch.Size([1, 98304])
63075
+ batch tensor: labels torch.Size([1, 98304])
63076
+ batch tensor: loss_mask torch.Size([1, 98304])
63077
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63078
+ batch tensor: position_ids torch.Size([1, 98304])
63079
+ batch tensor after cp: tokens torch.Size([1, 24576])
63080
+ batch tensor after cp: labels torch.Size([1, 24576])
63081
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63082
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63083
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63084
+ batch tensor: tokens torch.Size([1, 98304])
63085
+ batch tensor: labels torch.Size([1, 98304])
63086
+ batch tensor: loss_mask torch.Size([1, 98304])
63087
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63088
+ batch tensor: position_ids torch.Size([1, 98304])
63089
+ batch tensor after cp: tokens torch.Size([1, 24576])
63090
+ batch tensor after cp: labels torch.Size([1, 24576])
63091
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63092
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63093
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63094
+ batch tensor: tokens torch.Size([1, 98304])
63095
+ batch tensor: labels torch.Size([1, 98304])
63096
+ batch tensor: loss_mask torch.Size([1, 98304])
63097
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63098
+ batch tensor: position_ids torch.Size([1, 98304])
63099
+ batch tensor after cp: tokens torch.Size([1, 24576])
63100
+ batch tensor after cp: labels torch.Size([1, 24576])
63101
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63102
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63103
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63104
+ batch tensor: tokens torch.Size([1, 98304])
63105
+ batch tensor: labels torch.Size([1, 98304])
63106
+ batch tensor: loss_mask torch.Size([1, 98304])
63107
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63108
+ batch tensor: position_ids torch.Size([1, 98304])
63109
+ batch tensor after cp: tokens torch.Size([1, 24576])
63110
+ batch tensor after cp: labels torch.Size([1, 24576])
63111
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63112
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63113
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63114
+ batch tensor: tokens torch.Size([1, 98304])
63115
+ batch tensor: labels torch.Size([1, 98304])
63116
+ batch tensor: loss_mask torch.Size([1, 98304])
63117
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63118
+ batch tensor: position_ids torch.Size([1, 98304])
63119
+ batch tensor after cp: tokens torch.Size([1, 24576])
63120
+ batch tensor after cp: labels torch.Size([1, 24576])
63121
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63122
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63123
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63124
+ batch tensor: tokens torch.Size([1, 98304])
63125
+ batch tensor: labels torch.Size([1, 98304])
63126
+ batch tensor: loss_mask torch.Size([1, 98304])
63127
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63128
+ batch tensor: position_ids torch.Size([1, 98304])
63129
+ batch tensor after cp: tokens torch.Size([1, 24576])
63130
+ batch tensor after cp: labels torch.Size([1, 24576])
63131
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63132
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63133
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63134
+ batch tensor: tokens torch.Size([1, 98304])
63135
+ batch tensor: labels torch.Size([1, 98304])
63136
+ batch tensor: loss_mask torch.Size([1, 98304])
63137
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63138
+ batch tensor: position_ids torch.Size([1, 98304])
63139
+ batch tensor after cp: tokens torch.Size([1, 24576])
63140
+ batch tensor after cp: labels torch.Size([1, 24576])
63141
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63142
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63143
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63144
+ batch tensor: tokens torch.Size([1, 98304])
63145
+ batch tensor: labels torch.Size([1, 98304])
63146
+ batch tensor: loss_mask torch.Size([1, 98304])
63147
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63148
+ batch tensor: position_ids torch.Size([1, 98304])
63149
+ batch tensor after cp: tokens torch.Size([1, 24576])
63150
+ batch tensor after cp: labels torch.Size([1, 24576])
63151
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63152
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63153
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63154
+ batch tensor: tokens torch.Size([1, 98304])
63155
+ batch tensor: labels torch.Size([1, 98304])
63156
+ batch tensor: loss_mask torch.Size([1, 98304])
63157
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63158
+ batch tensor: position_ids torch.Size([1, 98304])
63159
+ batch tensor after cp: tokens torch.Size([1, 24576])
63160
+ batch tensor after cp: labels torch.Size([1, 24576])
63161
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63162
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63163
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63164
+ batch tensor: tokens torch.Size([1, 98304])
63165
+ batch tensor: labels torch.Size([1, 98304])
63166
+ batch tensor: loss_mask torch.Size([1, 98304])
63167
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63168
+ batch tensor: position_ids torch.Size([1, 98304])
63169
+ batch tensor after cp: tokens torch.Size([1, 24576])
63170
+ batch tensor after cp: labels torch.Size([1, 24576])
63171
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63172
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63173
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63174
+ batch tensor: tokens torch.Size([1, 98304])
63175
+ batch tensor: labels torch.Size([1, 98304])
63176
+ batch tensor: loss_mask torch.Size([1, 98304])
63177
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63178
+ batch tensor: position_ids torch.Size([1, 98304])
63179
+ batch tensor after cp: tokens torch.Size([1, 24576])
63180
+ batch tensor after cp: labels torch.Size([1, 24576])
63181
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63182
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63183
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63184
+ batch tensor: tokens torch.Size([1, 98304])
63185
+ batch tensor: labels torch.Size([1, 98304])
63186
+ batch tensor: loss_mask torch.Size([1, 98304])
63187
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63188
+ batch tensor: position_ids torch.Size([1, 98304])
63189
+ batch tensor after cp: tokens torch.Size([1, 24576])
63190
+ batch tensor after cp: labels torch.Size([1, 24576])
63191
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63192
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63193
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63194
+ batch tensor: tokens torch.Size([1, 98304])
63195
+ batch tensor: labels torch.Size([1, 98304])
63196
+ batch tensor: loss_mask torch.Size([1, 98304])
63197
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63198
+ batch tensor: position_ids torch.Size([1, 98304])
63199
+ batch tensor after cp: tokens torch.Size([1, 24576])
63200
+ batch tensor after cp: labels torch.Size([1, 24576])
63201
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63202
+ batch tensor: tokens torch.Size([1, 98304])
63203
+ batch tensor: labels torch.Size([1, 98304])
63204
+ batch tensor: loss_mask torch.Size([1, 98304])
63205
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63206
+ batch tensor: position_ids torch.Size([1, 98304])
63207
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63208
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63209
+ batch tensor after cp: tokens torch.Size([1, 24576])
63210
+ batch tensor after cp: labels torch.Size([1, 24576])
63211
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63212
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63213
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63214
+ batch tensor: tokens torch.Size([1, 98304])
63215
+ batch tensor: labels torch.Size([1, 98304])
63216
+ batch tensor: loss_mask torch.Size([1, 98304])
63217
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63218
+ batch tensor: position_ids torch.Size([1, 98304])
63219
+ batch tensor: tokens torch.Size([1, 98304])
63220
+ batch tensor: labels torch.Size([1, 98304])
63221
+ batch tensor: loss_mask torch.Size([1, 98304])
63222
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63223
+ batch tensor: position_ids torch.Size([1, 98304])
63224
+ batch tensor after cp: tokens torch.Size([1, 24576])
63225
+ batch tensor after cp: labels torch.Size([1, 24576])
63226
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63227
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63228
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63229
+ batch tensor after cp: tokens torch.Size([1, 24576])
63230
+ batch tensor after cp: labels torch.Size([1, 24576])
63231
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63232
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63233
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63234
+ batch tensor: tokens torch.Size([1, 98304])
63235
+ batch tensor: labels torch.Size([1, 98304])
63236
+ batch tensor: loss_mask torch.Size([1, 98304])
63237
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63238
+ batch tensor: position_ids torch.Size([1, 98304])
63239
+ batch tensor after cp: tokens torch.Size([1, 24576])
63240
+ batch tensor after cp: labels torch.Size([1, 24576])
63241
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63242
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63243
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63244
+ batch tensor: tokens torch.Size([1, 98304])
63245
+ batch tensor: labels torch.Size([1, 98304])
63246
+ batch tensor: loss_mask torch.Size([1, 98304])
63247
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63248
+ batch tensor: position_ids torch.Size([1, 98304])
63249
+ batch tensor after cp: tokens torch.Size([1, 24576])
63250
+ batch tensor after cp: labels torch.Size([1, 24576])
63251
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63252
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63253
+ batch tensor after cp: position_ids torch.Size([1, 24576])
63254
+ batch tensor: tokens torch.Size([1, 98304])
63255
+ batch tensor: labels torch.Size([1, 98304])
63256
+ batch tensor: loss_mask torch.Size([1, 98304])
63257
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
63258
+ batch tensor: position_ids torch.Size([1, 98304])
63259
+ batch tensor after cp: tokens torch.Size([1, 24576])
63260
+ batch tensor after cp: labels torch.Size([1, 24576])
63261
+ batch tensor after cp: loss_mask torch.Size([1, 24576])
63262
+ batch tensor after cp: attention_mask torch.Size([1, 1, 24576, 98304])
63263
+ batch tensor after cp: position_ids torch.Size([1, 24576])
attnserver.run_attnserver.slurm.sh.343196.err.log ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=8
115
+ + PROF_TP_SIZE=8
116
+ + export PROF_CP_SIZE=4
117
+ + PROF_CP_SIZE=4
118
+ + export PROF_BS=2
119
+ + PROF_BS=2
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp8.cp4.bs2.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp8.cp4.bs2.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=2'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ + which python3
130
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
131
+ + which python3
132
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
133
+ + which python3
134
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343196 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-184:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
135
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
136
+ and will be removed in future. Use torchrun.
137
+ Note that --use-env is set by default in torchrun.
138
+ If your script expects `--local-rank` argument to be set, please
139
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
140
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
141
+ further instructions
142
+
143
+ main()
144
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
145
+ and will be removed in future. Use torchrun.
146
+ Note that --use-env is set by default in torchrun.
147
+ If your script expects `--local-rank` argument to be set, please
148
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
149
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
150
+ further instructions
151
+
152
+ main()
153
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
154
+ and will be removed in future. Use torchrun.
155
+ Note that --use-env is set by default in torchrun.
156
+ If your script expects `--local-rank` argument to be set, please
157
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
158
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
159
+ further instructions
160
+
161
+ main()
162
+ W0621 20:53:00.992000 1952802 site-packages/torch/distributed/run.py:766]
163
+ W0621 20:53:00.992000 1952802 site-packages/torch/distributed/run.py:766] *****************************************
164
+ W0621 20:53:00.992000 1952802 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
165
+ W0621 20:53:00.992000 1952802 site-packages/torch/distributed/run.py:766] *****************************************
166
+ W0621 20:53:00.993000 1136094 site-packages/torch/distributed/run.py:766]
167
+ W0621 20:53:00.993000 1136094 site-packages/torch/distributed/run.py:766] *****************************************
168
+ W0621 20:53:00.993000 1136094 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
169
+ W0621 20:53:00.993000 1136094 site-packages/torch/distributed/run.py:766] *****************************************
170
+ W0621 20:53:00.992000 1277694 site-packages/torch/distributed/run.py:766]
171
+ W0621 20:53:00.992000 1277694 site-packages/torch/distributed/run.py:766] *****************************************
172
+ W0621 20:53:00.992000 1277694 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
173
+ W0621 20:53:00.992000 1277694 site-packages/torch/distributed/run.py:766] *****************************************
174
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
175
+ and will be removed in future. Use torchrun.
176
+ Note that --use-env is set by default in torchrun.
177
+ If your script expects `--local-rank` argument to be set, please
178
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
179
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
180
+ further instructions
181
+
182
+ main()
183
+ W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766]
184
+ W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
185
+ W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
+ W0621 20:53:01.122000 1480440 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343196.out.log ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=2
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 8
6
+ CP_SIZE: 4
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
11
+ Cleaning up checkpoint directory: gpt-checkpoint
12
+ --------------------------------
13
+ CTX_LENGTH: 1024
14
+ TP_SIZE: 8
15
+ CP_SIZE: 4
16
+ CHECKPOINT_PATH: gpt-checkpoint
17
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
18
+ --------------------------------
19
+ Cleaning up checkpoint directory: gpt-checkpoint
20
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
21
+ --------------------------------
22
+ CTX_LENGTH: 1024
23
+ TP_SIZE: 8
24
+ CP_SIZE: 4
25
+ CHECKPOINT_PATH: gpt-checkpoint
26
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
27
+ --------------------------------
28
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
29
+ Cleaning up checkpoint directory: gpt-checkpoint
30
+ --------------------------------
31
+ CTX_LENGTH: 1024
32
+ TP_SIZE: 8
33
+ CP_SIZE: 4
34
+ CHECKPOINT_PATH: gpt-checkpoint
35
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
36
+ --------------------------------
37
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343197.err.log ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=8
115
+ + PROF_TP_SIZE=8
116
+ + export PROF_CP_SIZE=4
117
+ + PROF_CP_SIZE=4
118
+ + export PROF_BS=4
119
+ + PROF_BS=4
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp8.cp4.bs4.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp8.cp4.bs4.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=4'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ + which python3
130
+ + which python3
131
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
132
+ + which python3
133
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
134
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343197 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-852:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 8 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
135
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
136
+ and will be removed in future. Use torchrun.
137
+ Note that --use-env is set by default in torchrun.
138
+ If your script expects `--local-rank` argument to be set, please
139
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
140
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
141
+ further instructions
142
+
143
+ main()
144
+ W0621 20:53:05.319000 83705 site-packages/torch/distributed/run.py:766]
145
+ W0621 20:53:05.319000 83705 site-packages/torch/distributed/run.py:766] *****************************************
146
+ W0621 20:53:05.319000 83705 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
147
+ W0621 20:53:05.319000 83705 site-packages/torch/distributed/run.py:766] *****************************************
148
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
149
+ and will be removed in future. Use torchrun.
150
+ Note that --use-env is set by default in torchrun.
151
+ If your script expects `--local-rank` argument to be set, please
152
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
153
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
154
+ further instructions
155
+
156
+ main()
157
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
158
+ and will be removed in future. Use torchrun.
159
+ Note that --use-env is set by default in torchrun.
160
+ If your script expects `--local-rank` argument to be set, please
161
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
162
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
163
+ further instructions
164
+
165
+ main()
166
+ W0621 20:53:05.651000 2004483 site-packages/torch/distributed/run.py:766]
167
+ W0621 20:53:05.651000 2004483 site-packages/torch/distributed/run.py:766] *****************************************
168
+ W0621 20:53:05.651000 2004483 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
169
+ W0621 20:53:05.651000 2004483 site-packages/torch/distributed/run.py:766] *****************************************
170
+ W0621 20:53:05.651000 3371203 site-packages/torch/distributed/run.py:766]
171
+ W0621 20:53:05.651000 3371203 site-packages/torch/distributed/run.py:766] *****************************************
172
+ W0621 20:53:05.651000 3371203 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
173
+ W0621 20:53:05.651000 3371203 site-packages/torch/distributed/run.py:766] *****************************************
174
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
175
+ and will be removed in future. Use torchrun.
176
+ Note that --use-env is set by default in torchrun.
177
+ If your script expects `--local-rank` argument to be set, please
178
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
179
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
180
+ further instructions
181
+
182
+ main()
183
+ W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766]
184
+ W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
185
+ W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
186
+ W0621 20:53:05.653000 3302834 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343197.out.log ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=4
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 8
6
+ CP_SIZE: 4
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
11
+ Cleaning up checkpoint directory: gpt-checkpoint
12
+ --------------------------------
13
+ CTX_LENGTH: 1024
14
+ TP_SIZE: 8
15
+ CP_SIZE: 4
16
+ CHECKPOINT_PATH: gpt-checkpoint
17
+ Cleaning up checkpoint directory: gpt-checkpoint
18
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
19
+ --------------------------------
20
+ Cleaning up checkpoint directory: gpt-checkpoint
21
+ --------------------------------
22
+ CTX_LENGTH: 1024
23
+ TP_SIZE: 8
24
+ CP_SIZE: 4
25
+ CHECKPOINT_PATH: gpt-checkpoint
26
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
27
+ --------------------------------
28
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
29
+ --------------------------------
30
+ CTX_LENGTH: 1024
31
+ TP_SIZE: 8
32
+ CP_SIZE: 4
33
+ CHECKPOINT_PATH: gpt-checkpoint
34
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
35
+ --------------------------------
36
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
37
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343201.out.log CHANGED
@@ -37690,3 +37690,156 @@ batch tensor after cp: labels torch.Size([1, 65536])
37690
  batch tensor after cp: loss_mask torch.Size([1, 65536])
37691
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37692
  batch tensor after cp: position_ids torch.Size([1, 65536])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37690
  batch tensor after cp: loss_mask torch.Size([1, 65536])
37691
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37692
  batch tensor after cp: position_ids torch.Size([1, 65536])
37693
+ batch tensor: tokens torch.Size([1, 131072])
37694
+ batch tensor: labels torch.Size([1, 131072])
37695
+ batch tensor: loss_mask torch.Size([1, 131072])
37696
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37697
+ batch tensor: position_ids torch.Size([1, 131072])
37698
+ batch tensor after cp: tokens torch.Size([1, 65536])
37699
+ batch tensor after cp: labels torch.Size([1, 65536])
37700
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37701
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37702
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37703
+ Start exporting trace 6
37704
+ Done exporting trace 6
37705
+ [2025-06-21 20:52:51] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 94996.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
37706
+ batch tensor: tokens torch.Size([1, 131072])
37707
+ batch tensor: labels torch.Size([1, 131072])
37708
+ batch tensor: loss_mask torch.Size([1, 131072])
37709
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37710
+ batch tensor: position_ids torch.Size([1, 131072])
37711
+ batch tensor after cp: tokens torch.Size([1, 65536])
37712
+ batch tensor after cp: labels torch.Size([1, 65536])
37713
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37714
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37715
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37716
+ batch tensor: tokens torch.Size([1, 131072])
37717
+ batch tensor: labels torch.Size([1, 131072])
37718
+ batch tensor: loss_mask torch.Size([1, 131072])
37719
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37720
+ batch tensor: position_ids torch.Size([1, 131072])
37721
+ batch tensor after cp: tokens torch.Size([1, 65536])
37722
+ batch tensor after cp: labels torch.Size([1, 65536])
37723
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37724
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37725
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37726
+ batch tensor: tokens torch.Size([1, 131072])
37727
+ batch tensor: labels torch.Size([1, 131072])
37728
+ batch tensor: loss_mask torch.Size([1, 131072])
37729
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37730
+ batch tensor: position_ids torch.Size([1, 131072])
37731
+ batch tensor after cp: tokens torch.Size([1, 65536])
37732
+ batch tensor after cp: labels torch.Size([1, 65536])
37733
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37734
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37735
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37736
+ batch tensor: tokens torch.Size([1, 131072])
37737
+ batch tensor: labels torch.Size([1, 131072])
37738
+ batch tensor: loss_mask torch.Size([1, 131072])
37739
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37740
+ batch tensor: position_ids torch.Size([1, 131072])
37741
+ batch tensor after cp: tokens torch.Size([1, 65536])
37742
+ batch tensor after cp: labels torch.Size([1, 65536])
37743
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37744
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37745
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37746
+ batch tensor: tokens torch.Size([1, 131072])
37747
+ batch tensor: labels torch.Size([1, 131072])
37748
+ batch tensor: loss_mask torch.Size([1, 131072])
37749
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37750
+ batch tensor: position_ids torch.Size([1, 131072])
37751
+ batch tensor after cp: tokens torch.Size([1, 65536])
37752
+ batch tensor after cp: labels torch.Size([1, 65536])
37753
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37754
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37755
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37756
+ batch tensor: tokens torch.Size([1, 131072])
37757
+ batch tensor: labels torch.Size([1, 131072])
37758
+ batch tensor: loss_mask torch.Size([1, 131072])
37759
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37760
+ batch tensor: position_ids torch.Size([1, 131072])
37761
+ batch tensor after cp: tokens torch.Size([1, 65536])
37762
+ batch tensor after cp: labels torch.Size([1, 65536])
37763
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37764
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37765
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37766
+ batch tensor: tokens torch.Size([1, 131072])
37767
+ batch tensor: labels torch.Size([1, 131072])
37768
+ batch tensor: loss_mask torch.Size([1, 131072])
37769
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37770
+ batch tensor: position_ids torch.Size([1, 131072])
37771
+ batch tensor after cp: tokens torch.Size([1, 65536])
37772
+ batch tensor after cp: labels torch.Size([1, 65536])
37773
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37774
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37775
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37776
+ batch tensor: tokens torch.Size([1, 131072])
37777
+ batch tensor: labels torch.Size([1, 131072])
37778
+ batch tensor: loss_mask torch.Size([1, 131072])
37779
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37780
+ batch tensor: position_ids torch.Size([1, 131072])
37781
+ batch tensor after cp: tokens torch.Size([1, 65536])
37782
+ batch tensor after cp: labels torch.Size([1, 65536])
37783
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37784
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37785
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37786
+ batch tensor: tokens torch.Size([1, 131072])
37787
+ batch tensor: labels torch.Size([1, 131072])
37788
+ batch tensor: loss_mask torch.Size([1, 131072])
37789
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37790
+ batch tensor: position_ids torch.Size([1, 131072])
37791
+ batch tensor after cp: tokens torch.Size([1, 65536])
37792
+ batch tensor after cp: labels torch.Size([1, 65536])
37793
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37794
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37795
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37796
+ batch tensor: tokens torch.Size([1, 131072])
37797
+ batch tensor: labels torch.Size([1, 131072])
37798
+ batch tensor: loss_mask torch.Size([1, 131072])
37799
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37800
+ batch tensor: position_ids torch.Size([1, 131072])
37801
+ batch tensor after cp: tokens torch.Size([1, 65536])
37802
+ batch tensor after cp: labels torch.Size([1, 65536])
37803
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37804
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37805
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37806
+ batch tensor: tokens torch.Size([1, 131072])
37807
+ batch tensor: labels torch.Size([1, 131072])
37808
+ batch tensor: loss_mask torch.Size([1, 131072])
37809
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37810
+ batch tensor: position_ids torch.Size([1, 131072])
37811
+ batch tensor after cp: tokens torch.Size([1, 65536])
37812
+ batch tensor after cp: labels torch.Size([1, 65536])
37813
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37814
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37815
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37816
+ batch tensor: tokens torch.Size([1, 131072])
37817
+ batch tensor: labels torch.Size([1, 131072])
37818
+ batch tensor: loss_mask torch.Size([1, 131072])
37819
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37820
+ batch tensor: position_ids torch.Size([1, 131072])
37821
+ batch tensor after cp: tokens torch.Size([1, 65536])
37822
+ batch tensor after cp: labels torch.Size([1, 65536])
37823
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37824
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37825
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37826
+ batch tensor: tokens torch.Size([1, 131072])
37827
+ batch tensor: labels torch.Size([1, 131072])
37828
+ batch tensor: loss_mask torch.Size([1, 131072])
37829
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37830
+ batch tensor: position_ids torch.Size([1, 131072])
37831
+ batch tensor after cp: tokens torch.Size([1, 65536])
37832
+ batch tensor after cp: labels torch.Size([1, 65536])
37833
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37834
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37835
+ batch tensor after cp: position_ids torch.Size([1, 65536])
37836
+ batch tensor: tokens torch.Size([1, 131072])
37837
+ batch tensor: labels torch.Size([1, 131072])
37838
+ batch tensor: loss_mask torch.Size([1, 131072])
37839
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
37840
+ batch tensor: position_ids torch.Size([1, 131072])
37841
+ batch tensor after cp: tokens torch.Size([1, 65536])
37842
+ batch tensor after cp: labels torch.Size([1, 65536])
37843
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
37844
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
37845
+ batch tensor after cp: position_ids torch.Size([1, 65536])