GindaChen commited on
Commit
b350815
·
verified ·
1 Parent(s): e63751a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -58,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
  attnserver.run_attnserver.slurm.sh.343190.err.log filter=lfs diff=lfs merge=lfs -text
 
 
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
  attnserver.run_attnserver.slurm.sh.343190.err.log filter=lfs diff=lfs merge=lfs -text
61
+ attnserver.run_attnserver.slurm.sh.343191.err.log filter=lfs diff=lfs merge=lfs -text
attnserver.run_attnserver.slurm.sh.343188.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343188.out.log CHANGED
@@ -106577,3 +106577,1026 @@ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks
106577
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
106578
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
106579
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106577
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
106578
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
106579
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(52428800), 1), (np.int64(46137344), 2), (np.int64(46137344), 3), (np.int64(41959936), 4), (np.int64(41959936), 5), (np.int64(44040192), 6), (np.int64(44040192), 7)]
106580
+ Running ctx_length=81920, TP_SIZE=8, CP_SIZE=8, BATCH_SIZE=1
106581
+ Cleaning up checkpoint directory: gpt-checkpoint
106582
+ Cleaning up checkpoint directory: gpt-checkpoint
106583
+ Cleaning up checkpoint directory: gpt-checkpoint
106584
+ Cleaning up checkpoint directory: gpt-checkpoint
106585
+ Cleaning up checkpoint directory: gpt-checkpoint
106586
+ --------------------------------
106587
+ CTX_LENGTH: 81920
106588
+ TP_SIZE: 8
106589
+ --------------------------------
106590
+ CTX_LENGTH: 81920
106591
+ TP_SIZE: 8
106592
+ CP_SIZE: 8
106593
+ CHECKPOINT_PATH: gpt-checkpoint
106594
+ CP_SIZE: 8
106595
+ CHECKPOINT_PATH: gpt-checkpoint
106596
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106597
+ --------------------------------
106598
+ CTX_LENGTH: 81920
106599
+ TP_SIZE: 8
106600
+ CP_SIZE: 8
106601
+ CHECKPOINT_PATH: gpt-checkpoint
106602
+ --------------------------------
106603
+ CTX_LENGTH: 81920
106604
+ TP_SIZE: 8
106605
+ CP_SIZE: 8
106606
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106607
+ --------------------------------
106608
+ --------------------------------
106609
+ --------------------------------
106610
+ CTX_LENGTH: 81920
106611
+ TP_SIZE: 8
106612
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106613
+ --------------------------------
106614
+ CHECKPOINT_PATH: gpt-checkpoint
106615
+ CP_SIZE: 8
106616
+ CHECKPOINT_PATH: gpt-checkpoint
106617
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106618
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106619
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106620
+ --------------------------------
106621
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106622
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106623
+ --------------------------------
106624
+ Cleaning up checkpoint directory: gpt-checkpoint
106625
+ Cleaning up checkpoint directory: gpt-checkpoint
106626
+ --------------------------------
106627
+ CTX_LENGTH: 81920
106628
+ TP_SIZE: 8
106629
+ --------------------------------
106630
+ CTX_LENGTH: 81920
106631
+ TP_SIZE: 8
106632
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106633
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106634
+ CP_SIZE: 8
106635
+ CHECKPOINT_PATH: gpt-checkpoint
106636
+ Cleaning up checkpoint directory: gpt-checkpoint
106637
+ CP_SIZE: 8
106638
+ CHECKPOINT_PATH: gpt-checkpoint
106639
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106640
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106641
+ --------------------------------
106642
+ --------------------------------
106643
+ CTX_LENGTH: 81920
106644
+ TP_SIZE: 8
106645
+ CP_SIZE: 8
106646
+ --------------------------------
106647
+ CHECKPOINT_PATH: gpt-checkpoint
106648
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106649
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
106650
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106651
+ --------------------------------
106652
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
106653
+ INFO:megatron.training.initialize:Setting logging level to 0
106654
+ INFO:megatron.training.initialize:Setting logging level to 0
106655
+ INFO:megatron.training.initialize:Setting logging level to 0
106656
+ INFO:megatron.training.initialize:Setting logging level to 0
106657
+ INFO:megatron.training.initialize:Setting logging level to 0
106658
+ INFO:megatron.training.initialize:Setting logging level to 0
106659
+ INFO:megatron.training.initialize:Setting logging level to 0
106660
+ INFO:megatron.training.initialize:Setting logging level to 0
106661
+ INFO:megatron.training.initialize:Setting logging level to 0
106662
+ INFO:megatron.training.initialize:Setting logging level to 0
106663
+ INFO:megatron.training.initialize:Setting logging level to 0
106664
+ INFO:megatron.training.initialize:Setting logging level to 0
106665
+ INFO:megatron.training.initialize:Setting logging level to 0
106666
+ INFO:megatron.training.initialize:Setting logging level to 0
106667
+ INFO:megatron.training.initialize:Setting logging level to 0
106668
+ INFO:megatron.training.initialize:Setting logging level to 0
106669
+ INFO:megatron.training.initialize:Setting logging level to 0
106670
+ INFO:megatron.training.initialize:Setting logging level to 0
106671
+ INFO:megatron.training.initialize:Setting logging level to 0
106672
+ INFO:megatron.training.initialize:Setting logging level to 0
106673
+ INFO:megatron.training.initialize:Setting logging level to 0
106674
+ INFO:megatron.training.initialize:Setting logging level to 0
106675
+ INFO:megatron.training.initialize:Setting logging level to 0
106676
+ INFO:megatron.training.initialize:Setting logging level to 0
106677
+ INFO:megatron.training.initialize:Setting logging level to 0
106678
+ INFO:megatron.training.initialize:Setting logging level to 0
106679
+ INFO:megatron.training.initialize:Setting logging level to 0
106680
+ INFO:megatron.training.initialize:Setting logging level to 0
106681
+ INFO:megatron.training.initialize:Setting logging level to 0
106682
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
106683
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
106684
+ INFO:megatron.training.initialize:Setting logging level to 0
106685
+ INFO:megatron.training.initialize:Setting logging level to 0
106686
+ INFO:megatron.training.initialize:Setting logging level to 0
106687
+ INFO:megatron.training.initialize:Setting logging level to 0
106688
+ INFO:megatron.training.initialize:Setting logging level to 0
106689
+ INFO:megatron.training.initialize:Setting logging level to 0
106690
+ INFO:megatron.training.initialize:Setting logging level to 0
106691
+ INFO:megatron.training.initialize:Setting logging level to 0
106692
+ INFO:megatron.training.initialize:Setting logging level to 0
106693
+ INFO:megatron.training.initialize:Setting logging level to 0
106694
+ INFO:megatron.training.initialize:Setting logging level to 0
106695
+ INFO:megatron.training.initialize:Setting logging level to 0
106696
+ INFO:megatron.training.initialize:Setting logging level to 0
106697
+ INFO:megatron.training.initialize:Setting logging level to 0
106698
+ INFO:megatron.training.initialize:Setting logging level to 0
106699
+ INFO:megatron.training.initialize:Setting logging level to 0
106700
+ INFO:megatron.training.initialize:Setting logging level to 0
106701
+ using world size: 64, data-parallel size: 1, context-parallel size: 8, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
106702
+ Number of virtual stages per pipeline stage: None
106703
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
106704
+ using torch.float16 for parameters ...
106705
+ ------------------------ arguments ------------------------
106706
+ account_for_embedding_in_pipeline_split ......... False
106707
+ account_for_loss_in_pipeline_split .............. False
106708
+ accumulate_allreduce_grads_in_fp32 .............. False
106709
+ adam_beta1 ...................................... 0.9
106710
+ adam_beta2 ...................................... 0.999
106711
+ adam_eps ........................................ 1e-08
106712
+ add_bias_linear ................................. True
106713
+ add_position_embedding .......................... True
106714
+ add_qkv_bias .................................... True
106715
+ adlr_autoresume ................................. False
106716
+ adlr_autoresume_interval ........................ 1000
106717
+ align_grad_reduce ............................... True
106718
+ align_param_gather .............................. False
106719
+ app_tag_run_name ................................ None
106720
+ app_tag_run_version ............................. 0.0.0
106721
+ apply_layernorm_1p .............................. False
106722
+ apply_query_key_layer_scaling ................... False
106723
+ apply_residual_connection_post_layernorm ........ False
106724
+ apply_rope_fusion ............................... False
106725
+ async_save ...................................... None
106726
+ async_tensor_model_parallel_allreduce ........... True
106727
+ attention_backend ............................... AttnBackend.auto
106728
+ attention_dropout ............................... 0.1
106729
+ attention_softmax_in_fp32 ....................... False
106730
+ auto_detect_ckpt_format ......................... False
106731
+ barrier_with_L1_time ............................ True
106732
+ bert_binary_head ................................ True
106733
+ bert_embedder_type .............................. megatron
106734
+ bert_load ....................................... None
106735
+ bf16 ............................................ False
106736
+ bias_dropout_fusion ............................. True
106737
+ bias_gelu_fusion ................................ True
106738
+ bias_swiglu_fusion .............................. True
106739
+ biencoder_projection_dim ........................ 0
106740
+ biencoder_shared_query_context_model ............ False
106741
+ block_data_path ................................. None
106742
+ calc_ft_timeouts ................................ False
106743
+ calculate_per_token_loss ........................ False
106744
+ check_for_large_grads ........................... False
106745
+ check_for_nan_in_loss_and_grad .................. False
106746
+ check_for_spiky_loss ............................ False
106747
+ check_weight_hash_across_dp_replicas_interval ... None
106748
+ ckpt_assume_constant_structure .................. False
106749
+ ckpt_convert_format ............................. None
106750
+ ckpt_convert_save ............................... None
106751
+ ckpt_convert_update_legacy_dist_opt_format ...... False
106752
+ ckpt_format ..................................... torch_dist
106753
+ ckpt_fully_parallel_load ........................ False
106754
+ ckpt_fully_parallel_save ........................ True
106755
+ ckpt_fully_parallel_save_deprecated ............. False
106756
+ ckpt_step ....................................... None
106757
+ classes_fraction ................................ 1.0
106758
+ clip_grad ....................................... 1.0
106759
+ clone_scatter_output_in_embedding ............... True
106760
+ config_logger_dir ...............................
106761
+ consumed_train_samples .......................... 0
106762
+ consumed_valid_samples .......................... 0
106763
+ context_parallel_size ........................... 8
106764
+ cp_comm_type .................................... ['p2p']
106765
+ create_attention_mask_in_dataloader ............. True
106766
+ cross_entropy_fusion_impl ....................... native
106767
+ cross_entropy_loss_fusion ....................... False
106768
+ cuda_graph_scope ................................ full
106769
+ cuda_graph_warmup_steps ......................... 3
106770
+ data_args_path .................................. None
106771
+ data_cache_path ................................. None
106772
+ data_parallel_random_init ....................... False
106773
+ data_parallel_sharding_strategy ................. no_shard
106774
+ data_parallel_size .............................. 1
106775
+ data_path ....................................... None
106776
+ data_per_class_fraction ......................... 1.0
106777
+ data_sharding ................................... True
106778
+ dataloader_type ................................. single
106779
+ ddp_average_in_collective ....................... False
106780
+ ddp_bucket_size ................................. None
106781
+ ddp_num_buckets ................................. None
106782
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
106783
+ decoder_first_pipeline_num_layers ............... None
106784
+ decoder_last_pipeline_num_layers ................ None
106785
+ decoder_num_layers .............................. None
106786
+ decoder_seq_length .............................. None
106787
+ decoupled_lr .................................... None
106788
+ decoupled_min_lr ................................ None
106789
+ decrease_batch_size_if_needed ................... False
106790
+ defer_embedding_wgrad_compute ................... False
106791
+ deprecated_use_mcore_models ..................... False
106792
+ deterministic_mode .............................. False
106793
+ dino_bottleneck_size ............................ 256
106794
+ dino_freeze_last_layer .......................... 1
106795
+ dino_head_hidden_size ........................... 2048
106796
+ dino_local_crops_number ......................... 10
106797
+ dino_local_img_size ............................. 96
106798
+ dino_norm_last_layer ............................ False
106799
+ dino_teacher_temp ............................... 0.07
106800
+ dino_warmup_teacher_temp ........................ 0.04
106801
+ dino_warmup_teacher_temp_epochs ................. 30
106802
+ disable_bf16_reduced_precision_matmul ........... False
106803
+ disable_mamba_mem_eff_path ...................... False
106804
+ disable_straggler_on_startup .................... False
106805
+ dist_ckpt_format_deprecated ..................... None
106806
+ dist_ckpt_strictness ............................ assume_ok_unexpected
106807
+ distribute_saved_activations .................... False
106808
+ distributed_backend ............................. nccl
106809
+ distributed_timeout_minutes ..................... 10
106810
+ embedding_path .................................. None
106811
+ empty_unused_memory_level ....................... 0
106812
+ enable_cuda_graph ............................... False
106813
+ enable_ft_package ............................... False
106814
+ enable_gloo_process_groups ...................... True
106815
+ enable_msc ...................................... True
106816
+ enable_one_logger ............................... True
106817
+ encoder_num_layers .............................. 2
106818
+ encoder_pipeline_model_parallel_size ............ 0
106819
+ encoder_seq_length .............................. 81920
106820
+ encoder_tensor_model_parallel_size .............. 0
106821
+ end_weight_decay ................................ 0.1
106822
+ eod_mask_loss ................................... False
106823
+ error_injection_rate ............................ 0
106824
+ error_injection_type ............................ transient_error
106825
+ eval_interval ................................... 16
106826
+ eval_iters ...................................... 1
106827
+ evidence_data_path .............................. None
106828
+ exit_duration_in_mins ........................... None
106829
+ exit_interval ................................... None
106830
+ exit_on_missing_checkpoint ...................... False
106831
+ exit_signal_handler ............................. False
106832
+ exp_avg_dtype ................................... torch.float32
106833
+ exp_avg_sq_dtype ................................ torch.float32
106834
+ expert_model_parallel_size ...................... 1
106835
+ expert_tensor_parallel_size ..................... 8
106836
+ external_cuda_graph ............................. False
106837
+ INFO:megatron.training.initialize:Setting logging level to 0
106838
+ ffn_hidden_size ................................. 16384
106839
+ finetune ........................................ False
106840
+ first_last_layers_bf16 .......................... False
106841
+ flash_decode .................................... False
106842
+ fp16 ............................................ True
106843
+ fp16_lm_cross_entropy ........................... False
106844
+ fp32_residual_connection ........................ False
106845
+ fp8 ............................................. None
106846
+ fp8_amax_compute_algo ........................... most_recent
106847
+ fp8_amax_history_len ............................ 1
106848
+ fp8_interval .................................... 1
106849
+ fp8_margin ...................................... 0
106850
+ fp8_param_gather ................................ False
106851
+ fp8_recipe ...................................... delayed
106852
+ fp8_wgrad ....................................... True
106853
+ fsdp_double_buffer .............................. False
106854
+ global_batch_size ............................... 1
106855
+ grad_reduce_in_bf16 ............................. False
106856
+ gradient_accumulation_fusion .................... True
106857
+ gradient_reduce_div_fusion ...................... True
106858
+ group_query_attention ........................... True
106859
+ head_lr_mult .................................... 1.0
106860
+ heterogeneous_layers_config_encoded_json ........ None
106861
+ heterogeneous_layers_config_path ................ None
106862
+ hidden_dropout .................................. 0.1
106863
+ hidden_size ..................................... 4096
106864
+ hierarchical_context_parallel_sizes ............. None
106865
+ high_priority_stream_groups ..................... []
106866
+ hybrid_attention_ratio .......................... 0.0
106867
+ hybrid_mlp_ratio ................................ 0.0
106868
+ hybrid_override_pattern ......................... None
106869
+ hysteresis ...................................... 2
106870
+ ict_head_size ................................... None
106871
+ ict_load ........................................ None
106872
+ img_h ........................................... 224
106873
+ img_w ........................................... 224
106874
+ indexer_batch_size .............................. 128
106875
+ indexer_log_interval ............................ 1000
106876
+ inference_batch_times_seqlen_threshold .......... -1
106877
+ inference_dynamic_batching ...................... False
106878
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
106879
+ inference_dynamic_batching_buffer_overflow_factor None
106880
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
106881
+ inference_dynamic_batching_chunk_size ........... 256
106882
+ inference_dynamic_batching_max_requests_override None
106883
+ INFO:megatron.training.initialize:Setting logging level to 0
106884
+ inference_dynamic_batching_max_tokens_override .. None
106885
+ inference_max_batch_size ........................ 8
106886
+ inference_max_seq_length ........................ 2560
106887
+ inference_rng_tracker ........................... False
106888
+ init_method_std ................................. 0.02
106889
+ init_method_xavier_uniform ...................... False
106890
+ init_model_with_meta_device ..................... False
106891
+ initial_loss_scale .............................. 4294967296
106892
+ inprocess_active_world_size ..................... 64
106893
+ inprocess_barrier_timeout ....................... 120
106894
+ inprocess_completion_timeout .................... 120
106895
+ inprocess_empty_cuda_cache ...................... False
106896
+ inprocess_granularity ........................... node
106897
+ inprocess_hard_timeout .......................... 90
106898
+ inprocess_heartbeat_interval .................... 30
106899
+ inprocess_heartbeat_timeout ..................... 60
106900
+ inprocess_last_call_wait ........................ 1
106901
+ inprocess_max_iterations ........................ None
106902
+ inprocess_monitor_process_interval .............. 1.0
106903
+ inprocess_monitor_thread_interval ............... 1.0
106904
+ inprocess_progress_watchdog_interval ............ 1.0
106905
+ inprocess_restart ............................... False
106906
+ inprocess_soft_timeout .......................... 60
106907
+ inprocess_termination_grace_time ................ 1
106908
+ is_hybrid_model ................................. False
106909
+ iter_per_epoch .................................. 1250
106910
+ iterations_to_skip .............................. []
106911
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
106912
+ kv_channels ..................................... 64
106913
+ kv_lora_rank .................................... 32
106914
+ lazy_mpu_init ................................... None
106915
+ load ............................................ gpt-checkpoint
106916
+ load_model_opt_format ........................... False
106917
+ local_rank ...................................... 0
106918
+ log_interval .................................... 1
106919
+ log_loss_scale_to_tensorboard ................... True
106920
+ log_memory_to_tensorboard ....................... False
106921
+ log_num_zeros_in_grad ........................... False
106922
+ log_params_norm ................................. False
106923
+ log_progress .................................... False
106924
+ log_straggler ................................... False
106925
+ log_throughput .................................. False
106926
+ log_timers_to_tensorboard ....................... False
106927
+ log_validation_ppl_to_tensorboard ............... False
106928
+ log_world_size_to_tensorboard ................... False
106929
+ logging_level ................................... 0
106930
+ loss_scale ...................................... None
106931
+ loss_scale_window ............................... 1000
106932
+ lr .............................................. 0.0005
106933
+ lr_decay_iters .................................. 150000
106934
+ lr_decay_samples ................................ None
106935
+ lr_decay_style .................................. cosine
106936
+ INFO:megatron.training.initialize:Setting logging level to 0
106937
+ lr_warmup_fraction .............................. None
106938
+ lr_warmup_init .................................. 0.0
106939
+ lr_warmup_iters ................................. 2
106940
+ lr_warmup_samples ............................... 0
106941
+ lr_wsd_decay_iters .............................. None
106942
+ lr_wsd_decay_samples ............................ None
106943
+ lr_wsd_decay_style .............................. exponential
106944
+ main_grads_dtype ................................ torch.float32
106945
+ main_params_dtype ............................... torch.float32
106946
+ make_vocab_size_divisible_by .................... 128
106947
+ mamba_head_dim .................................. 64
106948
+ mamba_num_groups ................................ 8
106949
+ mamba_num_heads ................................. None
106950
+ mamba_state_dim ................................. 128
106951
+ manual_gc ....................................... False
106952
+ manual_gc_eval .................................. True
106953
+ manual_gc_interval .............................. 0
106954
+ mask_factor ..................................... 1.0
106955
+ mask_prob ....................................... 0.15
106956
+ mask_type ....................................... random
106957
+ masked_softmax_fusion ........................... True
106958
+ max_position_embeddings ......................... 81920
106959
+ max_tokens_to_oom ............................... 12000
106960
+ memory_snapshot_path ............................ snapshot.pickle
106961
+ merge_file ...................................... merges.txt
106962
+ micro_batch_size ................................ 1
106963
+ microbatch_group_size_per_vp_stage .............. None
106964
+ mid_level_dataset_surplus ....................... 0.005
106965
+ min_loss_scale .................................. 1.0
106966
+ min_lr .......................................... 0.0
106967
+ mlp_chunks_for_prefill .......................... 1
106968
+ mmap_bin_files .................................. True
106969
+ mock_data ....................................... True
106970
+ moe_apply_probs_on_input ........................ False
106971
+ moe_aux_loss_coeff .............................. 0.0
106972
+ moe_enable_deepep ............................... False
106973
+ moe_expert_capacity_factor ...................... None
106974
+ moe_extended_tp ................................. False
106975
+ moe_ffn_hidden_size ............................. None
106976
+ moe_grouped_gemm ................................ False
106977
+ moe_input_jitter_eps ............................ None
106978
+ moe_layer_freq .................................. 1
106979
+ moe_layer_recompute ............................. False
106980
+ moe_pad_expert_input_to_capacity ................ False
106981
+ moe_per_layer_logging ........................... False
106982
+ moe_permute_fusion .............................. False
106983
+ moe_router_bias_update_rate ..................... 0.001
106984
+ moe_router_dtype ................................ None
106985
+ moe_router_enable_expert_bias ................... False
106986
+ moe_router_force_load_balancing ................. False
106987
+ moe_router_group_topk ........................... None
106988
+ moe_router_load_balancing_type .................. aux_loss
106989
+ moe_router_num_groups ........................... None
106990
+ moe_router_padding_for_fp8 ...................... False
106991
+ moe_router_pre_softmax .......................... False
106992
+ moe_router_score_function ....................... softmax
106993
+ moe_router_topk ................................. 2
106994
+ moe_router_topk_scaling_factor .................. None
106995
+ moe_shared_expert_intermediate_size ............. None
106996
+ moe_shared_expert_overlap ....................... False
106997
+ moe_token_dispatcher_type ....................... allgather
106998
+ moe_token_drop_policy ........................... probs
106999
+ moe_use_legacy_grouped_gemm ..................... False
107000
+ moe_use_upcycling ............................... False
107001
+ moe_z_loss_coeff ................................ None
107002
+ mrope_section ................................... None
107003
+ mscale .......................................... 1.0
107004
+ mscale_all_dim .................................. 1.0
107005
+ mtp_loss_scaling_factor ......................... 0.1
107006
+ mtp_num_layers .................................. None
107007
+ multi_latent_attention .......................... False
107008
+ nccl_all_reduce_for_prefill ..................... False
107009
+ nccl_communicator_config_path ................... None
107010
+ INFO:megatron.training.initialize:Setting logging level to 0
107011
+ INFO:megatron.training.initialize:Setting logging level to 0
107012
+ nccl_ub ......................................... False
107013
+ no_load_optim ................................... None
107014
+ no_load_rng ..................................... None
107015
+ no_persist_layer_norm ........................... False
107016
+ no_rope_freq .................................... None
107017
+ no_save_optim ................................... None
107018
+ no_save_rng ..................................... None
107019
+ non_persistent_ckpt_type ........................ None
107020
+ non_persistent_global_ckpt_dir .................. None
107021
+ non_persistent_local_ckpt_algo .................. fully_parallel
107022
+ non_persistent_local_ckpt_dir ................... None
107023
+ non_persistent_save_interval .................... None
107024
+ norm_epsilon .................................... 1e-05
107025
+ normalization ................................... LayerNorm
107026
+ num_attention_heads ............................. 64
107027
+ num_channels .................................... 3
107028
+ num_classes ..................................... 1000
107029
+ num_dataset_builder_threads ..................... 1
107030
+ num_distributed_optimizer_instances ............. 1
107031
+ num_experts ..................................... None
107032
+ num_layers ...................................... 2
107033
+ num_layers_at_end_in_bf16 ....................... 1
107034
+ num_layers_at_start_in_bf16 ..................... 1
107035
+ num_layers_per_virtual_pipeline_stage ........... None
107036
+ num_query_groups ................................ 16
107037
+ num_virtual_stages_per_pipeline_rank ............ None
107038
+ num_workers ..................................... 2
107039
+ object_storage_cache_path ....................... None
107040
+ one_logger_async ................................ False
107041
+ one_logger_project .............................. megatron-lm
107042
+ one_logger_run_name ............................. None
107043
+ onnx_safe ....................................... None
107044
+ openai_gelu ..................................... False
107045
+ optimizer ....................................... adam
107046
+ optimizer_cpu_offload ........................... False
107047
+ optimizer_offload_fraction ...................... 1.0
107048
+ output_bert_embeddings .......................... False
107049
+ overlap_cpu_optimizer_d2h_h2d ................... False
107050
+ overlap_grad_reduce ............................. False
107051
+ overlap_p2p_comm ................................ False
107052
+ overlap_p2p_comm_warmup_flush ................... False
107053
+ overlap_param_gather ............................ False
107054
+ overlap_param_gather_with_optimizer_step ........ False
107055
+ INFO:megatron.training.initialize:Setting logging level to 0
107056
+ override_opt_param_scheduler .................... False
107057
+ params_dtype .................................... torch.float16
107058
+ patch_dim ....................................... 16
107059
+ per_split_data_args_path ........................ None
107060
+ perform_initialization .......................... True
107061
+ pin_cpu_grads ................................... True
107062
+ pin_cpu_params .................................. True
107063
+ pipeline_model_parallel_comm_backend ............ None
107064
+ pipeline_model_parallel_size .................... 1
107065
+ pipeline_model_parallel_split_rank .............. None
107066
+ position_embedding_type ......................... learned_absolute
107067
+ pretrained_checkpoint ........................... None
107068
+ profile ......................................... False
107069
+ profile_ranks ................................... [0]
107070
+ profile_step_end ................................ 12
107071
+ profile_step_start .............................. 10
107072
+ q_lora_rank ..................................... None
107073
+ qk_head_dim ..................................... 128
107074
+ qk_l2_norm ...................................... False
107075
+ qk_layernorm .................................... False
107076
+ INFO:megatron.training.initialize:Setting logging level to 0
107077
+ qk_pos_emb_head_dim ............................. 64
107078
+ query_in_block_prob ............................. 0.1
107079
+ rampup_batch_size ............................... None
107080
+ rank ............................................ 0
107081
+ recompute_granularity ........................... None
107082
+ recompute_method ................................ None
107083
+ recompute_modules ............................... None
107084
+ recompute_num_layers ............................ None
107085
+ record_memory_history ........................... False
107086
+ relative_attention_max_distance ................. 128
107087
+ relative_attention_num_buckets .................. 32
107088
+ replication ..................................... False
107089
+ replication_factor .............................. 2
107090
+ replication_jump ................................ None
107091
+ rerun_mode ...................................... disabled
107092
+ reset_attention_mask ............................ False
107093
+ reset_position_ids .............................. False
107094
+ result_rejected_tracker_filename ................ None
107095
+ retriever_report_topk_accuracies ................ []
107096
+ retriever_score_scaling ......................... False
107097
+ retriever_seq_length ............................ 256
107098
+ retro_add_retriever ............................. False
107099
+ retro_attention_gate ............................ 1
107100
+ retro_cyclic_train_iters ........................ None
107101
+ retro_encoder_attention_dropout ................. 0.1
107102
+ retro_encoder_hidden_dropout .................... 0.1
107103
+ retro_encoder_layers ............................ 2
107104
+ retro_num_neighbors ............................. 2
107105
+ retro_num_retrieved_chunks ...................... 2
107106
+ retro_project_dir ............................... None
107107
+ retro_verify_neighbor_count ..................... True
107108
+ rope_scaling_factor ............................. 8.0
107109
+ rotary_base ..................................... 10000
107110
+ INFO:megatron.training.initialize:Setting logging level to 0
107111
+ INFO:megatron.training.initialize:Setting logging level to 0
107112
+ rotary_interleaved .............................. False
107113
+ rotary_percent .................................. 1.0
107114
+ rotary_scaling_factor ........................... 1.0
107115
+ rotary_seq_len_interpolation_factor ............. None
107116
+ run_workload_inspector_server ................... False
107117
+ sample_rate ..................................... 1.0
107118
+ save ............................................ gpt-checkpoint
107119
+ save_interval ................................... 16
107120
+ scatter_gather_tensors_in_pipeline .............. True
107121
+ seed ............................................ 1234
107122
+ seq_length ...................................... 81920
107123
+ sequence_parallel ............................... False
107124
+ sgd_momentum .................................... 0.9
107125
+ short_seq_prob .................................. 0.1
107126
+ skip_train ...................................... False
107127
+ skipped_train_samples ........................... 0
107128
+ spec ............................................ None
107129
+ split ........................................... None
107130
+ INFO:megatron.training.initialize:Setting logging level to 0
107131
+ squared_relu .................................... False
107132
+ start_weight_decay .............................. 0.1
107133
+ straggler_ctrlr_port ............................ 65535
107134
+ straggler_minmax_count .......................... 1
107135
+ suggested_communication_unit_size ............... None
107136
+ swiglu .......................................... False
107137
+ swin_backbone_type .............................. tiny
107138
+ symmetric_ar_type ............................... None
107139
+ te_rng_tracker .................................. False
107140
+ tensor_model_parallel_size ...................... 8
107141
+ tensorboard_dir ................................. tensorboard-logs/
107142
+ tensorboard_log_interval ........................ 1
107143
+ tensorboard_queue_size .......................... 1000
107144
+ test_data_path .................................. None
107145
+ test_mode ....................................... False
107146
+ tiktoken_num_special_tokens ..................... 1000
107147
+ tiktoken_pattern ................................ None
107148
+ tiktoken_special_tokens ......................... None
107149
+ timing_log_level ................................ 0
107150
+ timing_log_option ............................... minmax
107151
+ titles_data_path ................................ None
107152
+ tokenizer_model ................................. None
107153
+ tokenizer_type .................................. GPT2BPETokenizer
107154
+ torch_fsdp2_reshard_after_forward ............... True
107155
+ tp_comm_bootstrap_backend ....................... nccl
107156
+ tp_comm_bulk_dgrad .............................. True
107157
+ tp_comm_bulk_wgrad .............................. True
107158
+ tp_comm_overlap ................................. False
107159
+ tp_comm_overlap_ag .............................. True
107160
+ tp_comm_overlap_cfg ............................. None
107161
+ tp_comm_overlap_rs .............................. True
107162
+ INFO:megatron.training.initialize:Setting logging level to 0
107163
+ tp_comm_overlap_rs_dgrad ........................ False
107164
+ tp_comm_split_ag ................................ True
107165
+ tp_comm_split_rs ................................ True
107166
+ train_data_path ................................. None
107167
+ train_iters ..................................... 10
107168
+ train_samples ................................... None
107169
+ train_sync_interval ............................. None
107170
+ transformer_impl ................................ transformer_engine
107171
+ transformer_pipeline_model_parallel_size ........ 1
107172
+ untie_embeddings_and_output_weights ............. False
107173
+ use_checkpoint_args ............................. False
107174
+ use_checkpoint_opt_param_scheduler .............. False
107175
+ use_cpu_initialization .......................... None
107176
+ use_custom_fsdp ................................. False
107177
+ use_dist_ckpt ................................... True
107178
+ use_dist_ckpt_deprecated ........................ False
107179
+ use_distributed_optimizer ....................... False
107180
+ use_flash_attn .................................. False
107181
+ use_legacy_models ............................... False
107182
+ use_mp_args_from_checkpoint_args ................ False
107183
+ use_one_sent_docs ............................... False
107184
+ use_persistent_ckpt_worker ...................... False
107185
+ use_precision_aware_optimizer ................... False
107186
+ use_pytorch_profiler ............................ False
107187
+ use_ring_exchange_p2p ........................... False
107188
+ use_rope_scaling ................................ False
107189
+ use_rotary_position_embeddings .................. False
107190
+ use_sharp ....................................... False
107191
+ use_tokenizer_model_from_checkpoint_args ........ True
107192
+ use_torch_fsdp2 ................................. False
107193
+ use_torch_optimizer_for_cpu_offload ............. False
107194
+ use_tp_pp_dp_mapping ............................ False
107195
+ v_head_dim ...................................... 128
107196
+ valid_data_path ................................. None
107197
+ variable_seq_lengths ............................ False
107198
+ virtual_pipeline_model_parallel_size ............ None
107199
+ vision_backbone_type ............................ vit
107200
+ vision_pretraining .............................. False
107201
+ vision_pretraining_type ......................... classify
107202
+ vocab_extra_ids ................................. 0
107203
+ vocab_file ...................................... vocab.json
107204
+ vocab_size ...................................... None
107205
+ wandb_exp_name ..................................
107206
+ wandb_project ...................................
107207
+ wandb_save_dir ..................................
107208
+ weight_decay .................................... 0.1
107209
+ weight_decay_incr_style ......................... constant
107210
+ wgrad_deferral_limit ............................ 0
107211
+ world_size ...................................... 64
107212
+ yaml_cfg ........................................ None
107213
+ -------------------- end of arguments ---------------------
107214
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
107215
+ > building GPT2BPETokenizer tokenizer ...
107216
+ INFO:megatron.training.initialize:Setting logging level to 0
107217
+ INFO:megatron.training.initialize:Setting logging level to 0
107218
+ INFO:megatron.training.initialize:Setting logging level to 0
107219
+ INFO:megatron.training.initialize:Setting logging level to 0
107220
+ INFO:megatron.training.initialize:Setting logging level to 0
107221
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
107222
+ INFO:megatron.training.initialize:Setting logging level to 0
107223
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
107224
+ > initializing torch distributed ...
107225
+ > initialized tensor model parallel with size 8
107226
+ > initialized pipeline model parallel with size 1
107227
+ > setting random seeds to 1234 ...
107228
+ INFO:megatron.training.initialize:Setting logging level to 0
107229
+ > compiling dataset index builder ...
107230
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
107231
+ make: Nothing to be done for 'default'.
107232
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
107233
+ >>> done with dataset index builder. Compilation time: 0.045 seconds
107234
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
107235
+ > compiling and loading fused kernels ...
107236
+ >>> done with compiling and loading fused kernels. Compilation time: 2.847 seconds
107237
+ time to initialize megatron (seconds): 9.096
107238
+ [after megatron is initialized] datetime: 2025-06-21 20:28:50
107239
+ building GPT model ...
107240
+ >>> embedding
107241
+ >>> decoder
107242
+ >>> output_layer
107243
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107244
+ >>> embedding
107245
+ >>> decoder
107246
+ >>> output_layer
107247
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107248
+ >>> embedding
107249
+ >>> decoder
107250
+ >>> output_layer
107251
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107252
+ >>> embedding
107253
+ >>> decoder
107254
+ >>> output_layer
107255
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107256
+ >>> embedding
107257
+ >>> decoder
107258
+ >>> output_layer
107259
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107260
+ >>> embedding
107261
+ >>> decoder
107262
+ >>> output_layer
107263
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107264
+ >>> embedding
107265
+ >>> decoder
107266
+ >>> output_layer
107267
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107268
+ >>> embedding
107269
+ >>> decoder
107270
+ >>> output_layer
107271
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107272
+ >>> embedding
107273
+ >>> decoder
107274
+ >>> output_layer
107275
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107276
+ >>> embedding
107277
+ >>> decoder
107278
+ >>> output_layer
107279
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107280
+ >>> embedding
107281
+ >>> decoder
107282
+ >>> output_layer
107283
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107284
+ >>> embedding
107285
+ >>> decoder
107286
+ >>> output_layer
107287
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107288
+ >>> embedding
107289
+ >>> decoder
107290
+ >>> output_layer
107291
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107292
+ >>> embedding
107293
+ >>> decoder
107294
+ >>> output_layer
107295
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888>>> embedding
107296
+
107297
+ >>> decoder
107298
+ >>> output_layer
107299
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107300
+ >>> embedding
107301
+ >>> decoder
107302
+ >>> output_layer
107303
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107304
+ >>> embedding
107305
+ >>> decoder
107306
+ >>> output_layer
107307
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107308
+ >>> embedding
107309
+ >>> decoder
107310
+ >>> output_layer
107311
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107312
+ >>> embedding
107313
+ >>> decoder
107314
+ >>> output_layer
107315
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107316
+ >>> embedding
107317
+ >>> decoder
107318
+ >>> output_layer
107319
+ >>> embedding
107320
+ >>> decoder
107321
+ >>> output_layer
107322
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107323
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107324
+ >>> embedding
107325
+ >>> decoder
107326
+ >>> output_layer
107327
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107328
+ >>> embedding
107329
+ >>> decoder
107330
+ >>> output_layer
107331
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107332
+ >>> embedding
107333
+ >>> decoder
107334
+ >>> output_layer
107335
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107336
+ >>> embedding
107337
+ >>> decoder
107338
+ >>> output_layer
107339
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107340
+ >>> embedding
107341
+ >>> decoder
107342
+ >>> output_layer
107343
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107344
+ >>> embedding
107345
+ >>> decoder
107346
+ >>> output_layer
107347
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107348
+ >>> embedding
107349
+ >>> decoder
107350
+ >>> output_layer
107351
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107352
+ >>> embedding
107353
+ >>> decoder
107354
+ >>> output_layer
107355
+ >>> embedding
107356
+ >>> decoder
107357
+ >>> output_layer
107358
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107359
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107360
+ >>> embedding
107361
+ >>> decoder
107362
+ >>> output_layer
107363
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107364
+ >>> embedding
107365
+ >>> decoder
107366
+ >>> output_layer
107367
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107368
+ >>> embedding
107369
+ >>> decoder
107370
+ >>> output_layer
107371
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107372
+ >>> embedding
107373
+ >>> decoder
107374
+ >>> output_layer
107375
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107376
+ >>> embedding
107377
+ >>> decoder
107378
+ >>> output_layer
107379
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107380
+ >>> embedding
107381
+ >>> decoder
107382
+ >>> output_layer
107383
+ >>> embedding
107384
+ >>> decoder
107385
+ >>> output_layer
107386
+ >>> embedding
107387
+ >>> decoder
107388
+ >>> output_layer
107389
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107390
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107391
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107392
+ >>> embedding
107393
+ >>> decoder
107394
+ >>> output_layer
107395
+ >>> embedding
107396
+ >>> decoder
107397
+ >>> output_layer
107398
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107399
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107400
+ >>> embedding
107401
+ >>> decoder
107402
+ >>> output_layer
107403
+ >>> embedding
107404
+ >>> decoder
107405
+ >>> output_layer
107406
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107407
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107408
+ >>> embedding
107409
+ >>> decoder
107410
+ >>> output_layer
107411
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107412
+ >>> embedding
107413
+ >>> decoder
107414
+ >>> output_layer
107415
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107416
+ >>> embedding
107417
+ >>> decoder
107418
+ >>> output_layer
107419
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107420
+ >>> embedding
107421
+ >>> decoder
107422
+ >>> output_layer
107423
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107424
+ >>> embedding
107425
+ >>> decoder
107426
+ >>> output_layer
107427
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107428
+ >>> embedding
107429
+ >>> decoder
107430
+ >>> output_layer
107431
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107432
+ >>> embedding
107433
+ >>> decoder
107434
+ >>> output_layer
107435
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107436
+ >>> embedding
107437
+ >>> decoder
107438
+ >>> output_layer
107439
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107440
+ >>> embedding
107441
+ >>> decoder
107442
+ >>> output_layer
107443
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
107444
+ >>> embedding
107445
+ >>> decoder
107446
+ >>> output_layer
107447
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107448
+ >>> embedding
107449
+ >>> decoder
107450
+ >>> output_layer
107451
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107452
+ >>> embedding
107453
+ >>> decoder
107454
+ >>> output_layer
107455
+ >>> embedding
107456
+ >>> decoder
107457
+ >>> output_layer
107458
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
107459
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107460
+ >>> embedding
107461
+ >>> decoder
107462
+ >>> output_layer
107463
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
107464
+ >>> embedding
107465
+ >>> decoder
107466
+ >>> output_layer
107467
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
107468
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
107469
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
107470
+ Params for bucket 1 (405861888 elements, 405861888 padded size):
107471
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
107472
+ module.decoder.layers.0.mlp.linear_fc2.weight
107473
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
107474
+ module.decoder.final_layernorm.weight
107475
+ module.decoder.layers.1.mlp.linear_fc1.bias
107476
+ module.decoder.layers.0.mlp.linear_fc2.bias
107477
+ module.decoder.layers.1.self_attention.linear_qkv.weight
107478
+ module.decoder.layers.1.self_attention.linear_proj.weight
107479
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
107480
+ module.decoder.layers.0.self_attention.linear_qkv.bias
107481
+ module.embedding.word_embeddings.weight
107482
+ module.decoder.layers.0.mlp.linear_fc1.weight
107483
+ module.decoder.layers.1.mlp.linear_fc2.weight
107484
+ module.decoder.layers.1.self_attention.linear_proj.bias
107485
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
107486
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
107487
+ module.decoder.layers.0.self_attention.linear_proj.weight
107488
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
107489
+ module.decoder.layers.1.self_attention.linear_qkv.bias
107490
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
107491
+ module.decoder.layers.0.self_attention.linear_proj.bias
107492
+ module.decoder.layers.1.mlp.linear_fc1.weight
107493
+ module.decoder.layers.0.mlp.linear_fc1.bias
107494
+ module.embedding.position_embeddings.weight
107495
+ module.decoder.final_layernorm.bias
107496
+ module.decoder.layers.1.mlp.linear_fc2.bias
107497
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
107498
+ module.decoder.layers.0.self_attention.linear_qkv.weight
107499
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14cd927a5df0>, config_logger_dir='')
107500
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
107501
+ >>> embedding
107502
+ >>> decoder
107503
+ >>> output_layer
107504
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
107505
+ >>> embedding
107506
+ >>> decoder
107507
+ >>> output_layer
107508
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107509
+ >>> embedding
107510
+ >>> decoder
107511
+ >>> output_layer
107512
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
107513
+ >>> embedding
107514
+ >>> decoder
107515
+ >>> output_layer
107516
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107517
+ >>> embedding
107518
+ >>> decoder
107519
+ >>> output_layer
107520
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107521
+ >>> embedding
107522
+ >>> decoder
107523
+ >>> output_layer
107524
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
107525
+ >>> embedding
107526
+ >>> decoder
107527
+ >>> output_layer
107528
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
107529
+ loading distributed checkpoint from gpt-checkpoint at iteration 10
107530
+ Running ctx_length=98304, TP_SIZE=8, CP_SIZE=8, BATCH_SIZE=1
107531
+ Cleaning up checkpoint directory: gpt-checkpoint
107532
+ Cleaning up checkpoint directory: gpt-checkpoint
107533
+ Cleaning up checkpoint directory: gpt-checkpoint
107534
+ --------------------------------
107535
+ CTX_LENGTH: 98304
107536
+ TP_SIZE: 8
107537
+ CP_SIZE: 8
107538
+ --------------------------------
107539
+ CTX_LENGTH: 98304
107540
+ TP_SIZE: 8
107541
+ CHECKPOINT_PATH: gpt-checkpoint
107542
+ CP_SIZE: 8
107543
+ CHECKPOINT_PATH: gpt-checkpoint
107544
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107545
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107546
+ --------------------------------
107547
+ CTX_LENGTH: 98304
107548
+ TP_SIZE: 8
107549
+ CP_SIZE: 8
107550
+ CHECKPOINT_PATH: gpt-checkpoint
107551
+ --------------------------------
107552
+ Cleaning up checkpoint directory: gpt-checkpoint
107553
+ --------------------------------
107554
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107555
+ --------------------------------
107556
+ Cleaning up checkpoint directory: gpt-checkpoint
107557
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107558
+ --------------------------------
107559
+ CTX_LENGTH: 98304
107560
+ TP_SIZE: 8
107561
+ CP_SIZE: 8
107562
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107563
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107564
+ CHECKPOINT_PATH: gpt-checkpoint
107565
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107566
+ --------------------------------
107567
+ CTX_LENGTH: 98304
107568
+ TP_SIZE: 8
107569
+ CP_SIZE: 8
107570
+ CHECKPOINT_PATH: gpt-checkpoint
107571
+ --------------------------------
107572
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107573
+ --------------------------------
107574
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107575
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107576
+ Cleaning up checkpoint directory: gpt-checkpoint
107577
+ --------------------------------
107578
+ CTX_LENGTH: 98304
107579
+ TP_SIZE: 8
107580
+ CP_SIZE: 8
107581
+ CHECKPOINT_PATH: gpt-checkpoint
107582
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107583
+ --------------------------------
107584
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107585
+ Cleaning up checkpoint directory: gpt-checkpoint
107586
+ --------------------------------
107587
+ CTX_LENGTH: 98304
107588
+ TP_SIZE: 8
107589
+ CP_SIZE: 8
107590
+ CHECKPOINT_PATH: gpt-checkpoint
107591
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107592
+ --------------------------------
107593
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
107594
+ Cleaning up checkpoint directory: gpt-checkpoint
107595
+ --------------------------------
107596
+ CTX_LENGTH: 98304
107597
+ TP_SIZE: 8
107598
+ CP_SIZE: 8
107599
+ CHECKPOINT_PATH: gpt-checkpoint
107600
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
107601
+ --------------------------------
107602
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343190.err.log CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d60338a2dd2f43d02b7ff7e749d63c85e824f1d6fae8fdcdd2c1c619a9e024d4
3
- size 25954713
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e225814f9cd1acd91de38727cfd656a1fe6cb11631fea0c0c4dc4651e5587941
3
+ size 25988084
attnserver.run_attnserver.slurm.sh.343190.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343191.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343191.out.log CHANGED
@@ -77131,3 +77131,880 @@ CHECKPOINT_PATH: gpt-checkpoint
77131
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
77132
  --------------------------------
77133
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77131
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
77132
  --------------------------------
77133
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
77134
+ INFO:megatron.training.initialize:Setting logging level to 0
77135
+ INFO:megatron.training.initialize:Setting logging level to 0
77136
+ INFO:megatron.training.initialize:Setting logging level to 0
77137
+ using world size: 64, data-parallel size: 1, context-parallel size: 8, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
77138
+ Number of virtual stages per pipeline stage: None
77139
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
77140
+ using torch.float16 for parameters ...
77141
+ ------------------------ arguments ------------------------
77142
+ account_for_embedding_in_pipeline_split ......... False
77143
+ account_for_loss_in_pipeline_split .............. False
77144
+ accumulate_allreduce_grads_in_fp32 .............. False
77145
+ adam_beta1 ...................................... 0.9
77146
+ adam_beta2 ...................................... 0.999
77147
+ adam_eps ........................................ 1e-08
77148
+ add_bias_linear ................................. True
77149
+ add_position_embedding .......................... True
77150
+ add_qkv_bias .................................... True
77151
+ adlr_autoresume ................................. False
77152
+ adlr_autoresume_interval ........................ 1000
77153
+ align_grad_reduce ............................... True
77154
+ align_param_gather .............................. False
77155
+ app_tag_run_name ................................ None
77156
+ app_tag_run_version ............................. 0.0.0
77157
+ apply_layernorm_1p .............................. False
77158
+ apply_query_key_layer_scaling ................... False
77159
+ apply_residual_connection_post_layernorm ........ False
77160
+ apply_rope_fusion ............................... False
77161
+ async_save ...................................... None
77162
+ async_tensor_model_parallel_allreduce ........... True
77163
+ attention_backend ............................... AttnBackend.auto
77164
+ attention_dropout ............................... 0.1
77165
+ attention_softmax_in_fp32 ....................... False
77166
+ auto_detect_ckpt_format ......................... False
77167
+ barrier_with_L1_time ............................ True
77168
+ bert_binary_head ................................ True
77169
+ bert_embedder_type .............................. megatron
77170
+ bert_load ....................................... None
77171
+ bf16 ............................................ False
77172
+ bias_dropout_fusion ............................. True
77173
+ bias_gelu_fusion ................................ True
77174
+ bias_swiglu_fusion .............................. True
77175
+ biencoder_projection_dim ........................ 0
77176
+ biencoder_shared_query_context_model ............ False
77177
+ block_data_path ................................. None
77178
+ calc_ft_timeouts ................................ False
77179
+ calculate_per_token_loss ........................ False
77180
+ check_for_large_grads ........................... False
77181
+ check_for_nan_in_loss_and_grad .................. False
77182
+ check_for_spiky_loss ............................ False
77183
+ check_weight_hash_across_dp_replicas_interval ... None
77184
+ ckpt_assume_constant_structure .................. False
77185
+ ckpt_convert_format ............................. None
77186
+ ckpt_convert_save ............................... None
77187
+ ckpt_convert_update_legacy_dist_opt_format ...... False
77188
+ ckpt_format ..................................... torch_dist
77189
+ ckpt_fully_parallel_load ........................ False
77190
+ ckpt_fully_parallel_save ........................ True
77191
+ ckpt_fully_parallel_save_deprecated ............. False
77192
+ ckpt_step ....................................... None
77193
+ classes_fraction ................................ 1.0
77194
+ clip_grad ....................................... 1.0
77195
+ clone_scatter_output_in_embedding ............... True
77196
+ config_logger_dir ...............................
77197
+ consumed_train_samples .......................... 0
77198
+ consumed_valid_samples .......................... 0
77199
+ context_parallel_size ........................... 8
77200
+ cp_comm_type .................................... ['p2p']
77201
+ create_attention_mask_in_dataloader ............. True
77202
+ cross_entropy_fusion_impl ....................... native
77203
+ cross_entropy_loss_fusion ....................... False
77204
+ cuda_graph_scope ................................ full
77205
+ cuda_graph_warmup_steps ......................... 3
77206
+ data_args_path .................................. None
77207
+ data_cache_path ................................. None
77208
+ data_parallel_random_init ....................... False
77209
+ data_parallel_sharding_strategy ................. no_shard
77210
+ data_parallel_size .............................. 1
77211
+ data_path ....................................... None
77212
+ data_per_class_fraction ......................... 1.0
77213
+ data_sharding ................................... True
77214
+ dataloader_type ................................. single
77215
+ ddp_average_in_collective ....................... False
77216
+ ddp_bucket_size ................................. None
77217
+ ddp_num_buckets ................................. None
77218
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
77219
+ decoder_first_pipeline_num_layers ............... None
77220
+ decoder_last_pipeline_num_layers ................ None
77221
+ decoder_num_layers .............................. None
77222
+ decoder_seq_length .............................. None
77223
+ decoupled_lr .................................... None
77224
+ decoupled_min_lr ................................ None
77225
+ decrease_batch_size_if_needed ................... False
77226
+ defer_embedding_wgrad_compute ................... False
77227
+ deprecated_use_mcore_models ..................... False
77228
+ deterministic_mode .............................. False
77229
+ dino_bottleneck_size ............................ 256
77230
+ dino_freeze_last_layer .......................... 1
77231
+ dino_head_hidden_size ........................... 2048
77232
+ dino_local_crops_number ......................... 10
77233
+ dino_local_img_size ............................. 96
77234
+ dino_norm_last_layer ............................ False
77235
+ dino_teacher_temp ............................... 0.07
77236
+ dino_warmup_teacher_temp ........................ 0.04
77237
+ dino_warmup_teacher_temp_epochs ................. 30
77238
+ disable_bf16_reduced_precision_matmul ........... False
77239
+ disable_mamba_mem_eff_path ...................... False
77240
+ disable_straggler_on_startup .................... False
77241
+ dist_ckpt_format_deprecated ..................... None
77242
+ dist_ckpt_strictness ............................ assume_ok_unexpected
77243
+ distribute_saved_activations .................... False
77244
+ distributed_backend ............................. nccl
77245
+ distributed_timeout_minutes ..................... 10
77246
+ embedding_path .................................. None
77247
+ empty_unused_memory_level ....................... 0
77248
+ enable_cuda_graph ............................... False
77249
+ enable_ft_package ............................... False
77250
+ enable_gloo_process_groups ...................... True
77251
+ enable_msc ...................................... True
77252
+ enable_one_logger ............................... True
77253
+ INFO:megatron.training.initialize:Setting logging level to 0
77254
+ encoder_num_layers .............................. 2
77255
+ encoder_pipeline_model_parallel_size ............ 0
77256
+ encoder_seq_length .............................. 131072
77257
+ encoder_tensor_model_parallel_size .............. 0
77258
+ end_weight_decay ................................ 0.1
77259
+ eod_mask_loss ................................... False
77260
+ error_injection_rate ............................ 0
77261
+ error_injection_type ............................ transient_error
77262
+ eval_interval ................................... 16
77263
+ eval_iters ...................................... 1
77264
+ evidence_data_path .............................. None
77265
+ exit_duration_in_mins ........................... None
77266
+ exit_interval ................................... None
77267
+ exit_on_missing_checkpoint ...................... False
77268
+ exit_signal_handler ............................. False
77269
+ exp_avg_dtype ................................... torch.float32
77270
+ exp_avg_sq_dtype ................................ torch.float32
77271
+ expert_model_parallel_size ...................... 1
77272
+ expert_tensor_parallel_size ..................... 8
77273
+ external_cuda_graph ............................. False
77274
+ ffn_hidden_size ................................. 16384
77275
+ finetune ........................................ False
77276
+ first_last_layers_bf16 .......................... False
77277
+ flash_decode .................................... False
77278
+ fp16 ............................................ True
77279
+ fp16_lm_cross_entropy ........................... False
77280
+ fp32_residual_connection ........................ False
77281
+ fp8 ............................................. None
77282
+ fp8_amax_compute_algo ........................... most_recent
77283
+ fp8_amax_history_len ............................ 1
77284
+ fp8_interval .................................... 1
77285
+ fp8_margin ...................................... 0
77286
+ fp8_param_gather ................................ False
77287
+ fp8_recipe ...................................... delayed
77288
+ fp8_wgrad ....................................... True
77289
+ fsdp_double_buffer .............................. False
77290
+ global_batch_size ............................... 1
77291
+ grad_reduce_in_bf16 ............................. False
77292
+ gradient_accumulation_fusion .................... True
77293
+ gradient_reduce_div_fusion ...................... True
77294
+ group_query_attention ........................... True
77295
+ head_lr_mult .................................... 1.0
77296
+ heterogeneous_layers_config_encoded_json ........ None
77297
+ heterogeneous_layers_config_path ................ None
77298
+ hidden_dropout .................................. 0.1
77299
+ hidden_size ..................................... 4096
77300
+ hierarchical_context_parallel_sizes ............. None
77301
+ high_priority_stream_groups ..................... []
77302
+ hybrid_attention_ratio .......................... 0.0
77303
+ hybrid_mlp_ratio ................................ 0.0
77304
+ hybrid_override_pattern ......................... None
77305
+ hysteresis ...................................... 2
77306
+ ict_head_size ................................... None
77307
+ ict_load ........................................ None
77308
+ img_h ........................................... 224
77309
+ img_w ........................................... 224
77310
+ indexer_batch_size .............................. 128
77311
+ indexer_log_interval ............................ 1000
77312
+ inference_batch_times_seqlen_threshold .......... -1
77313
+ inference_dynamic_batching ...................... False
77314
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
77315
+ inference_dynamic_batching_buffer_overflow_factor None
77316
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
77317
+ inference_dynamic_batching_chunk_size ........... 256
77318
+ inference_dynamic_batching_max_requests_override None
77319
+ inference_dynamic_batching_max_tokens_override .. None
77320
+ inference_max_batch_size ........................ 8
77321
+ inference_max_seq_length ........................ 2560
77322
+ inference_rng_tracker ........................... False
77323
+ init_method_std ................................. 0.02
77324
+ init_method_xavier_uniform ...................... False
77325
+ init_model_with_meta_device ..................... False
77326
+ initial_loss_scale .............................. 4294967296
77327
+ inprocess_active_world_size ..................... 64
77328
+ inprocess_barrier_timeout ....................... 120
77329
+ inprocess_completion_timeout .................... 120
77330
+ inprocess_empty_cuda_cache ...................... False
77331
+ inprocess_granularity ........................... node
77332
+ inprocess_hard_timeout .......................... 90
77333
+ inprocess_heartbeat_interval .................... 30
77334
+ inprocess_heartbeat_timeout ..................... 60
77335
+ inprocess_last_call_wait ........................ 1
77336
+ inprocess_max_iterations ........................ None
77337
+ inprocess_monitor_process_interval .............. 1.0
77338
+ inprocess_monitor_thread_interval ............... 1.0
77339
+ inprocess_progress_watchdog_interval ............ 1.0
77340
+ inprocess_restart ............................... False
77341
+ inprocess_soft_timeout .......................... 60
77342
+ inprocess_termination_grace_time ................ 1
77343
+ is_hybrid_model ................................. False
77344
+ iter_per_epoch .................................. 1250
77345
+ iterations_to_skip .............................. []
77346
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
77347
+ kv_channels ..................................... 64
77348
+ kv_lora_rank .................................... 32
77349
+ lazy_mpu_init ................................... None
77350
+ load ............................................ gpt-checkpoint
77351
+ load_model_opt_format ........................... False
77352
+ local_rank ...................................... 0
77353
+ log_interval .................................... 1
77354
+ log_loss_scale_to_tensorboard ................... True
77355
+ log_memory_to_tensorboard ....................... False
77356
+ log_num_zeros_in_grad ........................... False
77357
+ log_params_norm ................................. False
77358
+ log_progress .................................... False
77359
+ log_straggler ................................... False
77360
+ log_throughput .................................. False
77361
+ INFO:megatron.training.initialize:Setting logging level to 0
77362
+ log_timers_to_tensorboard ....................... False
77363
+ log_validation_ppl_to_tensorboard ............... False
77364
+ log_world_size_to_tensorboard ................... False
77365
+ logging_level ................................... 0
77366
+ loss_scale ...................................... None
77367
+ loss_scale_window ............................... 1000
77368
+ lr .............................................. 0.0005
77369
+ lr_decay_iters .................................. 150000
77370
+ lr_decay_samples ................................ None
77371
+ lr_decay_style .................................. cosine
77372
+ lr_warmup_fraction .............................. None
77373
+ lr_warmup_init .................................. 0.0
77374
+ lr_warmup_iters ................................. 2
77375
+ lr_warmup_samples ............................... 0
77376
+ lr_wsd_decay_iters .............................. None
77377
+ lr_wsd_decay_samples ............................ None
77378
+ lr_wsd_decay_style .............................. exponential
77379
+ main_grads_dtype ................................ torch.float32
77380
+ main_params_dtype ............................... torch.float32
77381
+ make_vocab_size_divisible_by .................... 128
77382
+ mamba_head_dim .................................. 64
77383
+ mamba_num_groups ................................ 8
77384
+ mamba_num_heads ................................. None
77385
+ mamba_state_dim ................................. 128
77386
+ manual_gc ....................................... False
77387
+ manual_gc_eval .................................. True
77388
+ manual_gc_interval .............................. 0
77389
+ mask_factor ..................................... 1.0
77390
+ mask_prob ....................................... 0.15
77391
+ mask_type ....................................... random
77392
+ masked_softmax_fusion ........................... True
77393
+ max_position_embeddings ......................... 131072
77394
+ max_tokens_to_oom ............................... 12000
77395
+ memory_snapshot_path ............................ snapshot.pickle
77396
+ merge_file ...................................... merges.txt
77397
+ micro_batch_size ................................ 1
77398
+ microbatch_group_size_per_vp_stage .............. None
77399
+ mid_level_dataset_surplus ....................... 0.005
77400
+ min_loss_scale .................................. 1.0
77401
+ min_lr .......................................... 0.0
77402
+ mlp_chunks_for_prefill .......................... 1
77403
+ mmap_bin_files .................................. True
77404
+ mock_data ....................................... True
77405
+ moe_apply_probs_on_input ........................ False
77406
+ moe_aux_loss_coeff .............................. 0.0
77407
+ moe_enable_deepep ............................... False
77408
+ moe_expert_capacity_factor ...................... None
77409
+ moe_extended_tp ................................. False
77410
+ moe_ffn_hidden_size ............................. None
77411
+ moe_grouped_gemm ................................ False
77412
+ moe_input_jitter_eps ............................ None
77413
+ moe_layer_freq .................................. 1
77414
+ moe_layer_recompute ............................. False
77415
+ moe_pad_expert_input_to_capacity ................ False
77416
+ moe_per_layer_logging ........................... False
77417
+ moe_permute_fusion .............................. False
77418
+ moe_router_bias_update_rate ..................... 0.001
77419
+ moe_router_dtype ................................ None
77420
+ moe_router_enable_expert_bias ................... False
77421
+ moe_router_force_load_balancing ................. False
77422
+ moe_router_group_topk ........................... None
77423
+ moe_router_load_balancing_type .................. aux_loss
77424
+ moe_router_num_groups ........................... None
77425
+ moe_router_padding_for_fp8 ...................... False
77426
+ moe_router_pre_softmax .......................... False
77427
+ moe_router_score_function ....................... softmax
77428
+ moe_router_topk ................................. 2
77429
+ moe_router_topk_scaling_factor .................. None
77430
+ moe_shared_expert_intermediate_size ............. None
77431
+ moe_shared_expert_overlap ....................... False
77432
+ moe_token_dispatcher_type ....................... allgather
77433
+ moe_token_drop_policy ........................... probs
77434
+ moe_use_legacy_grouped_gemm ..................... False
77435
+ moe_use_upcycling ............................... False
77436
+ moe_z_loss_coeff ................................ None
77437
+ mrope_section ................................... None
77438
+ mscale .......................................... 1.0
77439
+ mscale_all_dim .................................. 1.0
77440
+ mtp_loss_scaling_factor ......................... 0.1
77441
+ mtp_num_layers .................................. None
77442
+ multi_latent_attention .......................... False
77443
+ nccl_all_reduce_for_prefill ..................... False
77444
+ nccl_communicator_config_path ................... None
77445
+ nccl_ub ......................................... False
77446
+ no_load_optim ................................... None
77447
+ no_load_rng ..................................... None
77448
+ no_persist_layer_norm ........................... False
77449
+ no_rope_freq .................................... None
77450
+ no_save_optim ................................... None
77451
+ no_save_rng ..................................... None
77452
+ non_persistent_ckpt_type ........................ None
77453
+ non_persistent_global_ckpt_dir .................. None
77454
+ non_persistent_local_ckpt_algo .................. fully_parallel
77455
+ non_persistent_local_ckpt_dir ................... None
77456
+ non_persistent_save_interval .................... None
77457
+ norm_epsilon .................................... 1e-05
77458
+ normalization ................................... LayerNorm
77459
+ num_attention_heads ............................. 64
77460
+ num_channels .................................... 3
77461
+ num_classes ..................................... 1000
77462
+ num_dataset_builder_threads ..................... 1
77463
+ num_distributed_optimizer_instances ............. 1
77464
+ num_experts ..................................... None
77465
+ num_layers ...................................... 2
77466
+ num_layers_at_end_in_bf16 ....................... 1
77467
+ num_layers_at_start_in_bf16 ..................... 1
77468
+ num_layers_per_virtual_pipeline_stage ........... None
77469
+ num_query_groups ................................ 16
77470
+ num_virtual_stages_per_pipeline_rank ............ None
77471
+ num_workers ..................................... 2
77472
+ object_storage_cache_path ....................... None
77473
+ one_logger_async ................................ False
77474
+ one_logger_project .............................. megatron-lm
77475
+ one_logger_run_name ............................. None
77476
+ onnx_safe ....................................... None
77477
+ openai_gelu ..................................... False
77478
+ optimizer ....................................... adam
77479
+ optimizer_cpu_offload ........................... False
77480
+ optimizer_offload_fraction ...................... 1.0
77481
+ output_bert_embeddings .......................... False
77482
+ overlap_cpu_optimizer_d2h_h2d ................... False
77483
+ overlap_grad_reduce ............................. False
77484
+ overlap_p2p_comm ................................ False
77485
+ overlap_p2p_comm_warmup_flush ................... False
77486
+ overlap_param_gather ............................ False
77487
+ overlap_param_gather_with_optimizer_step ........ False
77488
+ override_opt_param_scheduler .................... False
77489
+ params_dtype .................................... torch.float16
77490
+ patch_dim ....................................... 16
77491
+ per_split_data_args_path ........................ None
77492
+ perform_initialization .......................... True
77493
+ pin_cpu_grads ................................... True
77494
+ pin_cpu_params .................................. True
77495
+ pipeline_model_parallel_comm_backend ............ None
77496
+ pipeline_model_parallel_size .................... 1
77497
+ pipeline_model_parallel_split_rank .............. None
77498
+ position_embedding_type ......................... learned_absolute
77499
+ pretrained_checkpoint ........................... None
77500
+ profile ......................................... False
77501
+ profile_ranks ................................... [0]
77502
+ profile_step_end ................................ 12
77503
+ profile_step_start .............................. 10
77504
+ q_lora_rank ..................................... None
77505
+ qk_head_dim ..................................... 128
77506
+ qk_l2_norm ...................................... False
77507
+ qk_layernorm .................................... False
77508
+ qk_pos_emb_head_dim ............................. 64
77509
+ query_in_block_prob ............................. 0.1
77510
+ rampup_batch_size ............................... None
77511
+ rank ............................................ 0
77512
+ recompute_granularity ........................... None
77513
+ recompute_method ................................ None
77514
+ recompute_modules ............................... None
77515
+ recompute_num_layers ............................ None
77516
+ record_memory_history ........................... False
77517
+ relative_attention_max_distance ................. 128
77518
+ relative_attention_num_buckets .................. 32
77519
+ replication ..................................... False
77520
+ replication_factor .............................. 2
77521
+ replication_jump ................................ None
77522
+ rerun_mode ...................................... disabled
77523
+ reset_attention_mask ............................ False
77524
+ reset_position_ids .............................. False
77525
+ result_rejected_tracker_filename ................ None
77526
+ retriever_report_topk_accuracies ................ []
77527
+ retriever_score_scaling ......................... False
77528
+ retriever_seq_length ............................ 256
77529
+ retro_add_retriever ............................. False
77530
+ retro_attention_gate ............................ 1
77531
+ retro_cyclic_train_iters ........................ None
77532
+ retro_encoder_attention_dropout ................. 0.1
77533
+ retro_encoder_hidden_dropout .................... 0.1
77534
+ retro_encoder_layers ............................ 2
77535
+ retro_num_neighbors ............................. 2
77536
+ retro_num_retrieved_chunks ...................... 2
77537
+ retro_project_dir ............................... None
77538
+ retro_verify_neighbor_count ..................... True
77539
+ rope_scaling_factor ............................. 8.0
77540
+ rotary_base ..................................... 10000
77541
+ rotary_interleaved .............................. False
77542
+ rotary_percent .................................. 1.0
77543
+ rotary_scaling_factor ........................... 1.0
77544
+ rotary_seq_len_interpolation_factor ............. None
77545
+ run_workload_inspector_server ................... False
77546
+ sample_rate ..................................... 1.0
77547
+ save ............................................ gpt-checkpoint
77548
+ save_interval ................................... 16
77549
+ INFO:megatron.training.initialize:Setting logging level to 0
77550
+ scatter_gather_tensors_in_pipeline .............. True
77551
+ seed ............................................ 1234
77552
+ seq_length ...................................... 131072
77553
+ sequence_parallel ............................... False
77554
+ sgd_momentum .................................... 0.9
77555
+ short_seq_prob .................................. 0.1
77556
+ skip_train ...................................... False
77557
+ skipped_train_samples ........................... 0
77558
+ spec ............................................ None
77559
+ split ........................................... None
77560
+ squared_relu .................................... False
77561
+ start_weight_decay .............................. 0.1
77562
+ straggler_ctrlr_port ............................ 65535
77563
+ straggler_minmax_count .......................... 1
77564
+ suggested_communication_unit_size ............... None
77565
+ swiglu .......................................... False
77566
+ swin_backbone_type .............................. tiny
77567
+ symmetric_ar_type ............................... None
77568
+ te_rng_tracker .................................. False
77569
+ tensor_model_parallel_size ...................... 8
77570
+ tensorboard_dir ................................. tensorboard-logs/
77571
+ tensorboard_log_interval ........................ 1
77572
+ tensorboard_queue_size .......................... 1000
77573
+ test_data_path .................................. None
77574
+ test_mode ....................................... False
77575
+ tiktoken_num_special_tokens ..................... 1000
77576
+ tiktoken_pattern ................................ None
77577
+ tiktoken_special_tokens ......................... None
77578
+ timing_log_level ................................ 0
77579
+ timing_log_option ............................... minmax
77580
+ titles_data_path ................................ None
77581
+ tokenizer_model ................................. None
77582
+ tokenizer_type .................................. GPT2BPETokenizer
77583
+ torch_fsdp2_reshard_after_forward ............... True
77584
+ tp_comm_bootstrap_backend ....................... nccl
77585
+ tp_comm_bulk_dgrad .............................. True
77586
+ tp_comm_bulk_wgrad .............................. True
77587
+ tp_comm_overlap ................................. False
77588
+ tp_comm_overlap_ag .............................. True
77589
+ tp_comm_overlap_cfg ............................. None
77590
+ tp_comm_overlap_rs .............................. True
77591
+ tp_comm_overlap_rs_dgrad ........................ False
77592
+ tp_comm_split_ag ................................ True
77593
+ tp_comm_split_rs ................................ True
77594
+ train_data_path ................................. None
77595
+ train_iters ..................................... 10
77596
+ train_samples ................................... None
77597
+ train_sync_interval ............................. None
77598
+ transformer_impl ................................ transformer_engine
77599
+ transformer_pipeline_model_parallel_size ........ 1
77600
+ untie_embeddings_and_output_weights ............. False
77601
+ use_checkpoint_args ............................. False
77602
+ use_checkpoint_opt_param_scheduler .............. False
77603
+ use_cpu_initialization .......................... None
77604
+ use_custom_fsdp ................................. False
77605
+ use_dist_ckpt ................................... True
77606
+ use_dist_ckpt_deprecated ........................ False
77607
+ use_distributed_optimizer ....................... False
77608
+ use_flash_attn .................................. False
77609
+ use_legacy_models ............................... False
77610
+ use_mp_args_from_checkpoint_args ................ False
77611
+ use_one_sent_docs ............................... False
77612
+ use_persistent_ckpt_worker ...................... False
77613
+ use_precision_aware_optimizer ................... False
77614
+ use_pytorch_profiler ............................ False
77615
+ use_ring_exchange_p2p ........................... False
77616
+ use_rope_scaling ................................ False
77617
+ use_rotary_position_embeddings .................. False
77618
+ use_sharp ....................................... False
77619
+ use_tokenizer_model_from_checkpoint_args ........ True
77620
+ use_torch_fsdp2 ................................. False
77621
+ use_torch_optimizer_for_cpu_offload ............. False
77622
+ use_tp_pp_dp_mapping ............................ False
77623
+ v_head_dim ...................................... 128
77624
+ valid_data_path ................................. None
77625
+ variable_seq_lengths ............................ False
77626
+ virtual_pipeline_model_parallel_size ............ None
77627
+ vision_backbone_type ............................ vit
77628
+ vision_pretraining .............................. False
77629
+ vision_pretraining_type ......................... classify
77630
+ vocab_extra_ids ................................. 0
77631
+ vocab_file ...................................... vocab.json
77632
+ vocab_size ...................................... None
77633
+ wandb_exp_name ..................................
77634
+ wandb_project ...................................
77635
+ wandb_save_dir ..................................
77636
+ weight_decay .................................... 0.1
77637
+ weight_decay_incr_style ......................... constant
77638
+ wgrad_deferral_limit ............................ 0
77639
+ world_size ...................................... 64
77640
+ yaml_cfg ........................................ None
77641
+ -------------------- end of arguments ---------------------
77642
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
77643
+ > building GPT2BPETokenizer tokenizer ...
77644
+ INFO:megatron.training.initialize:Setting logging level to 0
77645
+ INFO:megatron.training.initialize:Setting logging level to 0
77646
+ INFO:megatron.training.initialize:Setting logging level to 0
77647
+ INFO:megatron.training.initialize:Setting logging level to 0
77648
+ INFO:megatron.training.initialize:Setting logging level to 0
77649
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
77650
+ INFO:megatron.training.initialize:Setting logging level to 0
77651
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
77652
+ > initializing torch distributed ...
77653
+ INFO:megatron.training.initialize:Setting logging level to 0
77654
+ INFO:megatron.training.initialize:Setting logging level to 0
77655
+ INFO:megatron.training.initialize:Setting logging level to 0
77656
+ INFO:megatron.training.initialize:Setting logging level to 0
77657
+ INFO:megatron.training.initialize:Setting logging level to 0
77658
+ INFO:megatron.training.initialize:Setting logging level to 0
77659
+ INFO:megatron.training.initialize:Setting logging level to 0
77660
+ INFO:megatron.training.initialize:Setting logging level to 0
77661
+ INFO:megatron.training.initialize:Setting logging level to 0
77662
+ INFO:megatron.training.initialize:Setting logging level to 0
77663
+ INFO:megatron.training.initialize:Setting logging level to 0
77664
+ INFO:megatron.training.initialize:Setting logging level to 0
77665
+ INFO:megatron.training.initialize:Setting logging level to 0
77666
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
77667
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
77668
+ INFO:megatron.training.initialize:Setting logging level to 0
77669
+ INFO:megatron.training.initialize:Setting logging level to 0
77670
+ INFO:megatron.training.initialize:Setting logging level to 0
77671
+ INFO:megatron.training.initialize:Setting logging level to 0
77672
+ INFO:megatron.training.initialize:Setting logging level to 0
77673
+ INFO:megatron.training.initialize:Setting logging level to 0
77674
+ INFO:megatron.training.initialize:Setting logging level to 0
77675
+ INFO:megatron.training.initialize:Setting logging level to 0
77676
+ INFO:megatron.training.initialize:Setting logging level to 0
77677
+ INFO:megatron.training.initialize:Setting logging level to 0
77678
+ INFO:megatron.training.initialize:Setting logging level to 0
77679
+ INFO:megatron.training.initialize:Setting logging level to 0
77680
+ INFO:megatron.training.initialize:Setting logging level to 0
77681
+ INFO:megatron.training.initialize:Setting logging level to 0
77682
+ INFO:megatron.training.initialize:Setting logging level to 0
77683
+ INFO:megatron.training.initialize:Setting logging level to 0
77684
+ INFO:megatron.training.initialize:Setting logging level to 0
77685
+ INFO:megatron.training.initialize:Setting logging level to 0
77686
+ INFO:megatron.training.initialize:Setting logging level to 0
77687
+ INFO:megatron.training.initialize:Setting logging level to 0
77688
+ INFO:megatron.training.initialize:Setting logging level to 0
77689
+ INFO:megatron.training.initialize:Setting logging level to 0
77690
+ INFO:megatron.training.initialize:Setting logging level to 0
77691
+ INFO:megatron.training.initialize:Setting logging level to 0
77692
+ INFO:megatron.training.initialize:Setting logging level to 0
77693
+ INFO:megatron.training.initialize:Setting logging level to 0
77694
+ INFO:megatron.training.initialize:Setting logging level to 0
77695
+ INFO:megatron.training.initialize:Setting logging level to 0
77696
+ INFO:megatron.training.initialize:Setting logging level to 0
77697
+ INFO:megatron.training.initialize:Setting logging level to 0
77698
+ INFO:megatron.training.initialize:Setting logging level to 0
77699
+ INFO:megatron.training.initialize:Setting logging level to 0
77700
+ INFO:megatron.training.initialize:Setting logging level to 0
77701
+ INFO:megatron.training.initialize:Setting logging level to 0
77702
+ INFO:megatron.training.initialize:Setting logging level to 0
77703
+ INFO:megatron.training.initialize:Setting logging level to 0
77704
+ INFO:megatron.training.initialize:Setting logging level to 0
77705
+ INFO:megatron.training.initialize:Setting logging level to 0
77706
+ > initialized tensor model parallel with size 8
77707
+ > initialized pipeline model parallel with size 1
77708
+ > setting random seeds to 1234 ...
77709
+ > compiling dataset index builder ...
77710
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
77711
+ INFO:megatron.training.initialize:Setting logging level to 0
77712
+ make: Nothing to be done for 'default'.
77713
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
77714
+ >>> done with dataset index builder. Compilation time: 0.042 seconds
77715
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
77716
+ > compiling and loading fused kernels ...
77717
+ >>> done with compiling and loading fused kernels. Compilation time: 4.716 seconds
77718
+ time to initialize megatron (seconds): 11.995
77719
+ [after megatron is initialized] datetime: 2025-06-21 20:28:43
77720
+ building GPT model ...
77721
+ >>> embedding
77722
+ >>> decoder
77723
+ >>> output_layer
77724
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77725
+ >>> embedding
77726
+ >>> decoder
77727
+ >>> output_layer
77728
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77729
+ >>> embedding
77730
+ >>> decoder
77731
+ >>> output_layer
77732
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77733
+ >>> embedding
77734
+ >>> decoder
77735
+ >>> output_layer
77736
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77737
+ >>> embedding
77738
+ >>> decoder
77739
+ >>> output_layer
77740
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77741
+ >>> embedding
77742
+ >>> decoder
77743
+ >>> output_layer
77744
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77745
+ >>> embedding
77746
+ >>> decoder
77747
+ >>> output_layer
77748
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77749
+ >>> embedding
77750
+ >>> decoder
77751
+ >>> output_layer
77752
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77753
+ >>> embedding
77754
+ >>> decoder
77755
+ >>> output_layer
77756
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77757
+ >>> embedding
77758
+ >>> decoder
77759
+ >>> output_layer
77760
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77761
+ >>> embedding
77762
+ >>> decoder
77763
+ >>> output_layer
77764
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77765
+ >>> embedding
77766
+ >>> decoder
77767
+ >>> output_layer
77768
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77769
+ >>> embedding
77770
+ >>> decoder
77771
+ >>> output_layer
77772
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77773
+ >>> embedding
77774
+ >>> decoder
77775
+ >>> output_layer
77776
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77777
+ >>> embedding
77778
+ >>> decoder
77779
+ >>> output_layer
77780
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77781
+ >>> embedding
77782
+ >>> decoder
77783
+ >>> output_layer
77784
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77785
+ >>> embedding
77786
+ >>> decoder
77787
+ >>> output_layer
77788
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77789
+ >>> embedding
77790
+ >>> decoder
77791
+ >>> output_layer
77792
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77793
+ >>> embedding
77794
+ >>> decoder
77795
+ >>> output_layer
77796
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77797
+ >>> embedding
77798
+ >>> decoder
77799
+ >>> output_layer
77800
+ >>> embedding
77801
+ >>> decoder
77802
+ >>> output_layer
77803
+ >>> embedding
77804
+ >>> decoder
77805
+ >>> output_layer
77806
+ >>> embedding
77807
+ >>> decoder
77808
+ >>> output_layer
77809
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77810
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77811
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77812
+ >>> embedding
77813
+ >>> decoder
77814
+ >>> output_layer
77815
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77816
+ >>> embedding
77817
+ >>> decoder
77818
+ >>> output_layer
77819
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77820
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77821
+ >>> embedding
77822
+ >>> decoder
77823
+ >>> output_layer
77824
+ >>> embedding
77825
+ >>> decoder
77826
+ >>> output_layer
77827
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77828
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77829
+ >>> embedding
77830
+ >>> decoder
77831
+ >>> output_layer
77832
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77833
+ >>> embedding
77834
+ >>> decoder
77835
+ >>> output_layer
77836
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77837
+ >>> embedding
77838
+ >>> decoder
77839
+ >>> output_layer
77840
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77841
+ >>> embedding
77842
+ >>> decoder
77843
+ >>> output_layer
77844
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77845
+ >>> embedding
77846
+ >>> decoder
77847
+ >>> output_layer
77848
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77849
+ >>> embedding
77850
+ >>> decoder
77851
+ >>> output_layer
77852
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77853
+ >>> embedding
77854
+ >>> decoder
77855
+ >>> output_layer
77856
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77857
+ >>> embedding
77858
+ >>> decoder
77859
+ >>> output_layer
77860
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77861
+ >>> embedding
77862
+ >>> decoder
77863
+ >>> output_layer
77864
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77865
+ >>> embedding
77866
+ >>> decoder
77867
+ >>> output_layer
77868
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77869
+ >>> embedding
77870
+ >>> decoder
77871
+ >>> output_layer
77872
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77873
+ >>> embedding
77874
+ >>> decoder
77875
+ >>> output_layer
77876
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77877
+ >>> embedding
77878
+ >>> decoder
77879
+ >>> output_layer
77880
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77881
+ >>> embedding
77882
+ >>> decoder
77883
+ >>> output_layer
77884
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77885
+ >>> embedding
77886
+ >>> decoder
77887
+ >>> output_layer
77888
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
77889
+ >>> embedding
77890
+ >>> decoder
77891
+ >>> output_layer
77892
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77893
+ >>> embedding
77894
+ >>> decoder
77895
+ >>> output_layer
77896
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
77897
+ >>> embedding
77898
+ >>> decoder
77899
+ >>> output_layer
77900
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77901
+ >>> embedding
77902
+ >>> decoder
77903
+ >>> output_layer
77904
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77905
+ >>> embedding
77906
+ >>> decoder
77907
+ >>> output_layer
77908
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77909
+ >>> embedding
77910
+ >>> decoder
77911
+ >>> output_layer
77912
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77913
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
77914
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
77915
+ Params for bucket 1 (607188480 elements, 607188480 padded size):
77916
+ module.decoder.layers.1.mlp.linear_fc1.bias
77917
+ module.decoder.layers.0.mlp.linear_fc2.weight
77918
+ module.decoder.layers.0.mlp.linear_fc1.bias
77919
+ module.decoder.final_layernorm.weight
77920
+ module.decoder.layers.1.self_attention.linear_qkv.weight
77921
+ module.decoder.layers.1.self_attention.linear_proj.weight
77922
+ module.decoder.layers.0.self_attention.linear_qkv.bias
77923
+ module.embedding.position_embeddings.weight
77924
+ module.embedding.word_embeddings.weight
77925
+ module.decoder.layers.1.mlp.linear_fc2.weight
77926
+ module.decoder.layers.1.self_attention.linear_proj.bias
77927
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
77928
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
77929
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
77930
+ module.decoder.layers.0.self_attention.linear_proj.weight
77931
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
77932
+ module.decoder.layers.1.self_attention.linear_qkv.bias
77933
+ module.decoder.layers.0.mlp.linear_fc2.bias
77934
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
77935
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
77936
+ module.decoder.layers.0.self_attention.linear_proj.bias
77937
+ module.decoder.layers.1.mlp.linear_fc1.weight
77938
+ module.decoder.layers.0.mlp.linear_fc1.weight
77939
+ module.decoder.layers.1.mlp.linear_fc2.bias
77940
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
77941
+ module.decoder.layers.0.self_attention.linear_qkv.weight
77942
+ module.decoder.final_layernorm.bias
77943
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
77944
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x145c150c5c40>, config_logger_dir='')
77945
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
77946
+ >>> embedding
77947
+ >>> decoder
77948
+ >>> output_layer
77949
+ >>> embedding
77950
+ >>> decoder
77951
+ >>> output_layer
77952
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77953
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77954
+ >>> embedding
77955
+ >>> decoder
77956
+ >>> output_layer
77957
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77958
+ >>> embedding
77959
+ >>> decoder
77960
+ >>> output_layer
77961
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
77962
+ >>> embedding
77963
+ >>> decoder
77964
+ >>> output_layer
77965
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
77966
+ >>> embedding
77967
+ >>> decoder
77968
+ >>> output_layer
77969
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77970
+ >>> embedding
77971
+ >>> decoder
77972
+ >>> output_layer
77973
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
77974
+ >>> embedding
77975
+ >>> decoder
77976
+ >>> output_layer
77977
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77978
+ >>> embedding
77979
+ >>> decoder
77980
+ >>> output_layer
77981
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
77982
+ >>> embedding
77983
+ >>> decoder
77984
+ >>> output_layer
77985
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77986
+ >>> embedding
77987
+ >>> decoder
77988
+ >>> output_layer
77989
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77990
+ >>> embedding
77991
+ >>> decoder
77992
+ >>> output_layer
77993
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
77994
+ >>> embedding
77995
+ >>> decoder
77996
+ >>> output_layer
77997
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
77998
+ >>> embedding
77999
+ >>> decoder
78000
+ >>> output_layer
78001
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
78002
+ >>> embedding
78003
+ >>> decoder
78004
+ >>> output_layer
78005
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
78006
+ >>> embedding
78007
+ >>> decoder
78008
+ >>> output_layer
78009
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
78010
+ loading distributed checkpoint from gpt-checkpoint at iteration 10
attnserver.run_attnserver.slurm.sh.343195.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343201.err.log CHANGED
@@ -6513,3 +6513,24 @@ W0621 20:24:56.856000 2481343 site-packages/torch/distributed/run.py:766] ******
6513
  warnings.warn(
6514
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6515
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6513
  warnings.warn(
6514
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6515
  warnings.warn(
6516
+ [rank0]: Traceback (most recent call last):
6517
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
6518
+ [rank0]: pretrain(
6519
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
6520
+ [rank0]: save_checkpoint(
6521
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
6522
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
6523
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6524
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
6525
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
6526
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
6527
+ [rank0]: torch.save(common_state_dict, path)
6528
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
6529
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
6530
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
6531
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
6532
+ [rank0]: return container(name_or_buffer)
6533
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
6534
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
6535
+ [rank0]: torch._C.PyTorchFileWriter(
6536
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
attnserver.run_attnserver.slurm.sh.343201.out.log CHANGED
@@ -32912,3 +32912,540 @@ batch tensor after cp: position_ids torch.Size([1, 40960])
32912
  Start exporting trace 6
32913
  Done exporting trace 6
32914
  [2025-06-21 20:28:12] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 16736.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32912
  Start exporting trace 6
32913
  Done exporting trace 6
32914
  [2025-06-21 20:28:12] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 16736.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
32915
+ batch tensor: tokens torch.Size([1, 81920])
32916
+ batch tensor: labels torch.Size([1, 81920])
32917
+ batch tensor: loss_mask torch.Size([1, 81920])
32918
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32919
+ batch tensor: position_ids torch.Size([1, 81920])
32920
+ batch tensor after cp: tokens torch.Size([1, 40960])
32921
+ batch tensor after cp: labels torch.Size([1, 40960])
32922
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32923
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32924
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32925
+ batch tensor: tokens torch.Size([1, 81920])
32926
+ batch tensor: labels torch.Size([1, 81920])
32927
+ batch tensor: loss_mask torch.Size([1, 81920])
32928
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32929
+ batch tensor: position_ids torch.Size([1, 81920])
32930
+ batch tensor after cp: tokens torch.Size([1, 40960])
32931
+ batch tensor after cp: labels torch.Size([1, 40960])
32932
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32933
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32934
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32935
+ batch tensor: tokens torch.Size([1, 81920])
32936
+ batch tensor: labels torch.Size([1, 81920])
32937
+ batch tensor: loss_mask torch.Size([1, 81920])
32938
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32939
+ batch tensor: position_ids torch.Size([1, 81920])
32940
+ batch tensor after cp: tokens torch.Size([1, 40960])
32941
+ batch tensor after cp: labels torch.Size([1, 40960])
32942
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32943
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32944
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32945
+ batch tensor: tokens torch.Size([1, 81920])
32946
+ batch tensor: labels torch.Size([1, 81920])
32947
+ batch tensor: loss_mask torch.Size([1, 81920])
32948
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32949
+ batch tensor: position_ids torch.Size([1, 81920])
32950
+ batch tensor after cp: tokens torch.Size([1, 40960])
32951
+ batch tensor after cp: labels torch.Size([1, 40960])
32952
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32953
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32954
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32955
+ batch tensor: tokens torch.Size([1, 81920])
32956
+ batch tensor: labels torch.Size([1, 81920])
32957
+ batch tensor: loss_mask torch.Size([1, 81920])
32958
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32959
+ batch tensor: position_ids torch.Size([1, 81920])
32960
+ batch tensor after cp: tokens torch.Size([1, 40960])
32961
+ batch tensor after cp: labels torch.Size([1, 40960])
32962
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32963
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32964
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32965
+ batch tensor: tokens torch.Size([1, 81920])
32966
+ batch tensor: labels torch.Size([1, 81920])
32967
+ batch tensor: loss_mask torch.Size([1, 81920])
32968
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32969
+ batch tensor: position_ids torch.Size([1, 81920])
32970
+ batch tensor after cp: tokens torch.Size([1, 40960])
32971
+ batch tensor after cp: labels torch.Size([1, 40960])
32972
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32973
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32974
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32975
+ batch tensor: tokens torch.Size([1, 81920])
32976
+ batch tensor: labels torch.Size([1, 81920])
32977
+ batch tensor: loss_mask torch.Size([1, 81920])
32978
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32979
+ batch tensor: position_ids torch.Size([1, 81920])
32980
+ batch tensor after cp: tokens torch.Size([1, 40960])
32981
+ batch tensor after cp: labels torch.Size([1, 40960])
32982
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32983
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32984
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32985
+ batch tensor: tokens torch.Size([1, 81920])
32986
+ batch tensor: labels torch.Size([1, 81920])
32987
+ batch tensor: loss_mask torch.Size([1, 81920])
32988
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32989
+ batch tensor: position_ids torch.Size([1, 81920])
32990
+ batch tensor after cp: tokens torch.Size([1, 40960])
32991
+ batch tensor after cp: labels torch.Size([1, 40960])
32992
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
32993
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
32994
+ batch tensor after cp: position_ids torch.Size([1, 40960])
32995
+ batch tensor: tokens torch.Size([1, 81920])
32996
+ batch tensor: labels torch.Size([1, 81920])
32997
+ batch tensor: loss_mask torch.Size([1, 81920])
32998
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32999
+ batch tensor: position_ids torch.Size([1, 81920])
33000
+ batch tensor after cp: tokens torch.Size([1, 40960])
33001
+ batch tensor after cp: labels torch.Size([1, 40960])
33002
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33003
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33004
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33005
+ batch tensor: tokens torch.Size([1, 81920])
33006
+ batch tensor: labels torch.Size([1, 81920])
33007
+ batch tensor: loss_mask torch.Size([1, 81920])
33008
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33009
+ batch tensor: position_ids torch.Size([1, 81920])
33010
+ batch tensor after cp: tokens torch.Size([1, 40960])
33011
+ batch tensor after cp: labels torch.Size([1, 40960])
33012
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33013
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33014
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33015
+ batch tensor: tokens torch.Size([1, 81920])
33016
+ batch tensor: labels torch.Size([1, 81920])
33017
+ batch tensor: loss_mask torch.Size([1, 81920])
33018
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33019
+ batch tensor: position_ids torch.Size([1, 81920])
33020
+ batch tensor after cp: tokens torch.Size([1, 40960])
33021
+ batch tensor after cp: labels torch.Size([1, 40960])
33022
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33023
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33024
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33025
+ batch tensor: tokens torch.Size([1, 81920])
33026
+ batch tensor: labels torch.Size([1, 81920])
33027
+ batch tensor: loss_mask torch.Size([1, 81920])
33028
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33029
+ batch tensor: position_ids torch.Size([1, 81920])
33030
+ batch tensor after cp: tokens torch.Size([1, 40960])
33031
+ batch tensor after cp: labels torch.Size([1, 40960])
33032
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33033
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33034
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33035
+ batch tensor: tokens torch.Size([1, 81920])
33036
+ batch tensor: labels torch.Size([1, 81920])
33037
+ batch tensor: loss_mask torch.Size([1, 81920])
33038
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33039
+ batch tensor: position_ids torch.Size([1, 81920])
33040
+ batch tensor after cp: tokens torch.Size([1, 40960])
33041
+ batch tensor after cp: labels torch.Size([1, 40960])
33042
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33043
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33044
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33045
+ batch tensor: tokens torch.Size([1, 81920])
33046
+ batch tensor: labels torch.Size([1, 81920])
33047
+ batch tensor: loss_mask torch.Size([1, 81920])
33048
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33049
+ batch tensor: position_ids torch.Size([1, 81920])
33050
+ batch tensor after cp: tokens torch.Size([1, 40960])
33051
+ batch tensor after cp: labels torch.Size([1, 40960])
33052
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33053
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33054
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33055
+ batch tensor: tokens torch.Size([1, 81920])
33056
+ batch tensor: labels torch.Size([1, 81920])
33057
+ batch tensor: loss_mask torch.Size([1, 81920])
33058
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33059
+ batch tensor: position_ids torch.Size([1, 81920])
33060
+ batch tensor after cp: tokens torch.Size([1, 40960])
33061
+ batch tensor after cp: labels torch.Size([1, 40960])
33062
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33063
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33064
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33065
+ batch tensor: tokens torch.Size([1, 81920])
33066
+ batch tensor: labels torch.Size([1, 81920])
33067
+ batch tensor: loss_mask torch.Size([1, 81920])
33068
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33069
+ batch tensor: position_ids torch.Size([1, 81920])
33070
+ batch tensor after cp: tokens torch.Size([1, 40960])
33071
+ batch tensor after cp: labels torch.Size([1, 40960])
33072
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33073
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33074
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33075
+ Start exporting trace 7
33076
+ Done exporting trace 7
33077
+ [2025-06-21 20:28:29] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 16827.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
33078
+ batch tensor: tokens torch.Size([1, 81920])
33079
+ batch tensor: labels torch.Size([1, 81920])
33080
+ batch tensor: loss_mask torch.Size([1, 81920])
33081
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33082
+ batch tensor: position_ids torch.Size([1, 81920])
33083
+ batch tensor after cp: tokens torch.Size([1, 40960])
33084
+ batch tensor after cp: labels torch.Size([1, 40960])
33085
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33086
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33087
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33088
+ batch tensor: tokens torch.Size([1, 81920])
33089
+ batch tensor: labels torch.Size([1, 81920])
33090
+ batch tensor: loss_mask torch.Size([1, 81920])
33091
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33092
+ batch tensor: position_ids torch.Size([1, 81920])
33093
+ batch tensor after cp: tokens torch.Size([1, 40960])
33094
+ batch tensor after cp: labels torch.Size([1, 40960])
33095
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33096
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33097
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33098
+ batch tensor: tokens torch.Size([1, 81920])
33099
+ batch tensor: labels torch.Size([1, 81920])
33100
+ batch tensor: loss_mask torch.Size([1, 81920])
33101
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33102
+ batch tensor: position_ids torch.Size([1, 81920])
33103
+ batch tensor after cp: tokens torch.Size([1, 40960])
33104
+ batch tensor after cp: labels torch.Size([1, 40960])
33105
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33106
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33107
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33108
+ batch tensor: tokens torch.Size([1, 81920])
33109
+ batch tensor: labels torch.Size([1, 81920])
33110
+ batch tensor: loss_mask torch.Size([1, 81920])
33111
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33112
+ batch tensor: position_ids torch.Size([1, 81920])
33113
+ batch tensor after cp: tokens torch.Size([1, 40960])
33114
+ batch tensor after cp: labels torch.Size([1, 40960])
33115
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33116
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33117
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33118
+ batch tensor: tokens torch.Size([1, 81920])
33119
+ batch tensor: labels torch.Size([1, 81920])
33120
+ batch tensor: loss_mask torch.Size([1, 81920])
33121
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33122
+ batch tensor: position_ids torch.Size([1, 81920])
33123
+ batch tensor after cp: tokens torch.Size([1, 40960])
33124
+ batch tensor after cp: labels torch.Size([1, 40960])
33125
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33126
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33127
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33128
+ batch tensor: tokens torch.Size([1, 81920])
33129
+ batch tensor: labels torch.Size([1, 81920])
33130
+ batch tensor: loss_mask torch.Size([1, 81920])
33131
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33132
+ batch tensor: position_ids torch.Size([1, 81920])
33133
+ batch tensor after cp: tokens torch.Size([1, 40960])
33134
+ batch tensor after cp: labels torch.Size([1, 40960])
33135
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33136
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33137
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33138
+ batch tensor: tokens torch.Size([1, 81920])
33139
+ batch tensor: labels torch.Size([1, 81920])
33140
+ batch tensor: loss_mask torch.Size([1, 81920])
33141
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33142
+ batch tensor: position_ids torch.Size([1, 81920])
33143
+ batch tensor after cp: tokens torch.Size([1, 40960])
33144
+ batch tensor after cp: labels torch.Size([1, 40960])
33145
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33146
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33147
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33148
+ batch tensor: tokens torch.Size([1, 81920])
33149
+ batch tensor: labels torch.Size([1, 81920])
33150
+ batch tensor: loss_mask torch.Size([1, 81920])
33151
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33152
+ batch tensor: position_ids torch.Size([1, 81920])
33153
+ batch tensor after cp: tokens torch.Size([1, 40960])
33154
+ batch tensor after cp: labels torch.Size([1, 40960])
33155
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33156
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33157
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33158
+ batch tensor: tokens torch.Size([1, 81920])
33159
+ batch tensor: labels torch.Size([1, 81920])
33160
+ batch tensor: loss_mask torch.Size([1, 81920])
33161
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33162
+ batch tensor: position_ids torch.Size([1, 81920])
33163
+ batch tensor: tokens torch.Size([1, 81920])
33164
+ batch tensor: labels torch.Size([1, 81920])
33165
+ batch tensor: loss_mask torch.Size([1, 81920])
33166
+ batch tensor: attention_mask batch tensor after cp:torch.Size([1, 1, 81920, 81920])
33167
+ tokens batch tensor: position_idstorch.Size([1, 40960])
33168
+ torch.Size([1, 81920])batch tensor after cp:
33169
+ labels torch.Size([1, 40960])
33170
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33171
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33172
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33173
+ batch tensor: tokens torch.Size([1, 81920])
33174
+ batch tensor: labels torch.Size([1, 81920])
33175
+ batch tensor: loss_mask torch.Size([1, 81920])
33176
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33177
+ batch tensor: position_ids torch.Size([1, 81920])
33178
+ batch tensor after cp: tokens torch.Size([1, 40960])
33179
+ batch tensor after cp: labels torch.Size([1, 40960])
33180
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33181
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33182
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33183
+ batch tensor after cp: tokens torch.Size([1, 40960])
33184
+ batch tensor after cp: labels torch.Size([1, 40960])
33185
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33186
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33187
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33188
+ batch tensor: tokens torch.Size([1, 81920])
33189
+ batch tensor: labels torch.Size([1, 81920])
33190
+ batch tensor: loss_mask torch.Size([1, 81920])
33191
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33192
+ batch tensor: position_ids torch.Size([1, 81920])
33193
+ batch tensor after cp: tokens torch.Size([1, 40960])
33194
+ batch tensor after cp: labels torch.Size([1, 40960])
33195
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33196
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33197
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33198
+ batch tensor: tokens torch.Size([1, 81920])
33199
+ batch tensor: labels torch.Size([1, 81920])
33200
+ batch tensor: loss_mask torch.Size([1, 81920])
33201
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33202
+ batch tensor: position_ids torch.Size([1, 81920])
33203
+ batch tensor after cp: tokens torch.Size([1, 40960])
33204
+ batch tensor after cp: labels torch.Size([1, 40960])
33205
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33206
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33207
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33208
+ batch tensor: tokens torch.Size([1, 81920])
33209
+ batch tensor: labels torch.Size([1, 81920])
33210
+ batch tensor: loss_mask torch.Size([1, 81920])
33211
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33212
+ batch tensor: position_ids torch.Size([1, 81920])
33213
+ batch tensor after cp: tokens torch.Size([1, 40960])
33214
+ batch tensor after cp: labels torch.Size([1, 40960])
33215
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33216
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33217
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33218
+ batch tensor: tokens torch.Size([1, 81920])
33219
+ batch tensor: labels torch.Size([1, 81920])
33220
+ batch tensor: loss_mask torch.Size([1, 81920])
33221
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33222
+ batch tensor: position_ids torch.Size([1, 81920])
33223
+ batch tensor after cp: tokens torch.Size([1, 40960])
33224
+ batch tensor after cp: labels torch.Size([1, 40960])
33225
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33226
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33227
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33228
+ batch tensor: tokens torch.Size([1, 81920])
33229
+ batch tensor: labels torch.Size([1, 81920])
33230
+ batch tensor: loss_mask torch.Size([1, 81920])
33231
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33232
+ batch tensor: position_ids torch.Size([1, 81920])
33233
+ batch tensor after cp: tokens torch.Size([1, 40960])
33234
+ batch tensor after cp: labels torch.Size([1, 40960])
33235
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33236
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33237
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33238
+ Start exporting trace 8
33239
+ Done exporting trace 8
33240
+ [2025-06-21 20:28:46] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 16795.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
33241
+ batch tensor: tokens torch.Size([1, 81920])
33242
+ batch tensor: labels torch.Size([1, 81920])
33243
+ batch tensor: loss_mask torch.Size([1, 81920])
33244
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33245
+ batch tensor: position_ids torch.Size([1, 81920])
33246
+ batch tensor after cp: tokens torch.Size([1, 40960])
33247
+ batch tensor after cp: labels torch.Size([1, 40960])
33248
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33249
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33250
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33251
+ batch tensor: tokens torch.Size([1, 81920])
33252
+ batch tensor: labels torch.Size([1, 81920])
33253
+ batch tensor: loss_mask torch.Size([1, 81920])
33254
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33255
+ batch tensor: position_ids torch.Size([1, 81920])
33256
+ batch tensor after cp: tokens torch.Size([1, 40960])
33257
+ batch tensor after cp: labels torch.Size([1, 40960])
33258
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33259
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33260
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33261
+ batch tensor: tokens torch.Size([1, 81920])
33262
+ batch tensor: labels torch.Size([1, 81920])
33263
+ batch tensor: loss_mask torch.Size([1, 81920])
33264
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33265
+ batch tensor: position_ids torch.Size([1, 81920])
33266
+ batch tensor after cp: tokens torch.Size([1, 40960])
33267
+ batch tensor after cp: labels torch.Size([1, 40960])
33268
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33269
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33270
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33271
+ batch tensor: tokens torch.Size([1, 81920])
33272
+ batch tensor: labels torch.Size([1, 81920])
33273
+ batch tensor: loss_mask torch.Size([1, 81920])
33274
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33275
+ batch tensor: position_ids torch.Size([1, 81920])
33276
+ batch tensor after cp: tokens torch.Size([1, 40960])
33277
+ batch tensor after cp: labels torch.Size([1, 40960])
33278
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33279
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33280
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33281
+ batch tensor: tokens torch.Size([1, 81920])
33282
+ batch tensor: labels torch.Size([1, 81920])
33283
+ batch tensor: loss_mask torch.Size([1, 81920])
33284
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33285
+ batch tensor: position_ids torch.Size([1, 81920])
33286
+ batch tensor after cp: tokens torch.Size([1, 40960])
33287
+ batch tensor after cp: labels torch.Size([1, 40960])
33288
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33289
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33290
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33291
+ batch tensor: tokens torch.Size([1, 81920])
33292
+ batch tensor: labels torch.Size([1, 81920])
33293
+ batch tensor: loss_mask torch.Size([1, 81920])
33294
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33295
+ batch tensor: position_ids torch.Size([1, 81920])
33296
+ batch tensor after cp: tokens torch.Size([1, 40960])
33297
+ batch tensor after cp: labels torch.Size([1, 40960])
33298
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33299
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33300
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33301
+ batch tensor: tokens torch.Size([1, 81920])
33302
+ batch tensor: labels torch.Size([1, 81920])
33303
+ batch tensor: loss_mask torch.Size([1, 81920])
33304
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33305
+ batch tensor: position_ids torch.Size([1, 81920])
33306
+ batch tensor after cp: tokens torch.Size([1, 40960])
33307
+ batch tensor after cp: labels torch.Size([1, 40960])
33308
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33309
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33310
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33311
+ batch tensor: tokens torch.Size([1, 81920])
33312
+ batch tensor: labels torch.Size([1, 81920])
33313
+ batch tensor: loss_mask torch.Size([1, 81920])
33314
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33315
+ batch tensor: position_ids torch.Size([1, 81920])
33316
+ batch tensor after cp: tokens torch.Size([1, 40960])
33317
+ batch tensor after cp: labels torch.Size([1, 40960])
33318
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33319
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33320
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33321
+ batch tensor: tokens torch.Size([1, 81920])
33322
+ batch tensor: labels torch.Size([1, 81920])
33323
+ batch tensor: loss_mask torch.Size([1, 81920])
33324
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33325
+ batch tensor: position_ids torch.Size([1, 81920])
33326
+ batch tensor after cp: tokens torch.Size([1, 40960])
33327
+ batch tensor after cp: labels torch.Size([1, 40960])
33328
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33329
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33330
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33331
+ batch tensor: tokens torch.Size([1, 81920])
33332
+ batch tensor: labels torch.Size([1, 81920])
33333
+ batch tensor: loss_mask torch.Size([1, 81920])
33334
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33335
+ batch tensor: position_ids torch.Size([1, 81920])
33336
+ batch tensor after cp: tokens torch.Size([1, 40960])
33337
+ batch tensor after cp: labels torch.Size([1, 40960])
33338
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33339
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33340
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33341
+ batch tensor: tokens torch.Size([1, 81920])
33342
+ batch tensor: labels torch.Size([1, 81920])
33343
+ batch tensor: loss_mask torch.Size([1, 81920])
33344
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33345
+ batch tensor: position_ids torch.Size([1, 81920])
33346
+ batch tensor after cp: tokens torch.Size([1, 40960])
33347
+ batch tensor after cp: labels torch.Size([1, 40960])
33348
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33349
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33350
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33351
+ batch tensor: tokens torch.Size([1, 81920])
33352
+ batch tensor: labels torch.Size([1, 81920])
33353
+ batch tensor: loss_mask torch.Size([1, 81920])
33354
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33355
+ batch tensor: position_ids torch.Size([1, 81920])
33356
+ batch tensor after cp: tokens torch.Size([1, 40960])
33357
+ batch tensor after cp: labels torch.Size([1, 40960])
33358
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33359
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33360
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33361
+ batch tensor: tokens torch.Size([1, 81920])
33362
+ batch tensor: labels torch.Size([1, 81920])
33363
+ batch tensor: loss_mask torch.Size([1, 81920])
33364
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33365
+ batch tensor: position_ids torch.Size([1, 81920])
33366
+ batch tensor after cp: tokens torch.Size([1, 40960])
33367
+ batch tensor after cp: labels torch.Size([1, 40960])
33368
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33369
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33370
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33371
+ batch tensor: tokens torch.Size([1, 81920])
33372
+ batch tensor: labels torch.Size([1, 81920])
33373
+ batch tensor: loss_mask torch.Size([1, 81920])
33374
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33375
+ batch tensor: position_ids torch.Size([1, 81920])
33376
+ batch tensor after cp: tokens torch.Size([1, 40960])
33377
+ batch tensor after cp: labels torch.Size([1, 40960])
33378
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33379
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33380
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33381
+ batch tensor: tokens torch.Size([1, 81920])
33382
+ batch tensor: labels torch.Size([1, 81920])
33383
+ batch tensor: loss_mask torch.Size([1, 81920])
33384
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33385
+ batch tensor: position_ids torch.Size([1, 81920])
33386
+ batch tensor after cp: tokens torch.Size([1, 40960])
33387
+ batch tensor after cp: labels torch.Size([1, 40960])
33388
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33389
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33390
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33391
+ batch tensor: tokens torch.Size([1, 81920])
33392
+ batch tensor: labels torch.Size([1, 81920])
33393
+ batch tensor: loss_mask torch.Size([1, 81920])
33394
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
33395
+ batch tensor: position_ids torch.Size([1, 81920])
33396
+ batch tensor after cp: tokens torch.Size([1, 40960])
33397
+ batch tensor after cp: labels torch.Size([1, 40960])
33398
+ batch tensor after cp: loss_mask torch.Size([1, 40960])
33399
+ batch tensor after cp: attention_mask torch.Size([1, 1, 40960, 81920])
33400
+ batch tensor after cp: position_ids torch.Size([1, 40960])
33401
+ Start exporting trace 9
33402
+ Done exporting trace 9
33403
+ [2025-06-21 20:29:03] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 16912.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
33404
+ [after training is done] datetime: 2025-06-21 20:29:03
33405
+ saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format
33406
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.09083819389343262 to prepare state dict for ckpt
33407
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.09198808670043945 to prepare state dict for ckpt
33408
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.09203386306762695 to prepare state dict for ckpt
33409
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.09206128120422363 to prepare state dict for ckpt
33410
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.09206986427307129 to prepare state dict for ckpt
33411
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.09206938743591309 to prepare state dict for ckpt
33412
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.09209275245666504 to prepare state dict for ckpt
33413
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.09324049949645996 to prepare state dict for ckpt
33414
+ DEBUG:megatron.training.checkpointing:rank: 15, takes 0.09270429611206055 to prepare state dict for ckpt
33415
+ DEBUG:megatron.training.checkpointing:rank: 11, takes 0.09274792671203613 to prepare state dict for ckpt
33416
+ DEBUG:megatron.training.checkpointing:rank: 9, takes 0.0927731990814209 to prepare state dict for ckpt
33417
+ DEBUG:megatron.training.checkpointing:rank: 12, takes 0.09279537200927734 to prepare state dict for ckpt
33418
+ DEBUG:megatron.training.checkpointing:rank: 13, takes 0.09290647506713867 to prepare state dict for ckpt
33419
+ DEBUG:megatron.training.checkpointing:rank: 10, takes 0.09294629096984863 to prepare state dict for ckpt
33420
+ DEBUG:megatron.training.checkpointing:rank: 8, takes 0.09694695472717285 to prepare state dict for ckpt
33421
+ DEBUG:megatron.training.checkpointing:rank: 14, takes 0.09971809387207031 to prepare state dict for ckpt
33422
+ WARNING:megatron.core.dist_checkpointing.serialization:Overwriting old incomplete / corrupted checkpoint...
33423
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33424
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33425
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33426
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33427
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33428
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33429
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33430
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33431
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33432
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33433
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33434
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33435
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33436
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33437
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
33438
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33439
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33440
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33441
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33442
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33443
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33444
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33445
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33446
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33447
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33448
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33449
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33450
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]
33451
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(209748992), 0), (np.int64(211812352), 1)]