diff --git "a/attnserver.run_attnserver.slurm.sh.343195.out.log" "b/attnserver.run_attnserver.slurm.sh.343195.out.log" --- "a/attnserver.run_attnserver.slurm.sh.343195.out.log" +++ "b/attnserver.run_attnserver.slurm.sh.343195.out.log" @@ -52277,3 +52277,2264 @@ batch tensor after cp: position_ids torch.Size([1, 16384]) Start exporting trace 1 Done exporting trace 1 [2025-06-21 20:28:07] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 21463.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 2 +Done exporting trace 2 + [2025-06-21 20:28:17] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 10417.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 3 +Done exporting trace 3 + [2025-06-21 20:28:28] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 10068.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 4 +Done exporting trace 4 + [2025-06-21 20:28:38] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 10320.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 5 +Done exporting trace 5 + [2025-06-21 20:28:48] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 10121.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 6 +Done exporting trace 6 + [2025-06-21 20:28:58] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 10122.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 7 +Done exporting trace 7 + [2025-06-21 20:29:08] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 10103.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +batch tensor: tokens torch.Size([1, 65536]) +batch tensor: labels torch.Size([1, 65536]) +batch tensor: loss_mask torch.Size([1, 65536]) +batch tensor: attention_mask torch.Size([1, 1, 65536, 65536]) +batch tensor: position_ids torch.Size([1, 65536]) +batch tensor after cp: tokens torch.Size([1, 16384]) +batch tensor after cp: labels torch.Size([1, 16384]) +batch tensor after cp: loss_mask torch.Size([1, 16384]) +batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 65536]) +batch tensor after cp: position_ids torch.Size([1, 16384]) +Start exporting trace 8 +Done exporting trace 8 + [2025-06-21 20:29:18] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 10063.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |