GindaChen commited on
Commit
a4d4b42
·
verified ·
1 Parent(s): 70ed1d3

Upload folder using huggingface_hub

Browse files
Files changed (35) hide show
  1. attnserver.run_attnserver.slurm.sh.343207.err.log +9 -0
  2. attnserver.run_attnserver.slurm.sh.343207.out.log +733 -0
  3. attnserver.run_attnserver.slurm.sh.343214.err.log +0 -0
  4. attnserver.run_attnserver.slurm.sh.343214.out.log +255 -0
  5. attnserver.run_attnserver.slurm.sh.343215.err.log +2 -2
  6. attnserver.run_attnserver.slurm.sh.343215.out.log +0 -0
  7. attnserver.run_attnserver.slurm.sh.343216.err.log +0 -0
  8. attnserver.run_attnserver.slurm.sh.343216.out.log +0 -0
  9. attnserver.run_attnserver.slurm.sh.343226.out.log +591 -0
  10. attnserver.run_attnserver.slurm.sh.343237.err.log +343 -0
  11. attnserver.run_attnserver.slurm.sh.343237.out.log +0 -0
  12. attnserver.run_attnserver.slurm.sh.343238.err.log +379 -0
  13. attnserver.run_attnserver.slurm.sh.343238.out.log +0 -0
  14. attnserver.run_attnserver.slurm.sh.343239.err.log +0 -0
  15. attnserver.run_attnserver.slurm.sh.343239.out.log +0 -0
  16. attnserver.run_attnserver.slurm.sh.343240.err.log +0 -0
  17. attnserver.run_attnserver.slurm.sh.343240.out.log +0 -0
  18. attnserver.run_attnserver.slurm.sh.343241.err.log +0 -0
  19. attnserver.run_attnserver.slurm.sh.343241.out.log +0 -0
  20. attnserver.run_attnserver.slurm.sh.343242.err.log +156 -0
  21. attnserver.run_attnserver.slurm.sh.343242.out.log +19 -0
  22. attnserver.run_attnserver.slurm.sh.343243.err.log +0 -0
  23. attnserver.run_attnserver.slurm.sh.343243.out.log +0 -0
  24. attnserver.run_attnserver.slurm.sh.343244.err.log +0 -0
  25. attnserver.run_attnserver.slurm.sh.343244.out.log +0 -0
  26. attnserver.run_attnserver.slurm.sh.343248.err.log +0 -0
  27. attnserver.run_attnserver.slurm.sh.343248.out.log +0 -0
  28. attnserver.run_attnserver.slurm.sh.343261.err.log +0 -0
  29. attnserver.run_attnserver.slurm.sh.343261.out.log +0 -0
  30. attnserver.run_attnserver.slurm.sh.343262.err.log +0 -0
  31. attnserver.run_attnserver.slurm.sh.343262.out.log +0 -0
  32. attnserver.run_attnserver.slurm.sh.343263.err.log +0 -0
  33. attnserver.run_attnserver.slurm.sh.343263.out.log +0 -0
  34. attnserver.run_attnserver.slurm.sh.343264.err.log +217 -0
  35. attnserver.run_attnserver.slurm.sh.343264.out.log +0 -0
attnserver.run_attnserver.slurm.sh.343207.err.log CHANGED
@@ -5419,3 +5419,12 @@ W0621 21:57:15.431000 1545124 site-packages/torch/distributed/run.py:766] ******
5419
  warnings.warn(
5420
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
5421
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
5419
  warnings.warn(
5420
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
5421
  warnings.warn(
5422
+ [rank7]:[W621 22:17:12.844696883 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5423
+ [rank4]:[W621 22:17:13.903036627 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5424
+ [rank3]:[W621 22:17:13.903781399 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5425
+ [rank6]:[W621 22:17:13.923039231 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5426
+ [rank5]:[W621 22:17:13.952421917 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5427
+ [rank2]:[W621 22:17:13.088350360 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5428
+ [rank1]:[W621 22:17:13.148366750 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5429
+ [rank0]:[W621 22:17:16.332550332 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5430
+ + set +x
attnserver.run_attnserver.slurm.sh.343207.out.log CHANGED
@@ -19691,3 +19691,736 @@ batch tensor after cp: labels torch.Size([1, 131072])
19691
  batch tensor after cp: loss_mask torch.Size([1, 131072])
19692
  batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19693
  batch tensor after cp: position_ids torch.Size([1, 131072])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19691
  batch tensor after cp: loss_mask torch.Size([1, 131072])
19692
  batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19693
  batch tensor after cp: position_ids torch.Size([1, 131072])
19694
+ batch tensor: tokens torch.Size([1, 131072])
19695
+ batch tensor: labels torch.Size([1, 131072])
19696
+ batch tensor: loss_mask torch.Size([1, 131072])
19697
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19698
+ batch tensor: position_ids torch.Size([1, 131072])
19699
+ batch tensor after cp: tokens torch.Size([1, 131072])
19700
+ batch tensor after cp: labels torch.Size([1, 131072])
19701
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19702
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19703
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19704
+ Start exporting trace 5
19705
+ Done exporting trace 5
19706
+ [2025-06-21 22:09:04] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 125694.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19707
+ batch tensor: tokens torch.Size([1, 131072])
19708
+ batch tensor: labels torch.Size([1, 131072])
19709
+ batch tensor: loss_mask torch.Size([1, 131072])
19710
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19711
+ batch tensor: position_ids torch.Size([1, 131072])
19712
+ batch tensor after cp: tokens torch.Size([1, 131072])
19713
+ batch tensor after cp: labels torch.Size([1, 131072])
19714
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19715
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19716
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19717
+ batch tensor: tokens torch.Size([1, 131072])
19718
+ batch tensor: labels torch.Size([1, 131072])
19719
+ batch tensor: loss_mask torch.Size([1, 131072])
19720
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19721
+ batch tensor: position_ids torch.Size([1, 131072])
19722
+ batch tensor after cp: tokens torch.Size([1, 131072])
19723
+ batch tensor after cp: labels torch.Size([1, 131072])
19724
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19725
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19726
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19727
+ batch tensor: tokens torch.Size([1, 131072])
19728
+ batch tensor: labels torch.Size([1, 131072])
19729
+ batch tensor: loss_mask torch.Size([1, 131072])
19730
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19731
+ batch tensor: position_ids torch.Size([1, 131072])
19732
+ batch tensor after cp: tokens torch.Size([1, 131072])
19733
+ batch tensor after cp: labels torch.Size([1, 131072])
19734
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19735
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19736
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19737
+ batch tensor: tokens torch.Size([1, 131072])
19738
+ batch tensor: labels torch.Size([1, 131072])
19739
+ batch tensor: loss_mask torch.Size([1, 131072])
19740
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19741
+ batch tensor: position_ids torch.Size([1, 131072])
19742
+ batch tensor after cp: tokens torch.Size([1, 131072])
19743
+ batch tensor after cp: labels torch.Size([1, 131072])
19744
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19745
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19746
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19747
+ batch tensor: tokens torch.Size([1, 131072])
19748
+ batch tensor: labels torch.Size([1, 131072])
19749
+ batch tensor: loss_mask torch.Size([1, 131072])
19750
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19751
+ batch tensor: position_ids torch.Size([1, 131072])
19752
+ batch tensor after cp: tokens torch.Size([1, 131072])
19753
+ batch tensor after cp: labels torch.Size([1, 131072])
19754
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19755
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19756
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19757
+ batch tensor: tokens torch.Size([1, 131072])
19758
+ batch tensor: labels torch.Size([1, 131072])
19759
+ batch tensor: loss_mask torch.Size([1, 131072])
19760
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19761
+ batch tensor: position_ids torch.Size([1, 131072])
19762
+ batch tensor after cp: tokens torch.Size([1, 131072])
19763
+ batch tensor after cp: labels torch.Size([1, 131072])
19764
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19765
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19766
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19767
+ batch tensor: tokens torch.Size([1, 131072])
19768
+ batch tensor: labels torch.Size([1, 131072])
19769
+ batch tensor: loss_mask torch.Size([1, 131072])
19770
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19771
+ batch tensor: position_ids torch.Size([1, 131072])
19772
+ batch tensor after cp: tokens torch.Size([1, 131072])
19773
+ batch tensor after cp: labels torch.Size([1, 131072])
19774
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19775
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19776
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19777
+ batch tensor: tokens torch.Size([1, 131072])
19778
+ batch tensor: labels torch.Size([1, 131072])
19779
+ batch tensor: loss_mask torch.Size([1, 131072])
19780
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19781
+ batch tensor: position_ids torch.Size([1, 131072])
19782
+ batch tensor after cp: tokens torch.Size([1, 131072])
19783
+ batch tensor after cp: labels torch.Size([1, 131072])
19784
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19785
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19786
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19787
+ Start exporting trace 6
19788
+ Done exporting trace 6
19789
+ [2025-06-21 22:11:10] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 126612.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19790
+ batch tensor: tokens torch.Size([1, 131072])
19791
+ batch tensor: labels torch.Size([1, 131072])
19792
+ batch tensor: loss_mask torch.Size([1, 131072])
19793
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19794
+ batch tensor: position_ids torch.Size([1, 131072])
19795
+ batch tensor after cp: tokens torch.Size([1, 131072])
19796
+ batch tensor after cp: labels torch.Size([1, 131072])
19797
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19798
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19799
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19800
+ batch tensor: tokens torch.Size([1, 131072])
19801
+ batch tensor: labels torch.Size([1, 131072])
19802
+ batch tensor: loss_mask torch.Size([1, 131072])
19803
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19804
+ batch tensor: position_ids torch.Size([1, 131072])
19805
+ batch tensor after cp: tokens torch.Size([1, 131072])
19806
+ batch tensor after cp: labels torch.Size([1, 131072])
19807
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19808
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19809
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19810
+ batch tensor: tokens torch.Size([1, 131072])
19811
+ batch tensor: labels torch.Size([1, 131072])
19812
+ batch tensor: loss_mask torch.Size([1, 131072])
19813
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19814
+ batch tensor: position_ids torch.Size([1, 131072])
19815
+ batch tensor after cp: tokens torch.Size([1, 131072])
19816
+ batch tensor after cp: labels torch.Size([1, 131072])
19817
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19818
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19819
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19820
+ batch tensor: tokens torch.Size([1, 131072])
19821
+ batch tensor: labels torch.Size([1, 131072])
19822
+ batch tensor: loss_mask torch.Size([1, 131072])
19823
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19824
+ batch tensor: position_ids torch.Size([1, 131072])
19825
+ batch tensor after cp: tokens torch.Size([1, 131072])
19826
+ batch tensor after cp: labels torch.Size([1, 131072])
19827
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19828
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19829
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19830
+ batch tensor: tokens torch.Size([1, 131072])
19831
+ batch tensor: labels torch.Size([1, 131072])
19832
+ batch tensor: loss_mask torch.Size([1, 131072])
19833
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19834
+ batch tensor: position_ids torch.Size([1, 131072])
19835
+ batch tensor after cp: tokens torch.Size([1, 131072])
19836
+ batch tensor after cp: labels torch.Size([1, 131072])
19837
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19838
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19839
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19840
+ batch tensor: tokens torch.Size([1, 131072])
19841
+ batch tensor: labels torch.Size([1, 131072])
19842
+ batch tensor: loss_mask torch.Size([1, 131072])
19843
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19844
+ batch tensor: position_ids torch.Size([1, 131072])
19845
+ batch tensor after cp: tokens torch.Size([1, 131072])
19846
+ batch tensor after cp: labels torch.Size([1, 131072])
19847
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19848
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19849
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19850
+ batch tensor: tokens torch.Size([1, 131072])
19851
+ batch tensor: labels torch.Size([1, 131072])
19852
+ batch tensor: loss_mask torch.Size([1, 131072])
19853
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19854
+ batch tensor: position_ids torch.Size([1, 131072])
19855
+ batch tensor after cp: tokens torch.Size([1, 131072])
19856
+ batch tensor after cp: labels torch.Size([1, 131072])
19857
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19858
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19859
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19860
+ batch tensor: tokens torch.Size([1, 131072])
19861
+ batch tensor: labels torch.Size([1, 131072])
19862
+ batch tensor: loss_mask torch.Size([1, 131072])
19863
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19864
+ batch tensor: position_ids torch.Size([1, 131072])
19865
+ batch tensor after cp: tokens torch.Size([1, 131072])
19866
+ batch tensor after cp: labels torch.Size([1, 131072])
19867
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19868
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19869
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19870
+ Start exporting trace 7
19871
+ Done exporting trace 7
19872
+ [2025-06-21 22:13:16] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 126011.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19873
+ batch tensor: tokens torch.Size([1, 131072])
19874
+ batch tensor: labels torch.Size([1, 131072])
19875
+ batch tensor: loss_mask torch.Size([1, 131072])
19876
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19877
+ batch tensor: position_ids torch.Size([1, 131072])
19878
+ batch tensor after cp: tokens torch.Size([1, 131072])
19879
+ batch tensor after cp: labels torch.Size([1, 131072])
19880
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19881
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19882
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19883
+ batch tensor: tokens torch.Size([1, 131072])
19884
+ batch tensor: labels torch.Size([1, 131072])
19885
+ batch tensor: loss_mask torch.Size([1, 131072])
19886
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19887
+ batch tensor: position_ids torch.Size([1, 131072])
19888
+ batch tensor after cp: tokens torch.Size([1, 131072])
19889
+ batch tensor after cp: labels torch.Size([1, 131072])
19890
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19891
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19892
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19893
+ batch tensor: tokens torch.Size([1, 131072])
19894
+ batch tensor: labels torch.Size([1, 131072])
19895
+ batch tensor: loss_mask torch.Size([1, 131072])
19896
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19897
+ batch tensor: position_ids torch.Size([1, 131072])
19898
+ batch tensor after cp: tokens torch.Size([1, 131072])
19899
+ batch tensor after cp: labels torch.Size([1, 131072])
19900
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19901
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19902
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19903
+ batch tensor: tokens torch.Size([1, 131072])
19904
+ batch tensor: labels torch.Size([1, 131072])
19905
+ batch tensor: loss_mask torch.Size([1, 131072])
19906
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19907
+ batch tensor: position_ids torch.Size([1, 131072])
19908
+ batch tensor after cp: tokens torch.Size([1, 131072])
19909
+ batch tensor after cp: labels torch.Size([1, 131072])
19910
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19911
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19912
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19913
+ batch tensor: tokens torch.Size([1, 131072])
19914
+ batch tensor: labels torch.Size([1, 131072])
19915
+ batch tensor: loss_mask torch.Size([1, 131072])
19916
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19917
+ batch tensor: position_ids torch.Size([1, 131072])
19918
+ batch tensor after cp: tokens torch.Size([1, 131072])
19919
+ batch tensor after cp: labels torch.Size([1, 131072])
19920
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19921
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19922
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19923
+ batch tensor: tokens torch.Size([1, 131072])
19924
+ batch tensor: labels torch.Size([1, 131072])
19925
+ batch tensor: loss_mask torch.Size([1, 131072])
19926
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19927
+ batch tensor: position_ids torch.Size([1, 131072])
19928
+ batch tensor after cp: tokens torch.Size([1, 131072])
19929
+ batch tensor after cp: labels torch.Size([1, 131072])
19930
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19931
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19932
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19933
+ batch tensor: tokens torch.Size([1, 131072])
19934
+ batch tensor: labels torch.Size([1, 131072])
19935
+ batch tensor: loss_mask torch.Size([1, 131072])
19936
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19937
+ batch tensor: position_ids torch.Size([1, 131072])
19938
+ batch tensor after cp: tokens torch.Size([1, 131072])
19939
+ batch tensor after cp: labels torch.Size([1, 131072])
19940
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19941
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19942
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19943
+ batch tensor: tokens torch.Size([1, 131072])
19944
+ batch tensor: labels torch.Size([1, 131072])
19945
+ batch tensor: loss_mask torch.Size([1, 131072])
19946
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19947
+ batch tensor: position_ids torch.Size([1, 131072])
19948
+ batch tensor after cp: tokens torch.Size([1, 131072])
19949
+ batch tensor after cp: labels torch.Size([1, 131072])
19950
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19951
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19952
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19953
+ Start exporting trace 8
19954
+ Done exporting trace 8
19955
+ [2025-06-21 22:14:39] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 82690.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19956
+ batch tensor: tokens torch.Size([1, 131072])
19957
+ batch tensor: labels torch.Size([1, 131072])
19958
+ batch tensor: loss_mask torch.Size([1, 131072])
19959
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19960
+ batch tensor: position_ids torch.Size([1, 131072])
19961
+ batch tensor after cp: tokens torch.Size([1, 131072])
19962
+ batch tensor after cp: labels torch.Size([1, 131072])
19963
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19964
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19965
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19966
+ batch tensor: tokens torch.Size([1, 131072])
19967
+ batch tensor: labels torch.Size([1, 131072])
19968
+ batch tensor: loss_mask torch.Size([1, 131072])
19969
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19970
+ batch tensor: position_ids torch.Size([1, 131072])
19971
+ batch tensor after cp: tokens torch.Size([1, 131072])
19972
+ batch tensor after cp: labels torch.Size([1, 131072])
19973
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19974
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19975
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19976
+ batch tensor: tokens torch.Size([1, 131072])
19977
+ batch tensor: labels torch.Size([1, 131072])
19978
+ batch tensor: loss_mask torch.Size([1, 131072])
19979
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19980
+ batch tensor: position_ids torch.Size([1, 131072])
19981
+ batch tensor after cp: tokens torch.Size([1, 131072])
19982
+ batch tensor after cp: labels torch.Size([1, 131072])
19983
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19984
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19985
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19986
+ batch tensor: tokens torch.Size([1, 131072])
19987
+ batch tensor: labels torch.Size([1, 131072])
19988
+ batch tensor: loss_mask torch.Size([1, 131072])
19989
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19990
+ batch tensor: position_ids torch.Size([1, 131072])
19991
+ batch tensor after cp: tokens torch.Size([1, 131072])
19992
+ batch tensor after cp: labels torch.Size([1, 131072])
19993
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19994
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19995
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19996
+ batch tensor: tokens torch.Size([1, 131072])
19997
+ batch tensor: labels torch.Size([1, 131072])
19998
+ batch tensor: loss_mask torch.Size([1, 131072])
19999
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20000
+ batch tensor: position_ids torch.Size([1, 131072])
20001
+ batch tensor after cp: tokens torch.Size([1, 131072])
20002
+ batch tensor after cp: labels torch.Size([1, 131072])
20003
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20004
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20005
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20006
+ batch tensor: tokens torch.Size([1, 131072])
20007
+ batch tensor: labels torch.Size([1, 131072])
20008
+ batch tensor: loss_mask torch.Size([1, 131072])
20009
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20010
+ batch tensor: position_ids torch.Size([1, 131072])
20011
+ batch tensor after cp: tokens torch.Size([1, 131072])
20012
+ batch tensor after cp: labels torch.Size([1, 131072])
20013
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20014
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20015
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20016
+ batch tensor: tokens torch.Size([1, 131072])
20017
+ batch tensor: labels torch.Size([1, 131072])
20018
+ batch tensor: loss_mask torch.Size([1, 131072])
20019
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20020
+ batch tensor: position_ids torch.Size([1, 131072])
20021
+ batch tensor after cp: tokens torch.Size([1, 131072])
20022
+ batch tensor after cp: labels torch.Size([1, 131072])
20023
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20024
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20025
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20026
+ batch tensor: tokens torch.Size([1, 131072])
20027
+ batch tensor: labels torch.Size([1, 131072])
20028
+ batch tensor: loss_mask torch.Size([1, 131072])
20029
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20030
+ batch tensor: position_ids torch.Size([1, 131072])
20031
+ batch tensor after cp: tokens torch.Size([1, 131072])
20032
+ batch tensor after cp: labels torch.Size([1, 131072])
20033
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20034
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20035
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20036
+ Start exporting trace 9
20037
+ Done exporting trace 9
20038
+ [2025-06-21 22:15:21] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 42240.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
20039
+ [after training is done] datetime: 2025-06-21 22:15:21
20040
+ saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format
20041
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.029944181442260742 to prepare state dict for ckpt
20042
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.029944896697998047 to prepare state dict for ckpt
20043
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.02997756004333496 to prepare state dict for ckpt
20044
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.029980897903442383 to prepare state dict for ckpt
20045
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.030018329620361328 to prepare state dict for ckpt
20046
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.032994747161865234 to prepare state dict for ckpt
20047
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.03483152389526367 to prepare state dict for ckpt
20048
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.04432272911071777 to prepare state dict for ckpt
20049
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20050
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20051
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20052
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20053
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20054
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20055
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20056
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
20057
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.754762649536133
20058
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.755059242248535
20059
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.754767894744873
20060
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.755425691604614
20061
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.75556445121765
20062
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.755885124206543
20063
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 16.75555682182312
20064
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 0.008649587631225586
20065
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, starting state dict save
20066
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, starting state dict save
20067
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, starting state dict save
20068
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, starting state dict save
20069
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, starting state dict save
20070
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20071
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20072
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20073
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20074
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20075
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20076
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20077
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20078
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20079
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20080
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, starting state dict save
20081
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20082
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20083
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, starting state dict save
20084
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20085
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20086
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, starting state dict save
20087
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
20088
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
20089
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, plan time: 0.00948190689086914
20090
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, plan time: 0.008324623107910156
20091
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.342456
20092
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, plan time: 0.009523391723632812
20093
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, plan time: 0.009513616561889648
20094
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3424892
20095
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3424945
20096
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3424995
20097
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, plan time: 0.009567499160766602
20098
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, plan time: 0.007208824157714844
20099
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3425388
20100
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3425443
20101
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010204315185546875
20102
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010132789611816406
20103
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010085105895996094
20104
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010538101196289062
20105
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, plan time: 0.009640932083129883
20106
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010156631469726562
20107
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3426392
20108
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010824203491210938
20109
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 9.655952453613281e-05
20110
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, plan time: 0.009952783584594727
20111
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750544139.3492665
20112
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00011038780212402344
20113
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05514168739318848
20114
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.3981066 rank: 6, write(async) time: 0.05561351776123047
20115
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.0555727481842041
20116
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05548429489135742
20117
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.055655479431152344
20118
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.055699825286865234
20119
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.3985298 rank: 4, write(async) time: 0.05603933334350586
20120
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.3985932 rank: 3, write(async) time: 0.05595111846923828
20121
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.3986025 rank: 7, write(async) time: 0.056096792221069336
20122
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.3986292 rank: 5, write(async) time: 0.05617260932922363
20123
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05745339393615723
20124
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.4004755 rank: 2, write(async) time: 0.057933807373046875
20125
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05948781967163086
20126
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.4025002 rank: 1, write(async) time: 0.05995345115661621
20127
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.0785679817199707
20128
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544139.4283192 rank: 0, write(async) time: 0.07905006408691406
20129
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 1.71661376953125e-05 to finish D2H
20130
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 1.8596649169921875e-05 to finish D2H
20131
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 1.7881393432617188e-05 to finish D2H
20132
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 1.7404556274414062e-05 to finish D2H
20133
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 4.744529724121094e-05 to finish D2H
20134
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 1.6689300537109375e-05 to finish D2H
20135
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 1.6927719116210938e-05 to finish D2H
20136
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 0.02756810188293457 to schedule async ckpt
20137
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 0.02429986000061035 to schedule async ckpt
20138
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 0.027829885482788086 to schedule async ckpt
20139
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 0.025727033615112305 to schedule async ckpt
20140
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 0.027070045471191406 to schedule async ckpt
20141
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 0.03217744827270508 to schedule async ckpt
20142
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 0.03220176696777344 to schedule async ckpt
20143
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20144
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20145
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20146
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20147
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20148
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20149
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20150
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20151
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20152
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20153
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20154
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20155
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20156
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20157
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20158
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20159
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20160
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20161
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20162
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20163
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20164
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216584192, before: 1609834496, after: 1826418688
20165
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214532096, before: 1611698176, after: 1826230272
20166
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216518656, before: 1611857920, after: 1828376576
20167
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214421504, before: 1609834496, after: 1824256000
20168
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216530944, before: 1612681216, after: 1829212160
20169
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214511616, before: 1633198080, after: 1847709696
20170
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216510464, before: 1633198080, after: 1849708544
20171
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214740992, before: 1612681216, after: 1827422208
20172
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214638592, before: 1642680320, after: 1857318912
20173
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214769664, before: 1613099008, after: 1827868672
20174
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20175
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.5652304, rank: 1, write(sync,parallel): 0.9489068984985352
20176
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216535040, before: 1611698176, after: 1828233216
20177
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20178
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.5889492, rank: 5, write(sync,parallel): 0.9763185977935791
20179
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20180
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.5965796, rank: 2, write(sync,parallel): 0.9779596328735352
20181
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20182
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.605897, rank: 7, write(sync,parallel): 0.9978861808776855
20183
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216559616, before: 1613099008, after: 1829658624
20184
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 214691840, before: 1611857920, after: 1826549760
20185
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20186
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.6461089, rank: 3, write(sync,parallel): 1.0371227264404297
20187
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 216494080, before: 1642680320, after: 1859174400
20188
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20189
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.6598027, rank: 6, write(sync,parallel): 1.0446600914001465
20190
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20191
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544140.689988, rank: 4, write(sync,parallel): 1.0734827518463135
20192
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 1.4543533325195312e-05 to finish D2H
20193
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 0.03906750679016113 to schedule async ckpt
20194
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, joining self.process
20195
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, joining self.process
20196
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, joining self.process
20197
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, joining self.process
20198
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20199
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, joining self.process
20200
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20201
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, joining self.process
20202
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20203
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20204
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.37s from forking
20205
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20206
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, joining self.process
20207
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.36s from forking
20208
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, joining self.process
20209
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
20210
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
20211
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
20212
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 1500389376, before: 1894322176, after: 3394711552
20213
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 2152157184, before: 1894322176, after: 4046479360
20214
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
20215
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750544148.107441, rank: 0, write(sync,parallel): 7.164879322052002
20216
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 7.25s from forking
20217
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1547318, 1, gather: 7.2114081382751465
20218
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1548955, 5, gather: 7.211618661880493
20219
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1549287, 3, gather: 7.212156534194946
20220
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1549501, 4, gather: 7.2118775844573975
20221
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1549723, 6, gather: 7.211687326431274
20222
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1550899, 7, gather: 7.2117626667022705
20223
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.155051, 2, gather: 7.209801912307739
20224
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1568513, 0, gather: 0.0050885677337646484
20225
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750544148.1725032, metadata_write: 0.01547551155090332
20226
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0234s
20227
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2316s
20228
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2317s
20229
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2316s
20230
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2318s
20231
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2318s
20232
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2317s
20233
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 7.2310s
20234
+ successfully saved checkpoint from iteration 10 to gpt-checkpoint [ t 1/8, p 1/1 ]
20235
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.0024557113647460938 to finalize ckpt save
20236
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.0024611949920654297 to finalize ckpt save
20237
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.002426624298095703 to finalize ckpt save
20238
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.002448558807373047 to finalize ckpt save
20239
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.002458810806274414 to finalize ckpt save
20240
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.002514362335205078 to finalize ckpt save
20241
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.0024890899658203125 to finalize ckpt save
20242
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.0023038387298583984 to finalize ckpt save
20243
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
20244
+ Evaluating on 1 samples
20245
+ Evaluating iter 1/1
20246
+ batch tensor: tokens torch.Size([1, 131072])
20247
+ batch tensor: labels torch.Size([1, 131072])
20248
+ batch tensor: loss_mask torch.Size([1, 131072])
20249
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20250
+ batch tensor: position_ids torch.Size([1, 131072])
20251
+ batch tensor after cp: tokens torch.Size([1, 131072])
20252
+ batch tensor after cp: labels torch.Size([1, 131072])
20253
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20254
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20255
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20256
+ batch tensor: tokens torch.Size([1, 131072])
20257
+ batch tensor: labels torch.Size([1, 131072])
20258
+ batch tensor: loss_mask torch.Size([1, 131072])
20259
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20260
+ batch tensor: position_ids torch.Size([1, 131072])
20261
+ batch tensor after cp: tokens torch.Size([1, 131072])
20262
+ batch tensor after cp: labels torch.Size([1, 131072])
20263
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20264
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20265
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20266
+ batch tensor: tokens torch.Size([1, 131072])
20267
+ batch tensor: labels torch.Size([1, 131072])
20268
+ batch tensor: loss_mask torch.Size([1, 131072])
20269
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20270
+ batch tensor: position_ids torch.Size([1, 131072])
20271
+ batch tensor after cp: tokens torch.Size([1, 131072])
20272
+ batch tensor after cp: labels torch.Size([1, 131072])
20273
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20274
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20275
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20276
+ batch tensor: tokens torch.Size([1, 131072])
20277
+ batch tensor: labels torch.Size([1, 131072])
20278
+ batch tensor: loss_mask torch.Size([1, 131072])
20279
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20280
+ batch tensor: position_ids torch.Size([1, 131072])
20281
+ batch tensor after cp: tokens torch.Size([1, 131072])
20282
+ batch tensor after cp: labels torch.Size([1, 131072])
20283
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20284
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20285
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20286
+ batch tensor: tokens torch.Size([1, 131072])
20287
+ batch tensor: labels torch.Size([1, 131072])
20288
+ batch tensor: loss_mask torch.Size([1, 131072])
20289
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20290
+ batch tensor: position_ids torch.Size([1, 131072])
20291
+ batch tensor after cp: tokens torch.Size([1, 131072])
20292
+ batch tensor after cp: labels torch.Size([1, 131072])
20293
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20294
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20295
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20296
+ batch tensor: tokens torch.Size([1, 131072])
20297
+ batch tensor: labels torch.Size([1, 131072])
20298
+ batch tensor: loss_mask torch.Size([1, 131072])
20299
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20300
+ batch tensor: position_ids torch.Size([1, 131072])
20301
+ batch tensor after cp: tokens torch.Size([1, 131072])
20302
+ batch tensor after cp: labels torch.Size([1, 131072])
20303
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20304
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20305
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20306
+ batch tensor: tokens torch.Size([1, 131072])
20307
+ batch tensor: labels torch.Size([1, 131072])
20308
+ batch tensor: loss_mask torch.Size([1, 131072])
20309
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20310
+ batch tensor: position_ids torch.Size([1, 131072])
20311
+ batch tensor after cp: tokens torch.Size([1, 131072])
20312
+ batch tensor after cp: labels torch.Size([1, 131072])
20313
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20314
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20315
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20316
+ batch tensor: tokens torch.Size([1, 131072])
20317
+ batch tensor: labels torch.Size([1, 131072])
20318
+ batch tensor: loss_mask torch.Size([1, 131072])
20319
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20320
+ batch tensor: position_ids torch.Size([1, 131072])
20321
+ batch tensor after cp: tokens torch.Size([1, 131072])
20322
+ batch tensor after cp: labels torch.Size([1, 131072])
20323
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20324
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20325
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20326
+ Start exporting trace 10
20327
+ Done exporting trace 10
20328
+ (min, max) time across ranks (ms):
20329
+ evaluate .......................................: (42509.74, 42510.08)
20330
+ ----------------------------------------------------------------------------------------------------------------
20331
+ validation loss at iteration 10 on validation set | lm loss value: 1.151343E+01 | lm loss PPL: 1.000505E+05 |
20332
+ ----------------------------------------------------------------------------------------------------------------
20333
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
20334
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
20335
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
20336
+ Evaluating on 1 samples
20337
+ Evaluating iter 1/1
20338
+ batch tensor: tokens torch.Size([1, 131072])
20339
+ batch tensor: labels torch.Size([1, 131072])
20340
+ batch tensor: loss_mask torch.Size([1, 131072])
20341
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20342
+ batch tensor: position_ids torch.Size([1, 131072])
20343
+ batch tensor after cp: tokens torch.Size([1, 131072])
20344
+ batch tensor after cp: labels torch.Size([1, 131072])
20345
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20346
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20347
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20348
+ batch tensor: tokens torch.Size([1, 131072])
20349
+ batch tensor: labels torch.Size([1, 131072])
20350
+ batch tensor: loss_mask torch.Size([1, 131072])
20351
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20352
+ batch tensor: position_ids torch.Size([1, 131072])
20353
+ batch tensor after cp: tokens torch.Size([1, 131072])
20354
+ batch tensor after cp: labels torch.Size([1, 131072])
20355
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20356
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20357
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20358
+ batch tensor: tokens torch.Size([1, 131072])
20359
+ batch tensor: labels torch.Size([1, 131072])
20360
+ batch tensor: loss_mask torch.Size([1, 131072])
20361
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20362
+ batch tensor: position_ids torch.Size([1, 131072])
20363
+ batch tensor after cp: tokens torch.Size([1, 131072])
20364
+ batch tensor after cp: labels torch.Size([1, 131072])
20365
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20366
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20367
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20368
+ batch tensor: tokens torch.Size([1, 131072])
20369
+ batch tensor: labels torch.Size([1, 131072])
20370
+ batch tensor: loss_mask torch.Size([1, 131072])
20371
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20372
+ batch tensor: position_ids torch.Size([1, 131072])
20373
+ batch tensor after cp: tokens torch.Size([1, 131072])
20374
+ batch tensor after cp: labels torch.Size([1, 131072])
20375
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20376
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20377
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20378
+ batch tensor: tokens torch.Size([1, 131072])
20379
+ batch tensor: labels torch.Size([1, 131072])
20380
+ batch tensor: loss_mask torch.Size([1, 131072])
20381
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20382
+ batch tensor: position_ids torch.Size([1, 131072])
20383
+ batch tensor after cp: tokens torch.Size([1, 131072])
20384
+ batch tensor after cp: labels torch.Size([1, 131072])
20385
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20386
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20387
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20388
+ batch tensor: tokens torch.Size([1, 131072])
20389
+ batch tensor: labels torch.Size([1, 131072])
20390
+ batch tensor: loss_mask torch.Size([1, 131072])
20391
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20392
+ batch tensor: position_ids torch.Size([1, 131072])
20393
+ batch tensor after cp: tokens torch.Size([1, 131072])
20394
+ batch tensor after cp: labels torch.Size([1, 131072])
20395
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20396
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20397
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20398
+ batch tensor: tokens torch.Size([1, 131072])
20399
+ batch tensor: labels torch.Size([1, 131072])
20400
+ batch tensor: loss_mask torch.Size([1, 131072])
20401
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20402
+ batch tensor: position_ids torch.Size([1, 131072])
20403
+ batch tensor after cp: tokens torch.Size([1, 131072])
20404
+ batch tensor after cp: labels torch.Size([1, 131072])
20405
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20406
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20407
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20408
+ batch tensor: tokens torch.Size([1, 131072])
20409
+ batch tensor: labels torch.Size([1, 131072])
20410
+ batch tensor: loss_mask torch.Size([1, 131072])
20411
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
20412
+ batch tensor: position_ids torch.Size([1, 131072])
20413
+ batch tensor after cp: tokens torch.Size([1, 131072])
20414
+ batch tensor after cp: labels torch.Size([1, 131072])
20415
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
20416
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
20417
+ batch tensor after cp: position_ids torch.Size([1, 131072])
20418
+ Start exporting trace 11
20419
+ Done exporting trace 11
20420
+ (min, max) time across ranks (ms):
20421
+ evaluate .......................................: (40780.29, 40780.77)
20422
+ ----------------------------------------------------------------------------------------------------------
20423
+ validation loss at iteration 10 on test set | lm loss value: 1.151343E+01 | lm loss PPL: 1.000505E+05 |
20424
+ ----------------------------------------------------------------------------------------------------------
20425
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
20426
+ WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED
attnserver.run_attnserver.slurm.sh.343214.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343214.out.log CHANGED
@@ -42908,3 +42908,258 @@ WARNING: constraints for invoking optimized fused softmax kernel are not met. We
42908
  time to initialize megatron (seconds): 14.391
42909
  [after megatron is initialized] datetime: 2025-06-21 22:08:43
42910
  building GPT model ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42908
  time to initialize megatron (seconds): 14.391
42909
  [after megatron is initialized] datetime: 2025-06-21 22:08:43
42910
  building GPT model ...
42911
+ >>> embedding
42912
+ >>> decoder
42913
+ >>> output_layer
42914
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42915
+ >>> embedding
42916
+ >>> decoder
42917
+ >>> output_layer
42918
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42919
+ >>> embedding
42920
+ >>> decoder
42921
+ >>> output_layer
42922
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42923
+ >>> embedding
42924
+ >>> decoder
42925
+ >>> output_layer
42926
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42927
+ >>> embedding
42928
+ >>> decoder
42929
+ >>> output_layer
42930
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
42931
+ >>> embedding
42932
+ >>> decoder
42933
+ >>> output_layer
42934
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42935
+ >>> embedding
42936
+ >>> decoder
42937
+ >>> output_layer
42938
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42939
+ >>> embedding
42940
+ >>> decoder
42941
+ >>> output_layer
42942
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42943
+ >>> embedding
42944
+ >>> decoder
42945
+ >>> output_layer
42946
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
42947
+ >>> embedding
42948
+ >>> decoder
42949
+ >>> output_layer
42950
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
42951
+ >>> embedding
42952
+ >>> decoder
42953
+ >>> output_layer
42954
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42955
+ >>> embedding
42956
+ >>> decoder
42957
+ >>> output_layer
42958
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42959
+ >>> embedding
42960
+ >>> decoder
42961
+ >>> output_layer
42962
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42963
+ >>> embedding
42964
+ >>> decoder
42965
+ >>> output_layer
42966
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42967
+ >>> embedding
42968
+ >>> decoder
42969
+ >>> output_layer
42970
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
42971
+ >>> embedding
42972
+ >>> decoder
42973
+ >>> output_layer
42974
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42975
+ >>> embedding
42976
+ >>> decoder
42977
+ >>> output_layer
42978
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42979
+ >>> embedding
42980
+ >>> decoder
42981
+ >>> output_layer
42982
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42983
+ >>> embedding
42984
+ >>> decoder
42985
+ >>> output_layer
42986
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42987
+ >>> embedding
42988
+ >>> decoder
42989
+ >>> output_layer
42990
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
42991
+ >>> embedding
42992
+ >>> decoder
42993
+ >>> output_layer
42994
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
42995
+ >>> embedding
42996
+ >>> decoder
42997
+ >>> output_layer
42998
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
42999
+ >>> embedding
43000
+ >>> decoder
43001
+ >>> output_layer
43002
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
43003
+ >>> embedding
43004
+ >>> decoder
43005
+ >>> output_layer
43006
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
43007
+ >>> embedding
43008
+ >>> decoder
43009
+ >>> output_layer
43010
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
43011
+ >>> embedding
43012
+ >>> decoder
43013
+ >>> output_layer
43014
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
43015
+ >>> embedding
43016
+ >>> decoder
43017
+ >>> output_layer
43018
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
43019
+ >>> embedding
43020
+ >>> decoder
43021
+ >>> output_layer
43022
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
43023
+ >>> embedding
43024
+ >>> decoder
43025
+ >>> output_layer
43026
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
43027
+ >>> embedding
43028
+ >>> decoder
43029
+ >>> output_layer
43030
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
43031
+ >>> embedding
43032
+ >>> decoder
43033
+ >>> output_layer
43034
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
43035
+ >>> embedding
43036
+ >>> decoder
43037
+ >>> output_layer
43038
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
43039
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
43040
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
43041
+ Params for bucket 1 (676924416 elements, 676924416 padded size):
43042
+ module.decoder.final_layernorm.bias
43043
+ module.decoder.layers.1.mlp.linear_fc2.weight
43044
+ module.decoder.layers.1.self_attention.linear_proj.bias
43045
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
43046
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
43047
+ module.decoder.layers.0.mlp.linear_fc2.weight
43048
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
43049
+ module.decoder.final_layernorm.weight
43050
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
43051
+ module.decoder.layers.1.self_attention.linear_qkv.bias
43052
+ module.decoder.layers.0.mlp.linear_fc2.bias
43053
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
43054
+ module.decoder.layers.1.mlp.linear_fc1.weight
43055
+ module.decoder.layers.0.mlp.linear_fc1.weight
43056
+ module.decoder.layers.0.self_attention.linear_proj.weight
43057
+ module.embedding.word_embeddings.weight
43058
+ module.decoder.layers.1.mlp.linear_fc2.bias
43059
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
43060
+ module.decoder.layers.0.self_attention.linear_proj.bias
43061
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
43062
+ module.decoder.layers.0.self_attention.linear_qkv.weight
43063
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
43064
+ module.embedding.position_embeddings.weight
43065
+ module.decoder.layers.1.mlp.linear_fc1.bias
43066
+ module.decoder.layers.0.mlp.linear_fc1.bias
43067
+ module.decoder.layers.1.self_attention.linear_qkv.weight
43068
+ module.decoder.layers.1.self_attention.linear_proj.weight
43069
+ module.decoder.layers.0.self_attention.linear_qkv.bias
43070
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14df3ebb2360>, config_logger_dir='')
43071
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
43072
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
43073
+ will not load any checkpoints and will start from random
43074
+ (min, max) time across ranks (ms):
43075
+ load-checkpoint ................................: (2.39, 5.10)
43076
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 22:08:51
43077
+ > building train, validation, and test datasets ...
43078
+ > datasets target sizes (minimum size):
43079
+ train: 10
43080
+ validation: 1
43081
+ test: 1
43082
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
43083
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
43084
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
43085
+ > building train, validation, and test datasets for GPT ...
43086
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14df47ebf260>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
43087
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
43088
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
43089
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
43090
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.007706 seconds
43091
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
43092
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
43093
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
43094
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
43095
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
43096
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001555 seconds
43097
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
43098
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
43099
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
43100
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
43101
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
43102
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001344 seconds
43103
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
43104
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
43105
+ > finished creating GPT datasets ...
43106
+ [after dataloaders are built] datetime: 2025-06-21 22:08:51
43107
+ done with setup ...
43108
+ training ...
43109
+ (min, max) time across ranks (ms):
43110
+ model-and-optimizer-setup ......................: (7342.39, 7383.37)
43111
+ train/valid/test-data-iterators-setup ..........: (24.38, 172.83)
43112
+ Setting rerun_state_machine.current_iteration to 0...
43113
+ [before the start of training step] datetime: 2025-06-21 22:08:51
43114
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43115
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43116
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43117
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43118
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43119
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43120
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43121
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43122
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43123
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43124
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43125
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43126
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43127
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43128
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43129
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43130
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43131
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43132
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43133
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43134
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43135
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43136
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43137
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43138
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43139
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43140
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43141
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43142
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43143
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43144
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43145
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43146
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43147
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43148
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43149
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43150
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43151
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43152
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43153
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43154
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43155
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.03 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43156
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43157
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43158
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43159
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.02 GiB is free. Including non-PyTorch memory, this process has 134.78 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43160
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43161
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43162
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43163
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 5.04 GiB is free. Including non-PyTorch memory, this process has 134.76 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
43164
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
43165
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 238, in setup_batches\n attention_mask[batch_id, :, :token_len, :token_len] = torch.tril(\n ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 5.01 GiB is free. Including non-PyTorch memory, this process has 134.80 GiB memory in use. Of the allocated memory 133.06 GiB is allocated by PyTorch, and 210.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
attnserver.run_attnserver.slurm.sh.343215.err.log CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d442aa3aa3698c78a8119623862452f4effb5ca97c90181b3013cbcebe4bb6e1
3
- size 30251346
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f64b8b1e0289e3f82b6ca9559fa8e0d3dd9e6cc8198f74ef81e1ecf64814e907
3
+ size 60421789
attnserver.run_attnserver.slurm.sh.343215.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343216.err.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343216.out.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343226.out.log CHANGED
@@ -19193,3 +19193,594 @@ batch tensor after cp: labels torch.Size([2, 81920])
19193
  batch tensor after cp: loss_mask torch.Size([2, 81920])
19194
  batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19195
  batch tensor after cp: position_ids torch.Size([2, 81920])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19193
  batch tensor after cp: loss_mask torch.Size([2, 81920])
19194
  batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19195
  batch tensor after cp: position_ids torch.Size([2, 81920])
19196
+ batch tensor: tokens torch.Size([2, 163840])
19197
+ batch tensor: labels torch.Size([2, 163840])
19198
+ batch tensor: loss_mask torch.Size([2, 163840])
19199
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19200
+ batch tensor: position_ids torch.Size([2, 163840])
19201
+ batch tensor after cp: tokens torch.Size([2, 81920])
19202
+ batch tensor after cp: labels torch.Size([2, 81920])
19203
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19204
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19205
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19206
+ batch tensor: tokens torch.Size([2, 163840])
19207
+ batch tensor: labels torch.Size([2, 163840])
19208
+ batch tensor: loss_mask torch.Size([2, 163840])
19209
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19210
+ batch tensor: position_ids torch.Size([2, 163840])
19211
+ batch tensor after cp: tokens torch.Size([2, 81920])
19212
+ batch tensor after cp: labels torch.Size([2, 81920])
19213
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19214
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19215
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19216
+ Start exporting trace 2
19217
+ Done exporting trace 2
19218
+ [2025-06-21 22:09:31] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 87543.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19219
+ batch tensor: tokens torch.Size([2, 163840])
19220
+ batch tensor: labels torch.Size([2, 163840])
19221
+ batch tensor: loss_mask torch.Size([2, 163840])
19222
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19223
+ batch tensor: position_ids torch.Size([2, 163840])
19224
+ batch tensor after cp: tokens torch.Size([2, 81920])
19225
+ batch tensor after cp: labels torch.Size([2, 81920])
19226
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19227
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19228
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19229
+ batch tensor: tokens torch.Size([2, 163840])
19230
+ batch tensor: labels torch.Size([2, 163840])
19231
+ batch tensor: loss_mask torch.Size([2, 163840])
19232
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19233
+ batch tensor: position_ids torch.Size([2, 163840])
19234
+ batch tensor after cp: tokens torch.Size([2, 81920])
19235
+ batch tensor after cp: labels torch.Size([2, 81920])
19236
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19237
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19238
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19239
+ batch tensor: tokens torch.Size([2, 163840])
19240
+ batch tensor: labels torch.Size([2, 163840])
19241
+ batch tensor: loss_mask torch.Size([2, 163840])
19242
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19243
+ batch tensor: position_ids torch.Size([2, 163840])
19244
+ batch tensor after cp: tokens torch.Size([2, 81920])
19245
+ batch tensor after cp: labels torch.Size([2, 81920])
19246
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19247
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19248
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19249
+ batch tensor: tokens torch.Size([2, 163840])
19250
+ batch tensor: labels torch.Size([2, 163840])
19251
+ batch tensor: loss_mask torch.Size([2, 163840])
19252
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19253
+ batch tensor: position_ids torch.Size([2, 163840])
19254
+ batch tensor after cp: tokens torch.Size([2, 81920])
19255
+ batch tensor after cp: labels torch.Size([2, 81920])
19256
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19257
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19258
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19259
+ batch tensor: tokens torch.Size([2, 163840])
19260
+ batch tensor: labels torch.Size([2, 163840])
19261
+ batch tensor: loss_mask torch.Size([2, 163840])
19262
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19263
+ batch tensor: position_ids torch.Size([2, 163840])
19264
+ batch tensor after cp: tokens torch.Size([2, 81920])
19265
+ batch tensor after cp: labels torch.Size([2, 81920])
19266
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19267
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19268
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19269
+ batch tensor: tokens torch.Size([2, 163840])
19270
+ batch tensor: labels torch.Size([2, 163840])
19271
+ batch tensor: loss_mask torch.Size([2, 163840])
19272
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19273
+ batch tensor: position_ids torch.Size([2, 163840])
19274
+ batch tensor after cp: tokens torch.Size([2, 81920])
19275
+ batch tensor after cp: labels torch.Size([2, 81920])
19276
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19277
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19278
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19279
+ batch tensor: tokens torch.Size([2, 163840])
19280
+ batch tensor: labels torch.Size([2, 163840])
19281
+ batch tensor: loss_mask torch.Size([2, 163840])
19282
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19283
+ batch tensor: position_ids torch.Size([2, 163840])
19284
+ batch tensor after cp: tokens torch.Size([2, 81920])
19285
+ batch tensor after cp: labels torch.Size([2, 81920])
19286
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19287
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19288
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19289
+ batch tensor: tokens torch.Size([2, 163840])
19290
+ batch tensor: labels torch.Size([2, 163840])
19291
+ batch tensor: loss_mask torch.Size([2, 163840])
19292
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19293
+ batch tensor: position_ids torch.Size([2, 163840])
19294
+ batch tensor after cp: tokens torch.Size([2, 81920])
19295
+ batch tensor after cp: labels torch.Size([2, 81920])
19296
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19297
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19298
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19299
+ Start exporting trace 3
19300
+ Done exporting trace 3
19301
+ [2025-06-21 22:10:53] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 82310.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19302
+ batch tensor: tokens torch.Size([2, 163840])
19303
+ batch tensor: labels torch.Size([2, 163840])
19304
+ batch tensor: loss_mask torch.Size([2, 163840])
19305
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19306
+ batch tensor: position_ids torch.Size([2, 163840])
19307
+ batch tensor after cp: tokens torch.Size([2, 81920])
19308
+ batch tensor after cp: labels torch.Size([2, 81920])
19309
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19310
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19311
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19312
+ batch tensor: tokens torch.Size([2, 163840])
19313
+ batch tensor: labels torch.Size([2, 163840])
19314
+ batch tensor: loss_mask torch.Size([2, 163840])
19315
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19316
+ batch tensor: position_ids torch.Size([2, 163840])
19317
+ batch tensor after cp: tokens torch.Size([2, 81920])
19318
+ batch tensor after cp: labels torch.Size([2, 81920])
19319
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19320
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19321
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19322
+ batch tensor: tokens torch.Size([2, 163840])
19323
+ batch tensor: labels torch.Size([2, 163840])
19324
+ batch tensor: loss_mask torch.Size([2, 163840])
19325
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19326
+ batch tensor: position_ids torch.Size([2, 163840])
19327
+ batch tensor after cp: tokens torch.Size([2, 81920])
19328
+ batch tensor after cp: labels torch.Size([2, 81920])
19329
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19330
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19331
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19332
+ batch tensor: tokens torch.Size([2, 163840])
19333
+ batch tensor: labels torch.Size([2, 163840])
19334
+ batch tensor: loss_mask torch.Size([2, 163840])
19335
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19336
+ batch tensor: position_ids torch.Size([2, 163840])
19337
+ batch tensor after cp: tokens torch.Size([2, 81920])
19338
+ batch tensor after cp: labels torch.Size([2, 81920])
19339
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19340
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19341
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19342
+ batch tensor: tokens torch.Size([2, 163840])
19343
+ batch tensor: labels torch.Size([2, 163840])
19344
+ batch tensor: loss_mask torch.Size([2, 163840])
19345
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19346
+ batch tensor: position_ids torch.Size([2, 163840])
19347
+ batch tensor after cp: tokens torch.Size([2, 81920])
19348
+ batch tensor after cp: labels torch.Size([2, 81920])
19349
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19350
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19351
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19352
+ batch tensor: tokens torch.Size([2, 163840])
19353
+ batch tensor: labels torch.Size([2, 163840])
19354
+ batch tensor: loss_mask torch.Size([2, 163840])
19355
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19356
+ batch tensor: position_ids torch.Size([2, 163840])
19357
+ batch tensor after cp: tokens torch.Size([2, 81920])
19358
+ batch tensor after cp: labels torch.Size([2, 81920])
19359
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19360
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19361
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19362
+ batch tensor: tokens torch.Size([2, 163840])
19363
+ batch tensor: labels torch.Size([2, 163840])
19364
+ batch tensor: loss_mask torch.Size([2, 163840])
19365
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19366
+ batch tensor: position_ids torch.Size([2, 163840])
19367
+ batch tensor after cp: tokens torch.Size([2, 81920])
19368
+ batch tensor after cp: labels torch.Size([2, 81920])
19369
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19370
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19371
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19372
+ batch tensor: tokens torch.Size([2, 163840])
19373
+ batch tensor: labels torch.Size([2, 163840])
19374
+ batch tensor: loss_mask torch.Size([2, 163840])
19375
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19376
+ batch tensor: position_ids torch.Size([2, 163840])
19377
+ batch tensor after cp: tokens torch.Size([2, 81920])
19378
+ batch tensor after cp: labels torch.Size([2, 81920])
19379
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19380
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19381
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19382
+ Start exporting trace 4
19383
+ Done exporting trace 4
19384
+ [2025-06-21 22:12:14] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 80943.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19385
+ batch tensor: tokens torch.Size([2, 163840])
19386
+ batch tensor: labels torch.Size([2, 163840])
19387
+ batch tensor: loss_mask torch.Size([2, 163840])
19388
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19389
+ batch tensor: position_ids torch.Size([2, 163840])
19390
+ batch tensor after cp: tokens torch.Size([2, 81920])
19391
+ batch tensor after cp: labels torch.Size([2, 81920])
19392
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19393
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19394
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19395
+ batch tensor: tokens torch.Size([2, 163840])
19396
+ batch tensor: labels torch.Size([2, 163840])
19397
+ batch tensor: loss_mask torch.Size([2, 163840])
19398
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19399
+ batch tensor: position_ids torch.Size([2, 163840])
19400
+ batch tensor after cp: tokens torch.Size([2, 81920])
19401
+ batch tensor after cp: labels torch.Size([2, 81920])
19402
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19403
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19404
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19405
+ batch tensor: tokens torch.Size([2, 163840])
19406
+ batch tensor: labels torch.Size([2, 163840])
19407
+ batch tensor: loss_mask torch.Size([2, 163840])
19408
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19409
+ batch tensor: position_ids torch.Size([2, 163840])
19410
+ batch tensor after cp: tokens torch.Size([2, 81920])
19411
+ batch tensor after cp: labels torch.Size([2, 81920])
19412
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19413
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19414
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19415
+ batch tensor: tokens torch.Size([2, 163840])
19416
+ batch tensor: labels torch.Size([2, 163840])
19417
+ batch tensor: loss_mask torch.Size([2, 163840])
19418
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19419
+ batch tensor: position_ids torch.Size([2, 163840])
19420
+ batch tensor after cp: tokens torch.Size([2, 81920])
19421
+ batch tensor after cp: labels torch.Size([2, 81920])
19422
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19423
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19424
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19425
+ batch tensor: tokens torch.Size([2, 163840])
19426
+ batch tensor: labels torch.Size([2, 163840])
19427
+ batch tensor: loss_mask torch.Size([2, 163840])
19428
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19429
+ batch tensor: position_ids torch.Size([2, 163840])
19430
+ batch tensor after cp: tokens torch.Size([2, 81920])
19431
+ batch tensor after cp: labels torch.Size([2, 81920])
19432
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19433
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19434
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19435
+ batch tensor: tokens torch.Size([2, 163840])
19436
+ batch tensor: labels torch.Size([2, 163840])
19437
+ batch tensor: loss_mask torch.Size([2, 163840])
19438
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19439
+ batch tensor: position_ids torch.Size([2, 163840])
19440
+ batch tensor after cp: tokens torch.Size([2, 81920])
19441
+ batch tensor after cp: labels torch.Size([2, 81920])
19442
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19443
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19444
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19445
+ batch tensor: tokens torch.Size([2, 163840])
19446
+ batch tensor: labels torch.Size([2, 163840])
19447
+ batch tensor: loss_mask torch.Size([2, 163840])
19448
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19449
+ batch tensor: position_ids torch.Size([2, 163840])
19450
+ batch tensor after cp: tokens torch.Size([2, 81920])
19451
+ batch tensor after cp: labels torch.Size([2, 81920])
19452
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19453
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19454
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19455
+ batch tensor: tokens torch.Size([2, 163840])
19456
+ batch tensor: labels torch.Size([2, 163840])
19457
+ batch tensor: loss_mask torch.Size([2, 163840])
19458
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19459
+ batch tensor: position_ids torch.Size([2, 163840])
19460
+ batch tensor after cp: tokens torch.Size([2, 81920])
19461
+ batch tensor after cp: labels torch.Size([2, 81920])
19462
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19463
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19464
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19465
+ Start exporting trace 5
19466
+ Done exporting trace 5
19467
+ [2025-06-21 22:14:09] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 115269.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19468
+ batch tensor: tokens torch.Size([2, 163840])
19469
+ batch tensor: labels torch.Size([2, 163840])
19470
+ batch tensor: loss_mask torch.Size([2, 163840])
19471
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19472
+ batch tensor: position_ids torch.Size([2, 163840])
19473
+ batch tensor after cp: tokens torch.Size([2, 81920])
19474
+ batch tensor after cp: labels torch.Size([2, 81920])
19475
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19476
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19477
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19478
+ batch tensor: tokens torch.Size([2, 163840])
19479
+ batch tensor: labels torch.Size([2, 163840])
19480
+ batch tensor: loss_mask torch.Size([2, 163840])
19481
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19482
+ batch tensor: position_ids torch.Size([2, 163840])
19483
+ batch tensor after cp: tokens torch.Size([2, 81920])
19484
+ batch tensor after cp: labels torch.Size([2, 81920])
19485
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19486
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19487
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19488
+ batch tensor: tokens torch.Size([2, 163840])
19489
+ batch tensor: labels torch.Size([2, 163840])
19490
+ batch tensor: loss_mask torch.Size([2, 163840])
19491
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19492
+ batch tensor: position_ids torch.Size([2, 163840])
19493
+ batch tensor after cp: tokens torch.Size([2, 81920])
19494
+ batch tensor after cp: labels torch.Size([2, 81920])
19495
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19496
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19497
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19498
+ batch tensor: tokens torch.Size([2, 163840])
19499
+ batch tensor: labels torch.Size([2, 163840])
19500
+ batch tensor: loss_mask torch.Size([2, 163840])
19501
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19502
+ batch tensor: position_ids torch.Size([2, 163840])
19503
+ batch tensor after cp: tokens torch.Size([2, 81920])
19504
+ batch tensor after cp: labels torch.Size([2, 81920])
19505
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19506
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19507
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19508
+ batch tensor: tokens torch.Size([2, 163840])
19509
+ batch tensor: labels torch.Size([2, 163840])
19510
+ batch tensor: loss_mask torch.Size([2, 163840])
19511
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19512
+ batch tensor: position_ids torch.Size([2, 163840])
19513
+ batch tensor after cp: tokens torch.Size([2, 81920])
19514
+ batch tensor after cp: labels torch.Size([2, 81920])
19515
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19516
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19517
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19518
+ batch tensor: tokens torch.Size([2, 163840])
19519
+ batch tensor: labels torch.Size([2, 163840])
19520
+ batch tensor: loss_mask torch.Size([2, 163840])
19521
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19522
+ batch tensor: position_ids torch.Size([2, 163840])
19523
+ batch tensor after cp: tokens torch.Size([2, 81920])
19524
+ batch tensor after cp: labels torch.Size([2, 81920])
19525
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19526
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19527
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19528
+ batch tensor: tokens torch.Size([2, 163840])
19529
+ batch tensor: labels torch.Size([2, 163840])
19530
+ batch tensor: loss_mask torch.Size([2, 163840])
19531
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19532
+ batch tensor: position_ids torch.Size([2, 163840])
19533
+ batch tensor after cp: tokens torch.Size([2, 81920])
19534
+ batch tensor after cp: labels torch.Size([2, 81920])
19535
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19536
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19537
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19538
+ batch tensor: tokens torch.Size([2, 163840])
19539
+ batch tensor: labels torch.Size([2, 163840])
19540
+ batch tensor: loss_mask torch.Size([2, 163840])
19541
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19542
+ batch tensor: position_ids torch.Size([2, 163840])
19543
+ batch tensor after cp: tokens torch.Size([2, 81920])
19544
+ batch tensor after cp: labels torch.Size([2, 81920])
19545
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19546
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19547
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19548
+ Start exporting trace 6
19549
+ Done exporting trace 6
19550
+ [2025-06-21 22:15:29] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 79840.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19551
+ batch tensor: tokens torch.Size([2, 163840])
19552
+ batch tensor: labels torch.Size([2, 163840])
19553
+ batch tensor: loss_mask torch.Size([2, 163840])
19554
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19555
+ batch tensor: position_ids torch.Size([2, 163840])
19556
+ batch tensor after cp: tokens torch.Size([2, 81920])
19557
+ batch tensor after cp: labels torch.Size([2, 81920])
19558
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19559
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19560
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19561
+ batch tensor: tokens torch.Size([2, 163840])
19562
+ batch tensor: labels torch.Size([2, 163840])
19563
+ batch tensor: loss_mask torch.Size([2, 163840])
19564
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19565
+ batch tensor: position_ids torch.Size([2, 163840])
19566
+ batch tensor after cp: tokens torch.Size([2, 81920])
19567
+ batch tensor after cp: labels torch.Size([2, 81920])
19568
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19569
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19570
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19571
+ batch tensor: tokens torch.Size([2, 163840])
19572
+ batch tensor: labels torch.Size([2, 163840])
19573
+ batch tensor: loss_mask torch.Size([2, 163840])
19574
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19575
+ batch tensor: position_ids torch.Size([2, 163840])
19576
+ batch tensor after cp: tokens torch.Size([2, 81920])
19577
+ batch tensor after cp: labels torch.Size([2, 81920])
19578
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19579
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19580
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19581
+ batch tensor: tokens torch.Size([2, 163840])
19582
+ batch tensor: labels torch.Size([2, 163840])
19583
+ batch tensor: loss_mask torch.Size([2, 163840])
19584
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19585
+ batch tensor: position_ids torch.Size([2, 163840])
19586
+ batch tensor after cp: tokens torch.Size([2, 81920])
19587
+ batch tensor after cp: labels torch.Size([2, 81920])
19588
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19589
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19590
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19591
+ batch tensor: tokens torch.Size([2, 163840])
19592
+ batch tensor: labels torch.Size([2, 163840])
19593
+ batch tensor: loss_mask torch.Size([2, 163840])
19594
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19595
+ batch tensor: position_ids torch.Size([2, 163840])
19596
+ batch tensor after cp: tokens torch.Size([2, 81920])
19597
+ batch tensor after cp: labels torch.Size([2, 81920])
19598
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19599
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19600
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19601
+ batch tensor: tokens torch.Size([2, 163840])
19602
+ batch tensor: labels torch.Size([2, 163840])
19603
+ batch tensor: loss_mask torch.Size([2, 163840])
19604
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19605
+ batch tensor: position_ids torch.Size([2, 163840])
19606
+ batch tensor after cp: tokens torch.Size([2, 81920])
19607
+ batch tensor after cp: labels torch.Size([2, 81920])
19608
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19609
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19610
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19611
+ batch tensor: tokens torch.Size([2, 163840])
19612
+ batch tensor: labels torch.Size([2, 163840])
19613
+ batch tensor: loss_mask torch.Size([2, 163840])
19614
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19615
+ batch tensor: position_ids torch.Size([2, 163840])
19616
+ batch tensor after cp: tokens torch.Size([2, 81920])
19617
+ batch tensor after cp: labels torch.Size([2, 81920])
19618
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19619
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19620
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19621
+ batch tensor: tokens torch.Size([2, 163840])
19622
+ batch tensor: labels torch.Size([2, 163840])
19623
+ batch tensor: loss_mask torch.Size([2, 163840])
19624
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19625
+ batch tensor: position_ids torch.Size([2, 163840])
19626
+ batch tensor after cp: tokens torch.Size([2, 81920])
19627
+ batch tensor after cp: labels torch.Size([2, 81920])
19628
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19629
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19630
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19631
+ Start exporting trace 7
19632
+ Done exporting trace 7
19633
+ [2025-06-21 22:16:57] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 88355.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19634
+ batch tensor: tokens torch.Size([2, 163840])
19635
+ batch tensor: labels torch.Size([2, 163840])
19636
+ batch tensor: loss_mask torch.Size([2, 163840])
19637
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19638
+ batch tensor: position_ids torch.Size([2, 163840])
19639
+ batch tensor after cp: tokens torch.Size([2, 81920])
19640
+ batch tensor after cp: labels torch.Size([2, 81920])
19641
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19642
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19643
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19644
+ batch tensor: tokens torch.Size([2, 163840])
19645
+ batch tensor: labels torch.Size([2, 163840])
19646
+ batch tensor: loss_mask torch.Size([2, 163840])
19647
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19648
+ batch tensor: position_ids torch.Size([2, 163840])
19649
+ batch tensor after cp: tokens torch.Size([2, 81920])
19650
+ batch tensor after cp: labels torch.Size([2, 81920])
19651
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19652
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19653
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19654
+ batch tensor: tokens torch.Size([2, 163840])
19655
+ batch tensor: labels torch.Size([2, 163840])
19656
+ batch tensor: loss_mask torch.Size([2, 163840])
19657
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19658
+ batch tensor: position_ids torch.Size([2, 163840])
19659
+ batch tensor after cp: tokens torch.Size([2, 81920])
19660
+ batch tensor after cp: labels torch.Size([2, 81920])
19661
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19662
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19663
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19664
+ batch tensor: tokens torch.Size([2, 163840])
19665
+ batch tensor: labels torch.Size([2, 163840])
19666
+ batch tensor: loss_mask torch.Size([2, 163840])
19667
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19668
+ batch tensor: position_ids torch.Size([2, 163840])
19669
+ batch tensor after cp: tokens torch.Size([2, 81920])
19670
+ batch tensor after cp: labels torch.Size([2, 81920])
19671
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19672
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19673
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19674
+ batch tensor: tokens torch.Size([2, 163840])
19675
+ batch tensor: labels torch.Size([2, 163840])
19676
+ batch tensor: loss_mask torch.Size([2, 163840])
19677
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19678
+ batch tensor: position_ids torch.Size([2, 163840])
19679
+ batch tensor after cp: tokens torch.Size([2, 81920])
19680
+ batch tensor after cp: labels torch.Size([2, 81920])
19681
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19682
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19683
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19684
+ batch tensor: tokens torch.Size([2, 163840])
19685
+ batch tensor: labels torch.Size([2, 163840])
19686
+ batch tensor: loss_mask torch.Size([2, 163840])
19687
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19688
+ batch tensor: position_ids torch.Size([2, 163840])
19689
+ batch tensor after cp: tokens torch.Size([2, 81920])
19690
+ batch tensor after cp: labels torch.Size([2, 81920])
19691
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19692
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19693
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19694
+ batch tensor: tokens torch.Size([2, 163840])
19695
+ batch tensor: labels torch.Size([2, 163840])
19696
+ batch tensor: loss_mask torch.Size([2, 163840])
19697
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19698
+ batch tensor: position_ids torch.Size([2, 163840])
19699
+ batch tensor after cp: tokens torch.Size([2, 81920])
19700
+ batch tensor after cp: labels torch.Size([2, 81920])
19701
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19702
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19703
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19704
+ batch tensor: tokens torch.Size([2, 163840])
19705
+ batch tensor: labels torch.Size([2, 163840])
19706
+ batch tensor: loss_mask torch.Size([2, 163840])
19707
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19708
+ batch tensor: position_ids torch.Size([2, 163840])
19709
+ batch tensor after cp: tokens torch.Size([2, 81920])
19710
+ batch tensor after cp: labels torch.Size([2, 81920])
19711
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19712
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19713
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19714
+ Start exporting trace 8
19715
+ Done exporting trace 8
19716
+ [2025-06-21 22:18:29] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 91688.4 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19717
+ batch tensor: tokens torch.Size([2, 163840])
19718
+ batch tensor: labels torch.Size([2, 163840])
19719
+ batch tensor: loss_mask torch.Size([2, 163840])
19720
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19721
+ batch tensor: position_ids torch.Size([2, 163840])
19722
+ batch tensor after cp: tokens torch.Size([2, 81920])
19723
+ batch tensor after cp: labels torch.Size([2, 81920])
19724
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19725
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19726
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19727
+ batch tensor: tokens torch.Size([2, 163840])
19728
+ batch tensor: labels torch.Size([2, 163840])
19729
+ batch tensor: loss_mask torch.Size([2, 163840])
19730
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19731
+ batch tensor: position_ids torch.Size([2, 163840])
19732
+ batch tensor after cp: tokens torch.Size([2, 81920])
19733
+ batch tensor after cp: labels torch.Size([2, 81920])
19734
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19735
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19736
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19737
+ batch tensor: tokens torch.Size([2, 163840])
19738
+ batch tensor: labels torch.Size([2, 163840])
19739
+ batch tensor: loss_mask torch.Size([2, 163840])
19740
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19741
+ batch tensor: position_ids torch.Size([2, 163840])
19742
+ batch tensor after cp: tokens torch.Size([2, 81920])
19743
+ batch tensor after cp: labels torch.Size([2, 81920])
19744
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19745
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19746
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19747
+ batch tensor: tokens torch.Size([2, 163840])
19748
+ batch tensor: labels torch.Size([2, 163840])
19749
+ batch tensor: loss_mask torch.Size([2, 163840])
19750
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19751
+ batch tensor: position_ids torch.Size([2, 163840])
19752
+ batch tensor after cp: tokens torch.Size([2, 81920])
19753
+ batch tensor after cp: labels torch.Size([2, 81920])
19754
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19755
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19756
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19757
+ batch tensor: tokens torch.Size([2, 163840])
19758
+ batch tensor: labels torch.Size([2, 163840])
19759
+ batch tensor: loss_mask torch.Size([2, 163840])
19760
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19761
+ batch tensor: position_ids torch.Size([2, 163840])
19762
+ batch tensor after cp: tokens torch.Size([2, 81920])
19763
+ batch tensor after cp: labels torch.Size([2, 81920])
19764
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19765
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19766
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19767
+ batch tensor: tokens torch.Size([2, 163840])
19768
+ batch tensor: labels torch.Size([2, 163840])
19769
+ batch tensor: loss_mask torch.Size([2, 163840])
19770
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19771
+ batch tensor: position_ids torch.Size([2, 163840])
19772
+ batch tensor after cp: tokens torch.Size([2, 81920])
19773
+ batch tensor after cp: labels torch.Size([2, 81920])
19774
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19775
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19776
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19777
+ batch tensor: tokens torch.Size([2, 163840])
19778
+ batch tensor: labels torch.Size([2, 163840])
19779
+ batch tensor: loss_mask torch.Size([2, 163840])
19780
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19781
+ batch tensor: position_ids torch.Size([2, 163840])
19782
+ batch tensor after cp: tokens torch.Size([2, 81920])
19783
+ batch tensor after cp: labels torch.Size([2, 81920])
19784
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19785
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19786
+ batch tensor after cp: position_ids torch.Size([2, 81920])
attnserver.run_attnserver.slurm.sh.343237.err.log CHANGED
@@ -2470,3 +2470,346 @@ W0621 22:05:02.863000 1127779 site-packages/torch/distributed/run.py:766] ******
2470
  warnings.warn(
2471
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2472
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470
  warnings.warn(
2471
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2472
  warnings.warn(
2473
+ [rank0]: Traceback (most recent call last):
2474
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2475
+ [rank0]: pretrain(
2476
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
2477
+ [rank0]: save_checkpoint(
2478
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
2479
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
2480
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2481
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
2482
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
2483
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
2484
+ [rank0]: torch.save(common_state_dict, path)
2485
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
2486
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
2487
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
2488
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
2489
+ [rank0]: return container(name_or_buffer)
2490
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
2491
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
2492
+ [rank0]: torch._C.PyTorchFileWriter(
2493
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
2494
+ [rank0]:[W621 22:13:20.782763803 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2495
+ W0621 22:13:38.457000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853380 closing signal SIGTERM
2496
+ W0621 22:13:38.459000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853381 closing signal SIGTERM
2497
+ W0621 22:13:38.464000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853382 closing signal SIGTERM
2498
+ W0621 22:13:38.468000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853383 closing signal SIGTERM
2499
+ W0621 22:13:38.479000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853384 closing signal SIGTERM
2500
+ W0621 22:13:38.487000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853385 closing signal SIGTERM
2501
+ W0621 22:13:38.502000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 853386 closing signal SIGTERM
2502
+ E0621 22:13:46.197000 853291 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 853379) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2503
+ Traceback (most recent call last):
2504
+ File "<frozen runpy>", line 198, in _run_module_as_main
2505
+ File "<frozen runpy>", line 88, in _run_code
2506
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2507
+ main()
2508
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2509
+ return arg(*args, **kwargs)
2510
+ ^^^^^^^^^^^^^^^^^^^^
2511
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2512
+ launch(args)
2513
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2514
+ run(args)
2515
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2516
+ elastic_launch(
2517
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2518
+ return launch_agent(self._config, self._entrypoint, list(args))
2519
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2520
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2521
+ raise ChildFailedError(
2522
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2523
+ ============================================================
2524
+ ./pretrain_gpt_profile.py FAILED
2525
+ ------------------------------------------------------------
2526
+ Failures:
2527
+ <NO_OTHER_FAILURES>
2528
+ ------------------------------------------------------------
2529
+ Root Cause (first observed failure):
2530
+ [0]:
2531
+ time : 2025-06-21_22:13:38
2532
+ host : fs-mbz-gpu-274
2533
+ rank : 0 (local_rank: 0)
2534
+ exitcode : 1 (pid: 853379)
2535
+ error_file: <N/A>
2536
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2537
+ ============================================================
2538
+ [rank15]:[W621 22:13:46.250610899 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-476]:51028, remote=[fs-mbz-gpu-274]:42927): failed to recv, got 0 bytes
2539
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
2540
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1467bd1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2541
+ frame #1: <unknown function> + 0x5ba8afe (0x1467a645aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2542
+ frame #2: <unknown function> + 0x5baae40 (0x1467a645ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2543
+ frame #3: <unknown function> + 0x5bab74a (0x1467a645d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2544
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1467a64571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2545
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1467636509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
2546
+ frame #6: <unknown function> + 0xd3b6d (0x146753619b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
2547
+ frame #7: <unknown function> + 0x94ac3 (0x1467be54dac3 in /lib/x86_64-linux-gnu/libc.so.6)
2548
+ frame #8: <unknown function> + 0x126850 (0x1467be5df850 in /lib/x86_64-linux-gnu/libc.so.6)
2549
+
2550
+ [rank15]:[W621 22:13:46.259342213 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 15] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
2551
+ [rank9]:[W621 22:13:46.306709118 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-476]:50982, remote=[fs-mbz-gpu-274]:42927): failed to recv, got 0 bytes
2552
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
2553
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x145c133785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2554
+ frame #1: <unknown function> + 0x5ba8afe (0x145bfc25aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2555
+ frame #2: <unknown function> + 0x5baae40 (0x145bfc25ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2556
+ frame #3: <unknown function> + 0x5bab74a (0x145bfc25d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2557
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x145bfc2571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2558
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x145bb94509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
2559
+ frame #6: <unknown function> + 0xd3b6d (0x145c12ef1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
2560
+ frame #7: <unknown function> + 0x94ac3 (0x145c1441dac3 in /lib/x86_64-linux-gnu/libc.so.6)
2561
+ frame #8: <unknown function> + 0x126850 (0x145c144af850 in /lib/x86_64-linux-gnu/libc.so.6)
2562
+
2563
+ [rank9]:[W621 22:13:46.310755934 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 9] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
2564
+ [rank11]:[W621 22:13:46.306742788 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-476]:51022, remote=[fs-mbz-gpu-274]:42927): failed to recv, got 0 bytes
2565
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
2566
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148aabf785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2567
+ frame #1: <unknown function> + 0x5ba8afe (0x148a94e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2568
+ frame #2: <unknown function> + 0x5baae40 (0x148a94e5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2569
+ frame #3: <unknown function> + 0x5bab74a (0x148a94e5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2570
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x148a94e571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2571
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x148a520509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
2572
+ frame #6: <unknown function> + 0xd3b6d (0x148aabaf1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
2573
+ frame #7: <unknown function> + 0x94ac3 (0x148aacff4ac3 in /lib/x86_64-linux-gnu/libc.so.6)
2574
+ frame #8: <unknown function> + 0x126850 (0x148aad086850 in /lib/x86_64-linux-gnu/libc.so.6)
2575
+
2576
+ [rank11]:[W621 22:13:46.311289102 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 11] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
2577
+ + set +x
2578
+ W0621 22:13:46.650000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127859 closing signal SIGTERM
2579
+ W0621 22:13:46.653000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127860 closing signal SIGTERM
2580
+ W0621 22:13:46.656000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127861 closing signal SIGTERM
2581
+ W0621 22:13:46.660000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127862 closing signal SIGTERM
2582
+ W0621 22:13:46.680000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127863 closing signal SIGTERM
2583
+ W0621 22:13:46.694000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127864 closing signal SIGTERM
2584
+ W0621 22:13:46.727000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127865 closing signal SIGTERM
2585
+ W0621 22:13:46.741000 1127779 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1127866 closing signal SIGTERM
2586
+ [W621 22:13:48.475009412 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33128, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2587
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2588
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14777cb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2589
+ frame #1: <unknown function> + 0x5ba8afe (0x147765e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2590
+ frame #2: <unknown function> + 0x5baa358 (0x147765e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2591
+ frame #3: <unknown function> + 0x5babb3e (0x147765e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2592
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x147765e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2593
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x147765e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2594
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x147765e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2595
+ frame #7: <unknown function> + 0xc0f526 (0x14777518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2596
+ frame #8: <unknown function> + 0x37f17d (0x1477748fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2597
+ <omitting python frames>
2598
+ frame #17: <unknown function> + 0x94ac3 (0x14777dec7ac3 in /lib/x86_64-linux-gnu/libc.so.6)
2599
+ frame #18: <unknown function> + 0x126850 (0x14777df59850 in /lib/x86_64-linux-gnu/libc.so.6)
2600
+
2601
+ W0621 22:13:48.603000 1127779 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-476_1127779_0' has failed to send a keep-alive heartbeat to the rendezvous '343237' due to an error of type RendezvousConnectionError.
2602
+ [W621 22:13:53.522114287 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33128, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2603
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2604
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14777cb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2605
+ frame #1: <unknown function> + 0x5ba8afe (0x147765e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2606
+ frame #2: <unknown function> + 0x5baa358 (0x147765e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2607
+ frame #3: <unknown function> + 0x5babb3e (0x147765e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2608
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x147765e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2609
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x147765e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2610
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x147765e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2611
+ frame #7: <unknown function> + 0xc0f526 (0x14777518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2612
+ frame #8: <unknown function> + 0x37f17d (0x1477748fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2613
+ <omitting python frames>
2614
+ frame #17: <unknown function> + 0x94ac3 (0x14777dec7ac3 in /lib/x86_64-linux-gnu/libc.so.6)
2615
+ frame #18: <unknown function> + 0x126850 (0x14777df59850 in /lib/x86_64-linux-gnu/libc.so.6)
2616
+
2617
+ W0621 22:13:53.610000 1127779 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-476_1127779_0' has failed to send a keep-alive heartbeat to the rendezvous '343237' due to an error of type RendezvousConnectionError.
2618
+ [W621 22:13:54.978127470 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33128, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2619
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2620
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14777cb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2621
+ frame #1: <unknown function> + 0x5ba8afe (0x147765e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2622
+ frame #2: <unknown function> + 0x5baa358 (0x147765e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2623
+ frame #3: <unknown function> + 0x5babb3e (0x147765e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2624
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x147765e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2625
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x147765e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2626
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x147765e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2627
+ frame #7: <unknown function> + 0xc0f526 (0x14777518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2628
+ frame #8: <unknown function> + 0x37f17d (0x1477748fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2629
+ <omitting python frames>
2630
+ frame #26: <unknown function> + 0x29d90 (0x14777de5cd90 in /lib/x86_64-linux-gnu/libc.so.6)
2631
+ frame #27: __libc_start_main + 0x80 (0x14777de5ce40 in /lib/x86_64-linux-gnu/libc.so.6)
2632
+
2633
+ W0621 22:13:54.073000 1127779 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-476_1127779_0' has failed to shutdown the rendezvous '343237' due to an error of type RendezvousConnectionError.
2634
+ [W621 22:13:54.992864590 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33128, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2635
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2636
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14777cb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2637
+ frame #1: <unknown function> + 0x5ba8afe (0x147765e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2638
+ frame #2: <unknown function> + 0x5baa358 (0x147765e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2639
+ frame #3: <unknown function> + 0x5babb3e (0x147765e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2640
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x147765e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2641
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x147765e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2642
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x147765e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2643
+ frame #7: <unknown function> + 0xc0f526 (0x14777518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2644
+ frame #8: <unknown function> + 0x37f17d (0x1477748fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2645
+ <omitting python frames>
2646
+ frame #26: <unknown function> + 0x29d90 (0x14777de5cd90 in /lib/x86_64-linux-gnu/libc.so.6)
2647
+ frame #27: __libc_start_main + 0x80 (0x14777de5ce40 in /lib/x86_64-linux-gnu/libc.so.6)
2648
+
2649
+ W0621 22:13:54.084000 1127779 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-476_1127779_0' has failed to shutdown the rendezvous '343237' due to an error of type RendezvousConnectionError.
2650
+ Traceback (most recent call last):
2651
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
2652
+ return getattr(self._store, store_op)(*args, **kwargs)
2653
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2654
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
2655
+
2656
+ The above exception was the direct cause of the following exception:
2657
+
2658
+ Traceback (most recent call last):
2659
+ File "<frozen runpy>", line 198, in _run_module_as_main
2660
+ File "<frozen runpy>", line 88, in _run_code
2661
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2662
+ main()
2663
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2664
+ return arg(*args, **kwargs)
2665
+ ^^^^^^^^^^^^^^^^^^^^
2666
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2667
+ launch(args)
2668
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2669
+ run(args)
2670
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2671
+ elastic_launch(
2672
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2673
+ return launch_agent(self._config, self._entrypoint, list(args))
2674
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2675
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
2676
+ result = agent.run()
2677
+ ^^^^^^^^^^^
2678
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
2679
+ result = f(*args, **kwargs)
2680
+ ^^^^^^^^^^^^^^^^^^
2681
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
2682
+ result = self._invoke_run(role)
2683
+ ^^^^^^^^^^^^^^^^^^^^^^
2684
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
2685
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
2686
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2687
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
2688
+ self._state_holder.sync()
2689
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
2690
+ get_response = self._backend.get_state()
2691
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
2692
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
2693
+ base64_state: bytes = self._call_store("get", self._key)
2694
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2695
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
2696
+ raise RendezvousConnectionError(
2697
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
2698
+ + set +x
2699
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2700
+ + export PROF_CTX_LENGTH=98304
2701
+ + PROF_CTX_LENGTH=98304
2702
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L98304*tp2.cp8.bs1.json'
2703
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L98304*tp2.cp8.bs1.json' ']'
2704
+ + echo 'Running ctx_length=98304, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=1'
2705
+ + srun bash ./attnserver.sh
2706
+ + which python3
2707
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343237 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-274:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 98304 --max-position-embeddings 98304 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2708
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2709
+ and will be removed in future. Use torchrun.
2710
+ Note that --use-env is set by default in torchrun.
2711
+ If your script expects `--local-rank` argument to be set, please
2712
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2713
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2714
+ further instructions
2715
+
2716
+ main()
2717
+ W0621 22:14:13.517000 857484 site-packages/torch/distributed/run.py:766]
2718
+ W0621 22:14:13.517000 857484 site-packages/torch/distributed/run.py:766] *****************************************
2719
+ W0621 22:14:13.517000 857484 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2720
+ W0621 22:14:13.517000 857484 site-packages/torch/distributed/run.py:766] *****************************************
2721
+ + which python3
2722
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343237 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-274:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 98304 --max-position-embeddings 98304 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2723
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2724
+ and will be removed in future. Use torchrun.
2725
+ Note that --use-env is set by default in torchrun.
2726
+ If your script expects `--local-rank` argument to be set, please
2727
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2728
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2729
+ further instructions
2730
+
2731
+ main()
2732
+ W0621 22:14:22.394000 1131728 site-packages/torch/distributed/run.py:766]
2733
+ W0621 22:14:22.394000 1131728 site-packages/torch/distributed/run.py:766] *****************************************
2734
+ W0621 22:14:22.394000 1131728 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2735
+ W0621 22:14:22.394000 1131728 site-packages/torch/distributed/run.py:766] *****************************************
2736
+ [rank4]:[W621 22:14:46.315103722 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2737
+ [rank2]:[W621 22:14:46.315140796 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2738
+ [rank1]:[W621 22:14:46.315152172 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2739
+ [rank3]:[W621 22:14:46.320404593 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2740
+ [rank6]:[W621 22:14:46.320536876 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2741
+ [rank7]:[W621 22:14:46.320554170 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2742
+ [rank5]:[W621 22:14:46.320648694 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2743
+ [rank10]:[W621 22:14:46.987794976 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2744
+ [rank12]:[W621 22:14:46.987812276 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2745
+ [rank14]:[W621 22:14:46.987863902 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2746
+ [rank11]:[W621 22:14:46.987875699 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2747
+ [rank9]:[W621 22:14:46.987901394 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2748
+ [rank15]:[W621 22:14:46.987940895 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2749
+ [rank13]:[W621 22:14:46.988172266 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2750
+ [rank8]:[W621 22:14:46.217328838 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2751
+ [rank0]:[W621 22:14:46.564148941 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2752
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2753
+ warnings.warn(
2754
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2755
+ warnings.warn(
2756
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2757
+ warnings.warn(
2758
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2759
+ warnings.warn(
2760
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2761
+ warnings.warn(
2762
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2763
+ warnings.warn(
2764
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2765
+ warnings.warn(
2766
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2767
+ warnings.warn(
2768
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2769
+ warnings.warn(
2770
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2771
+ warnings.warn(
2772
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2773
+ warnings.warn(
2774
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2775
+ warnings.warn(
2776
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2777
+ warnings.warn(
2778
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2779
+ warnings.warn(
2780
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2781
+ warnings.warn(
2782
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2783
+ warnings.warn(
2784
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2785
+ warnings.warn(
2786
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2787
+ warnings.warn(
2788
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2789
+ warnings.warn(
2790
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2791
+ warnings.warn(
2792
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2793
+ warnings.warn(
2794
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2795
+ warnings.warn(
2796
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2797
+ warnings.warn(
2798
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2799
+ warnings.warn(
2800
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2801
+ warnings.warn(
2802
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2803
+ warnings.warn(
2804
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2805
+ warnings.warn(
2806
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2807
+ warnings.warn(
2808
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2809
+ warnings.warn(
2810
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2811
+ warnings.warn(
2812
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2813
+ warnings.warn(
2814
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2815
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343237.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343238.err.log CHANGED
@@ -7144,3 +7144,382 @@ W0621 22:04:45.598000 2754239 site-packages/torch/distributed/run.py:766] ******
7144
  warnings.warn(
7145
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7146
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7144
  warnings.warn(
7145
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7146
  warnings.warn(
7147
+ [rank0]: Traceback (most recent call last):
7148
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
7149
+ [rank0]: pretrain(
7150
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
7151
+ [rank0]: save_checkpoint(
7152
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
7153
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
7154
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7155
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
7156
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
7157
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
7158
+ [rank0]: torch.save(common_state_dict, path)
7159
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
7160
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
7161
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
7162
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
7163
+ [rank0]: return container(name_or_buffer)
7164
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
7165
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
7166
+ [rank0]: torch._C.PyTorchFileWriter(
7167
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
7168
+ [rank0]:[W621 22:11:30.270394302 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
7169
+ W0621 22:11:40.160000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522311 closing signal SIGTERM
7170
+ W0621 22:11:40.163000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522312 closing signal SIGTERM
7171
+ W0621 22:11:40.166000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522313 closing signal SIGTERM
7172
+ W0621 22:11:40.169000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522314 closing signal SIGTERM
7173
+ W0621 22:11:40.184000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522315 closing signal SIGTERM
7174
+ W0621 22:11:40.197000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522316 closing signal SIGTERM
7175
+ W0621 22:11:40.200000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3522317 closing signal SIGTERM
7176
+ E0621 22:11:43.303000 3522238 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3522310) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
7177
+ Traceback (most recent call last):
7178
+ File "<frozen runpy>", line 198, in _run_module_as_main
7179
+ File "<frozen runpy>", line 88, in _run_code
7180
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
7181
+ main()
7182
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
7183
+ return arg(*args, **kwargs)
7184
+ ^^^^^^^^^^^^^^^^^^^^
7185
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
7186
+ launch(args)
7187
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
7188
+ run(args)
7189
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
7190
+ elastic_launch(
7191
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
7192
+ return launch_agent(self._config, self._entrypoint, list(args))
7193
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7194
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
7195
+ raise ChildFailedError(
7196
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
7197
+ ============================================================
7198
+ ./pretrain_gpt_profile.py FAILED
7199
+ ------------------------------------------------------------
7200
+ Failures:
7201
+ <NO_OTHER_FAILURES>
7202
+ ------------------------------------------------------------
7203
+ Root Cause (first observed failure):
7204
+ [0]:
7205
+ time : 2025-06-21_22:11:40
7206
+ host : fs-mbz-gpu-518
7207
+ rank : 0 (local_rank: 0)
7208
+ exitcode : 1 (pid: 3522310)
7209
+ error_file: <N/A>
7210
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
7211
+ ============================================================
7212
+ [rank8]:[W621 22:11:43.901393405 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=75, addr=[fs-mbz-gpu-546]:48124, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7213
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7214
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f066f785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7215
+ frame #1: <unknown function> + 0x5ba8afe (0x14f05025aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7216
+ frame #2: <unknown function> + 0x5baae40 (0x14f05025ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7217
+ frame #3: <unknown function> + 0x5bab74a (0x14f05025d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7218
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14f0502571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7219
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14f00d4509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7220
+ frame #6: <unknown function> + 0xd3b6d (0x14effd419b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7221
+ frame #7: <unknown function> + 0x94ac3 (0x14f0682adac3 in /lib/x86_64-linux-gnu/libc.so.6)
7222
+ frame #8: <unknown function> + 0x126850 (0x14f06833f850 in /lib/x86_64-linux-gnu/libc.so.6)
7223
+
7224
+ [rank8]:[W621 22:11:43.906148549 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 8] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7225
+ [rank14]:[W621 22:11:43.956280987 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48182, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7226
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7227
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x15499d5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7228
+ frame #1: <unknown function> + 0x5ba8afe (0x15498645aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7229
+ frame #2: <unknown function> + 0x5baae40 (0x15498645ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7230
+ frame #3: <unknown function> + 0x5bab74a (0x15498645d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7231
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1549864571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7232
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1549436509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7233
+ frame #6: <unknown function> + 0xd3b6d (0x15499d0f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7234
+ frame #7: <unknown function> + 0x94ac3 (0x15499e654ac3 in /lib/x86_64-linux-gnu/libc.so.6)
7235
+ frame #8: <unknown function> + 0x126850 (0x15499e6e6850 in /lib/x86_64-linux-gnu/libc.so.6)
7236
+
7237
+ [rank14]:[W621 22:11:43.960548931 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 14] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7238
+ [rank12]:[W621 22:11:43.000331233 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48158, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7239
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7240
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14ac5cf785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7241
+ frame #1: <unknown function> + 0x5ba8afe (0x14ac45e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7242
+ frame #2: <unknown function> + 0x5baae40 (0x14ac45e5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7243
+ frame #3: <unknown function> + 0x5bab74a (0x14ac45e5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7244
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14ac45e571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7245
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14ac030509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7246
+ frame #6: <unknown function> + 0xd3b6d (0x14ac5caf1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7247
+ frame #7: <unknown function> + 0x94ac3 (0x14ac5e05fac3 in /lib/x86_64-linux-gnu/libc.so.6)
7248
+ frame #8: <unknown function> + 0x126850 (0x14ac5e0f1850 in /lib/x86_64-linux-gnu/libc.so.6)
7249
+
7250
+ [rank12]:[W621 22:11:43.004434512 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 12] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7251
+ [rank15]:[W621 22:11:43.012364780 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48140, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7252
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7253
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14aed4b785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7254
+ frame #1: <unknown function> + 0x5ba8afe (0x14aebda5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7255
+ frame #2: <unknown function> + 0x5baae40 (0x14aebda5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7256
+ frame #3: <unknown function> + 0x5bab74a (0x14aebda5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7257
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14aebda571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7258
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14ae7ac509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7259
+ frame #6: <unknown function> + 0xd3b6d (0x14aed46f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7260
+ frame #7: <unknown function> + 0x94ac3 (0x14aed5bffac3 in /lib/x86_64-linux-gnu/libc.so.6)
7261
+ frame #8: <unknown function> + 0x126850 (0x14aed5c91850 in /lib/x86_64-linux-gnu/libc.so.6)
7262
+
7263
+ [rank15]:[W621 22:11:43.016269886 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 15] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7264
+ [rank11]:[W621 22:11:43.012363687 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48178, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7265
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7266
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14651c7785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7267
+ frame #1: <unknown function> + 0x5ba8afe (0x14650565aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7268
+ frame #2: <unknown function> + 0x5baae40 (0x14650565ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7269
+ frame #3: <unknown function> + 0x5bab74a (0x14650565d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7270
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1465056571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7271
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1464c28509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7272
+ frame #6: <unknown function> + 0xd3b6d (0x14651c2f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7273
+ frame #7: <unknown function> + 0x94ac3 (0x14651d825ac3 in /lib/x86_64-linux-gnu/libc.so.6)
7274
+ frame #8: <unknown function> + 0x126850 (0x14651d8b7850 in /lib/x86_64-linux-gnu/libc.so.6)
7275
+
7276
+ [rank11]:[W621 22:11:43.016683831 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 11] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7277
+ [rank13]:[W621 22:11:43.012478440 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48138, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7278
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7279
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14b98bb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7280
+ frame #1: <unknown function> + 0x5ba8afe (0x14b974a5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7281
+ frame #2: <unknown function> + 0x5baae40 (0x14b974a5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7282
+ frame #3: <unknown function> + 0x5bab74a (0x14b974a5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7283
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14b974a571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7284
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14b931c509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7285
+ frame #6: <unknown function> + 0xd3b6d (0x14b98b6f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7286
+ frame #7: <unknown function> + 0x94ac3 (0x14b98cc31ac3 in /lib/x86_64-linux-gnu/libc.so.6)
7287
+ frame #8: <unknown function> + 0x126850 (0x14b98ccc3850 in /lib/x86_64-linux-gnu/libc.so.6)
7288
+
7289
+ [rank9]:[W621 22:11:43.012604382 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-546]:48170, remote=[fs-mbz-gpu-518]:38983): failed to recv, got 0 bytes
7290
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
7291
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1472ba1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7292
+ frame #1: <unknown function> + 0x5ba8afe (0x1472a305aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7293
+ frame #2: <unknown function> + 0x5baae40 (0x1472a305ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7294
+ frame #3: <unknown function> + 0x5bab74a (0x1472a305d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7295
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1472a30571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7296
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1472602509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
7297
+ frame #6: <unknown function> + 0xd3b6d (0x1472b9cf1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
7298
+ frame #7: <unknown function> + 0x94ac3 (0x1472bb1bbac3 in /lib/x86_64-linux-gnu/libc.so.6)
7299
+ frame #8: <unknown function> + 0x126850 (0x1472bb24d850 in /lib/x86_64-linux-gnu/libc.so.6)
7300
+
7301
+ [rank13]:[W621 22:11:43.016790533 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 13] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7302
+ [rank9]:[W621 22:11:43.016820469 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 9] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
7303
+ + set +x
7304
+ W0621 22:11:44.242000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754308 closing signal SIGTERM
7305
+ W0621 22:11:44.247000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754309 closing signal SIGTERM
7306
+ W0621 22:11:44.250000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754310 closing signal SIGTERM
7307
+ W0621 22:11:44.253000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754311 closing signal SIGTERM
7308
+ W0621 22:11:44.255000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754312 closing signal SIGTERM
7309
+ W0621 22:11:44.268000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754313 closing signal SIGTERM
7310
+ W0621 22:11:44.276000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754314 closing signal SIGTERM
7311
+ W0621 22:11:44.293000 2754239 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2754315 closing signal SIGTERM
7312
+ [W621 22:11:46.672843694 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-546]:44530, remote=[fs-mbz-gpu-518]:29500): Broken pipe
7313
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
7314
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148c7e9785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7315
+ frame #1: <unknown function> + 0x5ba8afe (0x148c6785aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7316
+ frame #2: <unknown function> + 0x5baa358 (0x148c6785c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7317
+ frame #3: <unknown function> + 0x5babb3e (0x148c6785db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7318
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x148c67857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7319
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x148c67857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7320
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x148c67858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7321
+ frame #7: <unknown function> + 0xc0f526 (0x148c76b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7322
+ frame #8: <unknown function> + 0x37f17d (0x148c762fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7323
+ <omitting python frames>
7324
+ frame #17: <unknown function> + 0x94ac3 (0x148c7f9efac3 in /lib/x86_64-linux-gnu/libc.so.6)
7325
+ frame #18: <unknown function> + 0x126850 (0x148c7fa81850 in /lib/x86_64-linux-gnu/libc.so.6)
7326
+
7327
+ W0621 22:11:46.204000 2754239 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2754239_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
7328
+ [W621 22:11:47.657307998 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-546]:44530, remote=[fs-mbz-gpu-518]:29500): Broken pipe
7329
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
7330
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148c7e9785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7331
+ frame #1: <unknown function> + 0x5ba8afe (0x148c6785aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7332
+ frame #2: <unknown function> + 0x5baa358 (0x148c6785c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7333
+ frame #3: <unknown function> + 0x5babb3e (0x148c6785db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7334
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x148c67857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7335
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x148c67857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7336
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x148c67858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7337
+ frame #7: <unknown function> + 0xc0f526 (0x148c76b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7338
+ frame #8: <unknown function> + 0x37f17d (0x148c762fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7339
+ <omitting python frames>
7340
+ frame #26: <unknown function> + 0x29d90 (0x148c7f984d90 in /lib/x86_64-linux-gnu/libc.so.6)
7341
+ frame #27: __libc_start_main + 0x80 (0x148c7f984e40 in /lib/x86_64-linux-gnu/libc.so.6)
7342
+
7343
+ W0621 22:11:47.194000 2754239 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2754239_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
7344
+ [W621 22:11:47.672909655 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-546]:44530, remote=[fs-mbz-gpu-518]:29500): Broken pipe
7345
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
7346
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148c7e9785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
7347
+ frame #1: <unknown function> + 0x5ba8afe (0x148c6785aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7348
+ frame #2: <unknown function> + 0x5baa358 (0x148c6785c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7349
+ frame #3: <unknown function> + 0x5babb3e (0x148c6785db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7350
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x148c67857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7351
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x148c67857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7352
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x148c67858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
7353
+ frame #7: <unknown function> + 0xc0f526 (0x148c76b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7354
+ frame #8: <unknown function> + 0x37f17d (0x148c762fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
7355
+ <omitting python frames>
7356
+ frame #26: <unknown function> + 0x29d90 (0x148c7f984d90 in /lib/x86_64-linux-gnu/libc.so.6)
7357
+ frame #27: __libc_start_main + 0x80 (0x148c7f984e40 in /lib/x86_64-linux-gnu/libc.so.6)
7358
+
7359
+ W0621 22:11:47.206000 2754239 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2754239_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
7360
+ Traceback (most recent call last):
7361
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
7362
+ return getattr(self._store, store_op)(*args, **kwargs)
7363
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7364
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
7365
+
7366
+ The above exception was the direct cause of the following exception:
7367
+
7368
+ Traceback (most recent call last):
7369
+ File "<frozen runpy>", line 198, in _run_module_as_main
7370
+ File "<frozen runpy>", line 88, in _run_code
7371
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
7372
+ main()
7373
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
7374
+ return arg(*args, **kwargs)
7375
+ ^^^^^^^^^^^^^^^^^^^^
7376
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
7377
+ launch(args)
7378
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
7379
+ run(args)
7380
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
7381
+ elastic_launch(
7382
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
7383
+ return launch_agent(self._config, self._entrypoint, list(args))
7384
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
7386
+ result = agent.run()
7387
+ ^^^^^^^^^^^
7388
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
7389
+ result = f(*args, **kwargs)
7390
+ ^^^^^^^^^^^^^^^^^^
7391
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
7392
+ result = self._invoke_run(role)
7393
+ ^^^^^^^^^^^^^^^^^^^^^^
7394
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
7395
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
7396
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7397
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
7398
+ self._state_holder.sync()
7399
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
7400
+ get_response = self._backend.get_state()
7401
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
7402
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
7403
+ base64_state: bytes = self._call_store("get", self._key)
7404
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
7406
+ raise RendezvousConnectionError(
7407
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
7408
+ + set +x
7409
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
7410
+ + export PROF_CTX_LENGTH=81920
7411
+ + PROF_CTX_LENGTH=81920
7412
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp8.bs2.json'
7413
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp8.bs2.json' ']'
7414
+ + echo 'Running ctx_length=81920, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=2'
7415
+ + srun bash ./attnserver.sh
7416
+ + which python3
7417
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
7418
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
7419
+ and will be removed in future. Use torchrun.
7420
+ Note that --use-env is set by default in torchrun.
7421
+ If your script expects `--local-rank` argument to be set, please
7422
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
7423
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7424
+ further instructions
7425
+
7426
+ main()
7427
+ W0621 22:11:58.313000 3525952 site-packages/torch/distributed/run.py:766]
7428
+ W0621 22:11:58.313000 3525952 site-packages/torch/distributed/run.py:766] *****************************************
7429
+ W0621 22:11:58.313000 3525952 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7430
+ W0621 22:11:58.313000 3525952 site-packages/torch/distributed/run.py:766] *****************************************
7431
+ + which python3
7432
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
7433
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
7434
+ and will be removed in future. Use torchrun.
7435
+ Note that --use-env is set by default in torchrun.
7436
+ If your script expects `--local-rank` argument to be set, please
7437
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
7438
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7439
+ further instructions
7440
+
7441
+ main()
7442
+ W0621 22:12:03.366000 2757876 site-packages/torch/distributed/run.py:766]
7443
+ W0621 22:12:03.366000 2757876 site-packages/torch/distributed/run.py:766] *****************************************
7444
+ W0621 22:12:03.366000 2757876 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7445
+ W0621 22:12:03.366000 2757876 site-packages/torch/distributed/run.py:766] *****************************************
7446
+ [rank15]:[W621 22:12:26.529643661 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7447
+ [rank1]:[W621 22:12:26.887649999 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7448
+ [rank4]:[W621 22:12:26.887649333 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7449
+ [rank6]:[W621 22:12:26.887678852 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7450
+ [rank5]:[W621 22:12:26.887712594 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7451
+ [rank2]:[W621 22:12:26.887764574 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7452
+ [rank7]:[W621 22:12:26.887817820 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7453
+ [rank3]:[W621 22:12:26.887817826 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7454
+ [rank9]:[W621 22:12:26.540115439 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7455
+ [rank11]:[W621 22:12:26.540201507 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7456
+ [rank13]:[W621 22:12:26.543492971 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7457
+ [rank14]:[W621 22:12:26.543613825 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7458
+ [rank10]:[W621 22:12:26.543614372 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7459
+ [rank12]:[W621 22:12:26.543940035 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7460
+ [rank0]:[W621 22:12:26.124198092 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7461
+ [rank8]:[W621 22:12:26.796569599 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7462
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7463
+ warnings.warn(
7464
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7465
+ warnings.warn(
7466
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7467
+ warnings.warn(
7468
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7469
+ warnings.warn(
7470
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7471
+ warnings.warn(
7472
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7473
+ warnings.warn(
7474
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7475
+ warnings.warn(
7476
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7477
+ warnings.warn(
7478
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7479
+ warnings.warn(
7480
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7481
+ warnings.warn(
7482
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7483
+ warnings.warn(
7484
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7485
+ warnings.warn(
7486
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7487
+ warnings.warn(
7488
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7489
+ warnings.warn(
7490
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7491
+ warnings.warn(
7492
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7493
+ warnings.warn(
7494
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7495
+ warnings.warn(
7496
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7497
+ warnings.warn(
7498
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7499
+ warnings.warn(
7500
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7501
+ warnings.warn(
7502
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7503
+ warnings.warn(
7504
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7505
+ warnings.warn(
7506
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7507
+ warnings.warn(
7508
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7509
+ warnings.warn(
7510
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7511
+ warnings.warn(
7512
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7513
+ warnings.warn(
7514
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7515
+ warnings.warn(
7516
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7517
+ warnings.warn(
7518
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7519
+ warnings.warn(
7520
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7521
+ warnings.warn(
7522
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7523
+ warnings.warn(
7524
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7525
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343238.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343239.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343239.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343240.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343240.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343241.err.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343241.out.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343242.err.log ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=2
115
+ + PROF_TP_SIZE=2
116
+ + export PROF_CP_SIZE=8
117
+ + PROF_CP_SIZE=8
118
+ + export PROF_BS=32
119
+ + PROF_BS=32
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp2.cp8.bs32.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp2.cp8.bs32.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=32'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343242 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ + which python3
130
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343242 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
131
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
132
+ and will be removed in future. Use torchrun.
133
+ Note that --use-env is set by default in torchrun.
134
+ If your script expects `--local-rank` argument to be set, please
135
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
136
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
137
+ further instructions
138
+
139
+ main()
140
+ W0621 22:19:18.745000 822159 site-packages/torch/distributed/run.py:766]
141
+ W0621 22:19:18.745000 822159 site-packages/torch/distributed/run.py:766] *****************************************
142
+ W0621 22:19:18.745000 822159 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
143
+ W0621 22:19:18.745000 822159 site-packages/torch/distributed/run.py:766] *****************************************
144
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
145
+ and will be removed in future. Use torchrun.
146
+ Note that --use-env is set by default in torchrun.
147
+ If your script expects `--local-rank` argument to be set, please
148
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
149
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
150
+ further instructions
151
+
152
+ main()
153
+ W0621 22:19:18.788000 2168212 site-packages/torch/distributed/run.py:766]
154
+ W0621 22:19:18.788000 2168212 site-packages/torch/distributed/run.py:766] *****************************************
155
+ W0621 22:19:18.788000 2168212 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
156
+ W0621 22:19:18.788000 2168212 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343242.out.log ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=32
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 2
6
+ CP_SIZE: 8
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ Cleaning up checkpoint directory: gpt-checkpoint
11
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
12
+ --------------------------------
13
+ CTX_LENGTH: 1024
14
+ TP_SIZE: 2
15
+ CP_SIZE: 8
16
+ CHECKPOINT_PATH: gpt-checkpoint
17
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
18
+ --------------------------------
19
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343243.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343243.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343244.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343244.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343248.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343248.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343261.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343261.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343262.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343262.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343263.err.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343263.out.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343264.err.log ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=1
115
+ + PROF_TP_SIZE=1
116
+ + export PROF_CP_SIZE=8
117
+ + PROF_CP_SIZE=8
118
+ + export PROF_BS=8
119
+ + PROF_BS=8
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs8.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs8.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=1, CP_SIZE=8, BATCH_SIZE=8'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343264 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-661:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 1 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
130
+ and will be removed in future. Use torchrun.
131
+ Note that --use-env is set by default in torchrun.
132
+ If your script expects `--local-rank` argument to be set, please
133
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
134
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
135
+ further instructions
136
+
137
+ main()
138
+ W0621 22:18:09.812000 1550851 site-packages/torch/distributed/run.py:766]
139
+ W0621 22:18:09.812000 1550851 site-packages/torch/distributed/run.py:766] *****************************************
140
+ W0621 22:18:09.812000 1550851 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
141
+ W0621 22:18:09.812000 1550851 site-packages/torch/distributed/run.py:766] *****************************************
142
+ [rank4]:[W621 22:18:31.551180804 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
143
+ [rank3]:[W621 22:18:31.551180797 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
144
+ [rank2]:[W621 22:18:31.551202665 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
145
+ [rank7]:[W621 22:18:31.551235849 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
146
+ [rank6]:[W621 22:18:31.551267004 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
147
+ [rank5]:[W621 22:18:31.551293533 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
148
+ [rank1]:[W621 22:18:31.551372229 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
149
+ [rank0]:[W621 22:18:31.760470010 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
150
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
151
+ warnings.warn(
152
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
153
+ warnings.warn(
154
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
155
+ warnings.warn(
156
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
157
+ warnings.warn(
158
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
159
+ warnings.warn(
160
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
161
+ warnings.warn(
162
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
163
+ warnings.warn(
164
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
165
+ warnings.warn(
166
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
167
+ warnings.warn(
168
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
169
+ warnings.warn(
170
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
171
+ warnings.warn(
172
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
173
+ warnings.warn(
174
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
175
+ warnings.warn(
176
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
177
+ warnings.warn(
178
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
179
+ warnings.warn(
180
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
181
+ warnings.warn(
182
+ [rank0]: Traceback (most recent call last):
183
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
184
+ [rank0]: pretrain(
185
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
186
+ [rank0]: save_checkpoint(
187
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
188
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
189
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
190
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
191
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
192
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
193
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
194
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
195
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
196
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
197
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
198
+ [rank0]: finalize_fn()
199
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
200
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
201
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 243, in save_state_dict_async_finalize
202
+ [rank0]: storage_writer.finish(global_metadata, all_results)
203
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 483, in finish
204
+ [rank0]: super().finish(metadata, results)
205
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 697, in finish
206
+ [rank0]: with self.fs.create_stream(tmp_path, "wb") as metadata_file:
207
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
208
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/contextlib.py", line 137, in __enter__
209
+ [rank0]: return next(self.gen)
210
+ [rank0]: ^^^^^^^^^^^^^^
211
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 476, in create_stream
212
+ [rank0]: with path.open(mode) as stream:
213
+ [rank0]: ^^^^^^^^^^^^^^^
214
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/pathlib.py", line 1013, in open
215
+ [rank0]: return io.open(self, mode, buffering, encoding, errors, newline)
216
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
217
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/.metadata.tmp'
attnserver.run_attnserver.slurm.sh.343264.out.log ADDED
The diff for this file is too large to render. See raw diff