GindaChen commited on
Commit
70ed1d3
·
verified ·
1 Parent(s): 4903ebc

Upload folder using huggingface_hub

Browse files
attnserver.run_attnserver.slurm.sh.343207.out.log CHANGED
@@ -19621,3 +19621,73 @@ batch tensor after cp: position_ids torch.Size([1, 131072])
19621
  Start exporting trace 4
19622
  Done exporting trace 4
19623
  [2025-06-21 22:06:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 124682.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19621
  Start exporting trace 4
19622
  Done exporting trace 4
19623
  [2025-06-21 22:06:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 124682.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19624
+ batch tensor: tokens torch.Size([1, 131072])
19625
+ batch tensor: labels torch.Size([1, 131072])
19626
+ batch tensor: loss_mask torch.Size([1, 131072])
19627
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19628
+ batch tensor: position_ids torch.Size([1, 131072])
19629
+ batch tensor after cp: tokens torch.Size([1, 131072])
19630
+ batch tensor after cp: labels torch.Size([1, 131072])
19631
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19632
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19633
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19634
+ batch tensor: tokens torch.Size([1, 131072])
19635
+ batch tensor: labels torch.Size([1, 131072])
19636
+ batch tensor: loss_mask torch.Size([1, 131072])
19637
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19638
+ batch tensor: position_ids torch.Size([1, 131072])
19639
+ batch tensor after cp: tokens torch.Size([1, 131072])
19640
+ batch tensor after cp: labels torch.Size([1, 131072])
19641
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19642
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19643
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19644
+ batch tensor: tokens torch.Size([1, 131072])
19645
+ batch tensor: labels torch.Size([1, 131072])
19646
+ batch tensor: loss_mask torch.Size([1, 131072])
19647
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19648
+ batch tensor: position_ids torch.Size([1, 131072])
19649
+ batch tensor after cp: tokens torch.Size([1, 131072])
19650
+ batch tensor after cp: labels torch.Size([1, 131072])
19651
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19652
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19653
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19654
+ batch tensor: tokens torch.Size([1, 131072])
19655
+ batch tensor: labels torch.Size([1, 131072])
19656
+ batch tensor: loss_mask torch.Size([1, 131072])
19657
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19658
+ batch tensor: position_ids torch.Size([1, 131072])
19659
+ batch tensor after cp: tokens torch.Size([1, 131072])
19660
+ batch tensor after cp: labels torch.Size([1, 131072])
19661
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19662
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19663
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19664
+ batch tensor: tokens torch.Size([1, 131072])
19665
+ batch tensor: labels torch.Size([1, 131072])
19666
+ batch tensor: loss_mask torch.Size([1, 131072])
19667
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19668
+ batch tensor: position_ids torch.Size([1, 131072])
19669
+ batch tensor after cp: tokens torch.Size([1, 131072])
19670
+ batch tensor after cp: labels torch.Size([1, 131072])
19671
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19672
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19673
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19674
+ batch tensor: tokens torch.Size([1, 131072])
19675
+ batch tensor: labels torch.Size([1, 131072])
19676
+ batch tensor: loss_mask torch.Size([1, 131072])
19677
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19678
+ batch tensor: position_ids torch.Size([1, 131072])
19679
+ batch tensor after cp: tokens torch.Size([1, 131072])
19680
+ batch tensor after cp: labels torch.Size([1, 131072])
19681
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19682
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19683
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19684
+ batch tensor: tokens torch.Size([1, 131072])
19685
+ batch tensor: labels torch.Size([1, 131072])
19686
+ batch tensor: loss_mask torch.Size([1, 131072])
19687
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19688
+ batch tensor: position_ids torch.Size([1, 131072])
19689
+ batch tensor after cp: tokens torch.Size([1, 131072])
19690
+ batch tensor after cp: labels torch.Size([1, 131072])
19691
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19692
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19693
+ batch tensor after cp: position_ids torch.Size([1, 131072])
attnserver.run_attnserver.slurm.sh.343213.out.log CHANGED
@@ -55966,3 +55966,5 @@ batch tensor after cp: labels torch.Size([1, 16384])
55966
  batch tensor after cp: loss_mask torch.Size([1, 16384])
55967
  batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
55968
  batch tensor after cp: position_ids torch.Size([1, 16384])
 
 
 
55966
  batch tensor after cp: loss_mask torch.Size([1, 16384])
55967
  batch tensor after cp: attention_mask torch.Size([1, 1, 16384, 131072])
55968
  batch tensor after cp: position_ids torch.Size([1, 16384])
55969
+ Start exporting trace 0
55970
+ Done exporting trace 0
attnserver.run_attnserver.slurm.sh.343214.err.log CHANGED
@@ -74500,3 +74500,433 @@ W0621 22:07:22.256000 4123000 site-packages/torch/distributed/elastic/multiproce
74500
  W0621 22:07:22.257000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123074 closing signal SIGTERM
74501
  W0621 22:07:22.261000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123075 closing signal SIGTERM
74502
  W0621 22:07:22.261000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123076 closing signal SIGTERM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74500
  W0621 22:07:22.257000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123074 closing signal SIGTERM
74501
  W0621 22:07:22.261000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123075 closing signal SIGTERM
74502
  W0621 22:07:22.261000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4123076 closing signal SIGTERM
74503
+ W0621 22:07:51.740000 1726601 site-packages/torch/distributed/elastic/multiprocessing/api.py:919] Unable to shutdown process 1726674 via 15, forcefully exiting via 9
74504
+ W0621 22:07:51.959000 550674 site-packages/torch/distributed/elastic/multiprocessing/api.py:919] Unable to shutdown process 550744 via 15, forcefully exiting via 9
74505
+ W0621 22:07:52.254000 2005013 site-packages/torch/distributed/elastic/multiprocessing/api.py:919] Unable to shutdown process 2005094 via 15, forcefully exiting via 9
74506
+ W0621 22:07:52.262000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:919] Unable to shutdown process 4123070 via 15, forcefully exiting via 9
74507
+ E0621 22:07:54.732000 1726601 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 6 (pid: 1726676) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
74508
+ Traceback (most recent call last):
74509
+ File "<frozen runpy>", line 198, in _run_module_as_main
74510
+ File "<frozen runpy>", line 88, in _run_code
74511
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
74512
+ main()
74513
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
74514
+ return arg(*args, **kwargs)
74515
+ ^^^^^^^^^^^^^^^^^^^^
74516
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
74517
+ launch(args)
74518
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
74519
+ run(args)
74520
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
74521
+ elastic_launch(
74522
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
74523
+ return launch_agent(self._config, self._entrypoint, list(args))
74524
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
74525
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
74526
+ raise ChildFailedError(
74527
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
74528
+ ============================================================
74529
+ ./pretrain_gpt_profile.py FAILED
74530
+ ------------------------------------------------------------
74531
+ Failures:
74532
+ <NO_OTHER_FAILURES>
74533
+ ------------------------------------------------------------
74534
+ Root Cause (first observed failure):
74535
+ [0]:
74536
+ time : 2025-06-21_22:07:21
74537
+ host : fs-mbz-gpu-455
74538
+ rank : 14 (local_rank: 6)
74539
+ exitcode : 1 (pid: 1726676)
74540
+ error_file: <N/A>
74541
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
74542
+ ============================================================
74543
+ E0621 22:07:55.034000 2005013 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 7 (pid: 2005097) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
74544
+ Traceback (most recent call last):
74545
+ File "<frozen runpy>", line 198, in _run_module_as_main
74546
+ File "<frozen runpy>", line 88, in _run_code
74547
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
74548
+ main()
74549
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
74550
+ return arg(*args, **kwargs)
74551
+ ^^^^^^^^^^^^^^^^^^^^
74552
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
74553
+ launch(args)
74554
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
74555
+ run(args)
74556
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
74557
+ elastic_launch(
74558
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
74559
+ return launch_agent(self._config, self._entrypoint, list(args))
74560
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
74561
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
74562
+ raise ChildFailedError(
74563
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
74564
+ ============================================================
74565
+ ./pretrain_gpt_profile.py FAILED
74566
+ ------------------------------------------------------------
74567
+ Failures:
74568
+ <NO_OTHER_FAILURES>
74569
+ ------------------------------------------------------------
74570
+ Root Cause (first observed failure):
74571
+ [0]:
74572
+ time : 2025-06-21_22:07:22
74573
+ host : fs-mbz-gpu-404
74574
+ rank : 7 (local_rank: 7)
74575
+ exitcode : 1 (pid: 2005097)
74576
+ error_file: <N/A>
74577
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
74578
+ ============================================================
74579
+ + set +x
74580
+ + set +x
74581
+ W0621 22:07:59.107000 550674 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-854_550674_0' has failed to send a keep-alive heartbeat to the rendezvous '343214' due to an error of type RendezvousConnectionError.
74582
+ W0621 22:07:59.167000 4123000 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-885_4123000_0' has failed to send a keep-alive heartbeat to the rendezvous '343214' due to an error of type RendezvousConnectionError.
74583
+ W0621 22:08:00.255000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:919] Unable to shutdown process 4123074 via 15, forcefully exiting via 9
74584
+ E0621 22:08:00.264000 4123000 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 7 (pid: 4123077) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
74585
+ [W621 22:08:00.632629656 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:47432, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74586
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74587
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14c62df785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74588
+ frame #1: <unknown function> + 0x5ba8afe (0x14c61725aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74589
+ frame #2: <unknown function> + 0x5baa358 (0x14c61725c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74590
+ frame #3: <unknown function> + 0x5babb3e (0x14c61725db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74591
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14c617257ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74592
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14c617257ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74593
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14c617258f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74594
+ frame #7: <unknown function> + 0xc0f526 (0x14c62658b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74595
+ frame #8: <unknown function> + 0x37f17d (0x14c625cfb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74596
+ <omitting python frames>
74597
+ frame #26: <unknown function> + 0x29d90 (0x14c62f28fd90 in /lib/x86_64-linux-gnu/libc.so.6)
74598
+ frame #27: __libc_start_main + 0x80 (0x14c62f28fe40 in /lib/x86_64-linux-gnu/libc.so.6)
74599
+
74600
+ W0621 22:08:00.289000 4123000 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-885_4123000_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74601
+ [W621 22:08:00.658907883 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:47432, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74602
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74603
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14c62df785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74604
+ frame #1: <unknown function> + 0x5ba8afe (0x14c61725aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74605
+ frame #2: <unknown function> + 0x5baa358 (0x14c61725c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74606
+ frame #3: <unknown function> + 0x5babb3e (0x14c61725db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74607
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14c617257ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74608
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14c617257ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74609
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14c617258f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74610
+ frame #7: <unknown function> + 0xc0f526 (0x14c62658b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74611
+ frame #8: <unknown function> + 0x37f17d (0x14c625cfb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74612
+ <omitting python frames>
74613
+ frame #26: <unknown function> + 0x29d90 (0x14c62f28fd90 in /lib/x86_64-linux-gnu/libc.so.6)
74614
+ frame #27: __libc_start_main + 0x80 (0x14c62f28fe40 in /lib/x86_64-linux-gnu/libc.so.6)
74615
+
74616
+ W0621 22:08:00.302000 4123000 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-885_4123000_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74617
+ [W621 22:08:00.670678056 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:47432, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74618
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74619
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14c62df785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74620
+ frame #1: <unknown function> + 0x5ba8afe (0x14c61725aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74621
+ frame #2: <unknown function> + 0x5baa358 (0x14c61725c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74622
+ frame #3: <unknown function> + 0x5babb3e (0x14c61725db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74623
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14c617257ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74624
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14c617257ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74625
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14c617258f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74626
+ frame #7: <unknown function> + 0xc0f526 (0x14c62658b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74627
+ frame #8: <unknown function> + 0x37f17d (0x14c625cfb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74628
+ <omitting python frames>
74629
+ frame #26: <unknown function> + 0x29d90 (0x14c62f28fd90 in /lib/x86_64-linux-gnu/libc.so.6)
74630
+ frame #27: __libc_start_main + 0x80 (0x14c62f28fe40 in /lib/x86_64-linux-gnu/libc.so.6)
74631
+
74632
+ W0621 22:08:00.313000 4123000 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-885_4123000_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74633
+ Traceback (most recent call last):
74634
+ File "<frozen runpy>", line 198, in _run_module_as_main
74635
+ File "<frozen runpy>", line 88, in _run_code
74636
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
74637
+ main()
74638
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
74639
+ return arg(*args, **kwargs)
74640
+ ^^^^^^^^^^^^^^^^^^^^
74641
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
74642
+ launch(args)
74643
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
74644
+ run(args)
74645
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
74646
+ elastic_launch(
74647
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
74648
+ return launch_agent(self._config, self._entrypoint, list(args))
74649
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
74650
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
74651
+ raise ChildFailedError(
74652
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
74653
+ ============================================================
74654
+ ./pretrain_gpt_profile.py FAILED
74655
+ ------------------------------------------------------------
74656
+ Failures:
74657
+ <NO_OTHER_FAILURES>
74658
+ ------------------------------------------------------------
74659
+ Root Cause (first observed failure):
74660
+ [0]:
74661
+ time : 2025-06-21_22:07:22
74662
+ host : fs-mbz-gpu-885
74663
+ rank : 31 (local_rank: 7)
74664
+ exitcode : 1 (pid: 4123077)
74665
+ error_file: <N/A>
74666
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
74667
+ ============================================================
74668
+ + set +x
74669
+ [W621 22:08:04.480621105 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-854]:52120, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74670
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74671
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1481bcb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74672
+ frame #1: <unknown function> + 0x5ba8afe (0x1481a5e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74673
+ frame #2: <unknown function> + 0x5baa358 (0x1481a5e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74674
+ frame #3: <unknown function> + 0x5babb3e (0x1481a5e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74675
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1481a5e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74676
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1481a5e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74677
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1481a5e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74678
+ frame #7: <unknown function> + 0xc0f526 (0x1481b518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74679
+ frame #8: <unknown function> + 0x37f17d (0x1481b48fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74680
+ <omitting python frames>
74681
+ frame #17: <unknown function> + 0x94ac3 (0x1481bdef1ac3 in /lib/x86_64-linux-gnu/libc.so.6)
74682
+ frame #18: <unknown function> + 0x126850 (0x1481bdf83850 in /lib/x86_64-linux-gnu/libc.so.6)
74683
+
74684
+ W0621 22:08:04.118000 550674 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-854_550674_0' has failed to send a keep-alive heartbeat to the rendezvous '343214' due to an error of type RendezvousConnectionError.
74685
+ E0621 22:08:04.815000 550674 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 6 (pid: 550750) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
74686
+ [W621 22:08:04.188180780 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-854]:52120, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74687
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74688
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1481bcb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74689
+ frame #1: <unknown function> + 0x5ba8afe (0x1481a5e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74690
+ frame #2: <unknown function> + 0x5baa358 (0x1481a5e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74691
+ frame #3: <unknown function> + 0x5babb3e (0x1481a5e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74692
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1481a5e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74693
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1481a5e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74694
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1481a5e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74695
+ frame #7: <unknown function> + 0xc0f526 (0x1481b518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74696
+ frame #8: <unknown function> + 0x37f17d (0x1481b48fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74697
+ <omitting python frames>
74698
+ frame #26: <unknown function> + 0x29d90 (0x1481bde86d90 in /lib/x86_64-linux-gnu/libc.so.6)
74699
+ frame #27: __libc_start_main + 0x80 (0x1481bde86e40 in /lib/x86_64-linux-gnu/libc.so.6)
74700
+
74701
+ W0621 22:08:04.831000 550674 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-854_550674_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74702
+ [W621 22:08:04.205215967 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-854]:52120, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74703
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74704
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1481bcb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74705
+ frame #1: <unknown function> + 0x5ba8afe (0x1481a5e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74706
+ frame #2: <unknown function> + 0x5baa358 (0x1481a5e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74707
+ frame #3: <unknown function> + 0x5babb3e (0x1481a5e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74708
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1481a5e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74709
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1481a5e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74710
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1481a5e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74711
+ frame #7: <unknown function> + 0xc0f526 (0x1481b518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74712
+ frame #8: <unknown function> + 0x37f17d (0x1481b48fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74713
+ <omitting python frames>
74714
+ frame #26: <unknown function> + 0x29d90 (0x1481bde86d90 in /lib/x86_64-linux-gnu/libc.so.6)
74715
+ frame #27: __libc_start_main + 0x80 (0x1481bde86e40 in /lib/x86_64-linux-gnu/libc.so.6)
74716
+
74717
+ W0621 22:08:04.850000 550674 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-854_550674_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74718
+ [W621 22:08:04.223731210 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-854]:52120, remote=[fs-mbz-gpu-404]:29500): Broken pipe
74719
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
74720
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1481bcb785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
74721
+ frame #1: <unknown function> + 0x5ba8afe (0x1481a5e5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74722
+ frame #2: <unknown function> + 0x5baa358 (0x1481a5e5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74723
+ frame #3: <unknown function> + 0x5babb3e (0x1481a5e5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74724
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1481a5e57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74725
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1481a5e57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74726
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1481a5e58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
74727
+ frame #7: <unknown function> + 0xc0f526 (0x1481b518b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74728
+ frame #8: <unknown function> + 0x37f17d (0x1481b48fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
74729
+ <omitting python frames>
74730
+ frame #26: <unknown function> + 0x29d90 (0x1481bde86d90 in /lib/x86_64-linux-gnu/libc.so.6)
74731
+ frame #27: __libc_start_main + 0x80 (0x1481bde86e40 in /lib/x86_64-linux-gnu/libc.so.6)
74732
+
74733
+ W0621 22:08:04.861000 550674 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-854_550674_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
74734
+ Traceback (most recent call last):
74735
+ File "<frozen runpy>", line 198, in _run_module_as_main
74736
+ File "<frozen runpy>", line 88, in _run_code
74737
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
74738
+ main()
74739
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
74740
+ return arg(*args, **kwargs)
74741
+ ^^^^^^^^^^^^^^^^^^^^
74742
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
74743
+ launch(args)
74744
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
74745
+ run(args)
74746
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
74747
+ elastic_launch(
74748
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
74749
+ return launch_agent(self._config, self._entrypoint, list(args))
74750
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
74751
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
74752
+ raise ChildFailedError(
74753
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
74754
+ ============================================================
74755
+ ./pretrain_gpt_profile.py FAILED
74756
+ ------------------------------------------------------------
74757
+ Failures:
74758
+ <NO_OTHER_FAILURES>
74759
+ ------------------------------------------------------------
74760
+ Root Cause (first observed failure):
74761
+ [0]:
74762
+ time : 2025-06-21_22:07:21
74763
+ host : fs-mbz-gpu-854
74764
+ rank : 22 (local_rank: 6)
74765
+ exitcode : 1 (pid: 550750)
74766
+ error_file: <N/A>
74767
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
74768
+ ============================================================
74769
+ + set +x
74770
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
74771
+ + export PROF_CTX_LENGTH=131072
74772
+ + PROF_CTX_LENGTH=131072
74773
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L131072*tp4.cp8.bs2.json'
74774
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L131072*tp4.cp8.bs2.json' ']'
74775
+ + echo 'Running ctx_length=131072, TP_SIZE=4, CP_SIZE=8, BATCH_SIZE=2'
74776
+ + srun bash ./attnserver.sh
74777
+ + which python3
74778
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 131072 --max-position-embeddings 131072 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
74779
+ + which python3
74780
+ + which python3
74781
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 131072 --max-position-embeddings 131072 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
74782
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 131072 --max-position-embeddings 131072 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
74783
+ + which python3
74784
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 131072 --max-position-embeddings 131072 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
74785
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
74786
+ and will be removed in future. Use torchrun.
74787
+ Note that --use-env is set by default in torchrun.
74788
+ If your script expects `--local-rank` argument to be set, please
74789
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
74790
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
74791
+ further instructions
74792
+
74793
+ main()
74794
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
74795
+ and will be removed in future. Use torchrun.
74796
+ Note that --use-env is set by default in torchrun.
74797
+ If your script expects `--local-rank` argument to be set, please
74798
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
74799
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
74800
+ further instructions
74801
+
74802
+ main()
74803
+ W0621 22:08:07.950000 2008360 site-packages/torch/distributed/run.py:766]
74804
+ W0621 22:08:07.950000 2008360 site-packages/torch/distributed/run.py:766] *****************************************
74805
+ W0621 22:08:07.950000 2008360 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
74806
+ W0621 22:08:07.950000 2008360 site-packages/torch/distributed/run.py:766] *****************************************
74807
+ W0621 22:08:07.954000 1730015 site-packages/torch/distributed/run.py:766]
74808
+ W0621 22:08:07.954000 1730015 site-packages/torch/distributed/run.py:766] *****************************************
74809
+ W0621 22:08:07.954000 1730015 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
74810
+ W0621 22:08:07.954000 1730015 site-packages/torch/distributed/run.py:766] *****************************************
74811
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
74812
+ and will be removed in future. Use torchrun.
74813
+ Note that --use-env is set by default in torchrun.
74814
+ If your script expects `--local-rank` argument to be set, please
74815
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
74816
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
74817
+ further instructions
74818
+
74819
+ main()
74820
+ W0621 22:08:08.022000 4126284 site-packages/torch/distributed/run.py:766]
74821
+ W0621 22:08:08.022000 4126284 site-packages/torch/distributed/run.py:766] *****************************************
74822
+ W0621 22:08:08.022000 4126284 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
74823
+ W0621 22:08:08.022000 4126284 site-packages/torch/distributed/run.py:766] *****************************************
74824
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
74825
+ and will be removed in future. Use torchrun.
74826
+ Note that --use-env is set by default in torchrun.
74827
+ If your script expects `--local-rank` argument to be set, please
74828
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
74829
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
74830
+ further instructions
74831
+
74832
+ main()
74833
+ W0621 22:08:08.299000 554106 site-packages/torch/distributed/run.py:766]
74834
+ W0621 22:08:08.299000 554106 site-packages/torch/distributed/run.py:766] *****************************************
74835
+ W0621 22:08:08.299000 554106 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
74836
+ W0621 22:08:08.299000 554106 site-packages/torch/distributed/run.py:766] *****************************************
74837
+ [rank7]:[W621 22:08:32.186204054 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74838
+ [rank2]:[W621 22:08:32.186244524 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74839
+ [rank11]:[W621 22:08:32.894358656 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74840
+ [rank6]:[W621 22:08:32.187193432 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74841
+ [rank12]:[W621 22:08:32.894950794 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74842
+ [rank4]:[W621 22:08:32.187222723 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74843
+ [rank1]:[W621 22:08:32.187413964 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74844
+ [rank3]:[W621 22:08:32.187448488 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74845
+ [rank20]:[W621 22:08:32.714632159 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 20] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74846
+ [rank5]:[W621 22:08:32.196212744 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74847
+ [rank23]:[W621 22:08:32.720534902 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 23] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74848
+ [rank18]:[W621 22:08:32.720562754 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 18] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74849
+ [rank15]:[W621 22:08:32.904971151 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74850
+ [rank28]:[W621 22:08:32.717096970 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 28] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74851
+ [rank30]:[W621 22:08:32.717098646 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 30] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74852
+ [rank19]:[W621 22:08:32.720590798 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 19] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74853
+ [rank14]:[W621 22:08:32.905056735 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74854
+ [rank25]:[W621 22:08:32.717205166 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 25] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74855
+ [rank31]:[W621 22:08:32.717224633 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 31] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74856
+ [rank27]:[W621 22:08:32.717255676 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 27] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74857
+ [rank17]:[W621 22:08:32.720619891 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 17] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74858
+ [rank13]:[W621 22:08:32.905529657 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74859
+ [rank26]:[W621 22:08:32.717257193 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 26] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74860
+ [rank29]:[W621 22:08:32.717270982 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 29] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74861
+ [rank22]:[W621 22:08:32.721046214 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 22] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74862
+ [rank9]:[W621 22:08:32.905614860 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74863
+ [rank21]:[W621 22:08:32.723772811 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 21] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74864
+ [rank10]:[W621 22:08:32.905739596 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74865
+ [rank16]:[W621 22:08:32.815873645 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 16] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74866
+ [rank8]:[W621 22:08:32.004968041 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74867
+ [rank24]:[W621 22:08:32.819901279 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 24] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74868
+ [rank0]:[W621 22:08:32.366872094 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
74869
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74870
+ warnings.warn(
74871
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74872
+ warnings.warn(
74873
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74874
+ warnings.warn(
74875
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74876
+ warnings.warn(
74877
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74878
+ warnings.warn(
74879
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74880
+ warnings.warn(
74881
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74882
+ warnings.warn(
74883
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74884
+ warnings.warn(
74885
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74886
+ warnings.warn(
74887
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74888
+ warnings.warn(
74889
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74890
+ warnings.warn(
74891
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74892
+ warnings.warn(
74893
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74894
+ warnings.warn(
74895
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74896
+ warnings.warn(
74897
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74898
+ warnings.warn(
74899
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74900
+ warnings.warn(
74901
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74902
+ warnings.warn(
74903
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74904
+ warnings.warn(
74905
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74906
+ warnings.warn(
74907
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74908
+ warnings.warn(
74909
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74910
+ warnings.warn(
74911
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74912
+ warnings.warn(
74913
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74914
+ warnings.warn(
74915
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74916
+ warnings.warn(
74917
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74918
+ warnings.warn(
74919
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74920
+ warnings.warn(
74921
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74922
+ warnings.warn(
74923
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74924
+ warnings.warn(
74925
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74926
+ warnings.warn(
74927
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74928
+ warnings.warn(
74929
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74930
+ warnings.warn(
74931
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
74932
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343214.out.log CHANGED
@@ -42316,3 +42316,595 @@ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 72.00 GiB. GPU
42316
  ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.17 GiB is free. Including non-PyTorch memory, this process has 90.26 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1.31 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
42317
  WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.51 GiB is free. Including non-PyTorch memory, this process has 89.92 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1007.16 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
42318
  ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.51 GiB is free. Including non-PyTorch memory, this process has 89.92 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1007.16 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42316
  ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.17 GiB is free. Including non-PyTorch memory, this process has 90.26 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1.31 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
42317
  WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.51 GiB is free. Including non-PyTorch memory, this process has 89.92 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1007.16 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
42318
  ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 49.51 GiB is free. Including non-PyTorch memory, this process has 89.92 GiB memory in use. Of the allocated memory 85.20 GiB is allocated by PyTorch, and 1007.16 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
42319
+ Running ctx_length=131072, TP_SIZE=4, CP_SIZE=8, BATCH_SIZE=2
42320
+ Cleaning up checkpoint directory: gpt-checkpoint
42321
+ --------------------------------
42322
+ CTX_LENGTH: 131072
42323
+ TP_SIZE: 4
42324
+ CP_SIZE: 8
42325
+ CHECKPOINT_PATH: gpt-checkpoint
42326
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
42327
+ --------------------------------
42328
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
42329
+ Cleaning up checkpoint directory: gpt-checkpoint
42330
+ --------------------------------
42331
+ CTX_LENGTH: 131072
42332
+ TP_SIZE: 4
42333
+ CP_SIZE: 8
42334
+ CHECKPOINT_PATH: gpt-checkpoint
42335
+ Cleaning up checkpoint directory: gpt-checkpoint
42336
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
42337
+ --------------------------------
42338
+ --------------------------------
42339
+ CTX_LENGTH: 131072
42340
+ TP_SIZE: 4
42341
+ CP_SIZE: 8
42342
+ CHECKPOINT_PATH: gpt-checkpoint
42343
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
42344
+ --------------------------------
42345
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
42346
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
42347
+ Cleaning up checkpoint directory: gpt-checkpoint
42348
+ --------------------------------
42349
+ CTX_LENGTH: 131072
42350
+ TP_SIZE: 4
42351
+ CP_SIZE: 8
42352
+ CHECKPOINT_PATH: gpt-checkpoint
42353
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
42354
+ --------------------------------
42355
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
42356
+ INFO:megatron.training.initialize:Setting logging level to 0
42357
+ INFO:megatron.training.initialize:Setting logging level to 0
42358
+ INFO:megatron.training.initialize:Setting logging level to 0
42359
+ INFO:megatron.training.initialize:Setting logging level to 0
42360
+ INFO:megatron.training.initialize:Setting logging level to 0
42361
+ INFO:megatron.training.initialize:Setting logging level to 0
42362
+ INFO:megatron.training.initialize:Setting logging level to 0
42363
+ INFO:megatron.training.initialize:Setting logging level to 0
42364
+ INFO:megatron.training.initialize:Setting logging level to 0
42365
+ INFO:megatron.training.initialize:Setting logging level to 0
42366
+ INFO:megatron.training.initialize:Setting logging level to 0
42367
+ INFO:megatron.training.initialize:Setting logging level to 0
42368
+ INFO:megatron.training.initialize:Setting logging level to 0
42369
+ INFO:megatron.training.initialize:Setting logging level to 0
42370
+ INFO:megatron.training.initialize:Setting logging level to 0
42371
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
42372
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
42373
+ INFO:megatron.training.initialize:Setting logging level to 0
42374
+ INFO:megatron.training.initialize:Setting logging level to 0
42375
+ INFO:megatron.training.initialize:Setting logging level to 0
42376
+ INFO:megatron.training.initialize:Setting logging level to 0
42377
+ INFO:megatron.training.initialize:Setting logging level to 0
42378
+ INFO:megatron.training.initialize:Setting logging level to 0
42379
+ using world size: 32, data-parallel size: 1, context-parallel size: 8, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 4, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
42380
+ Number of virtual stages per pipeline stage: None
42381
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
42382
+ using torch.float16 for parameters ...
42383
+ ------------------------ arguments ------------------------
42384
+ account_for_embedding_in_pipeline_split ......... False
42385
+ account_for_loss_in_pipeline_split .............. False
42386
+ accumulate_allreduce_grads_in_fp32 .............. False
42387
+ adam_beta1 ...................................... 0.9
42388
+ adam_beta2 ...................................... 0.999
42389
+ adam_eps ........................................ 1e-08
42390
+ add_bias_linear ................................. True
42391
+ add_position_embedding .......................... True
42392
+ add_qkv_bias .................................... True
42393
+ adlr_autoresume ................................. False
42394
+ adlr_autoresume_interval ........................ 1000
42395
+ align_grad_reduce ............................... True
42396
+ align_param_gather .............................. False
42397
+ app_tag_run_name ................................ None
42398
+ app_tag_run_version ............................. 0.0.0
42399
+ apply_layernorm_1p .............................. False
42400
+ apply_query_key_layer_scaling ................... False
42401
+ apply_residual_connection_post_layernorm ........ False
42402
+ apply_rope_fusion ............................... False
42403
+ async_save ...................................... None
42404
+ async_tensor_model_parallel_allreduce ........... True
42405
+ attention_backend ............................... AttnBackend.auto
42406
+ attention_dropout ............................... 0.1
42407
+ attention_softmax_in_fp32 ....................... False
42408
+ auto_detect_ckpt_format ......................... False
42409
+ barrier_with_L1_time ............................ True
42410
+ bert_binary_head ................................ True
42411
+ bert_embedder_type .............................. megatron
42412
+ bert_load ....................................... None
42413
+ bf16 ............................................ False
42414
+ bias_dropout_fusion ............................. True
42415
+ bias_gelu_fusion ................................ True
42416
+ bias_swiglu_fusion .............................. True
42417
+ biencoder_projection_dim ........................ 0
42418
+ biencoder_shared_query_context_model ............ False
42419
+ block_data_path ................................. None
42420
+ calc_ft_timeouts ................................ False
42421
+ calculate_per_token_loss ........................ False
42422
+ check_for_large_grads ........................... False
42423
+ check_for_nan_in_loss_and_grad .................. False
42424
+ check_for_spiky_loss ............................ False
42425
+ check_weight_hash_across_dp_replicas_interval ... None
42426
+ ckpt_assume_constant_structure .................. False
42427
+ ckpt_convert_format ............................. None
42428
+ ckpt_convert_save ............................... None
42429
+ ckpt_convert_update_legacy_dist_opt_format ...... False
42430
+ INFO:megatron.training.initialize:Setting logging level to 0
42431
+ ckpt_format ..................................... torch_dist
42432
+ ckpt_fully_parallel_load ........................ False
42433
+ ckpt_fully_parallel_save ........................ True
42434
+ ckpt_fully_parallel_save_deprecated ............. False
42435
+ ckpt_step ....................................... None
42436
+ classes_fraction ................................ 1.0
42437
+ clip_grad ....................................... 1.0
42438
+ clone_scatter_output_in_embedding ............... True
42439
+ config_logger_dir ...............................
42440
+ consumed_train_samples .......................... 0
42441
+ consumed_valid_samples .......................... 0
42442
+ context_parallel_size ........................... 8
42443
+ cp_comm_type .................................... ['p2p']
42444
+ create_attention_mask_in_dataloader ............. True
42445
+ cross_entropy_fusion_impl ....................... native
42446
+ cross_entropy_loss_fusion ....................... False
42447
+ cuda_graph_scope ................................ full
42448
+ cuda_graph_warmup_steps ......................... 3
42449
+ data_args_path .................................. None
42450
+ data_cache_path ................................. None
42451
+ data_parallel_random_init ....................... False
42452
+ data_parallel_sharding_strategy ................. no_shard
42453
+ data_parallel_size .............................. 1
42454
+ data_path ....................................... None
42455
+ data_per_class_fraction ......................... 1.0
42456
+ data_sharding ................................... True
42457
+ dataloader_type ................................. single
42458
+ ddp_average_in_collective ....................... False
42459
+ ddp_bucket_size ................................. None
42460
+ ddp_num_buckets ................................. None
42461
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
42462
+ decoder_first_pipeline_num_layers ............... None
42463
+ decoder_last_pipeline_num_layers ................ None
42464
+ decoder_num_layers .............................. None
42465
+ decoder_seq_length .............................. None
42466
+ decoupled_lr .................................... None
42467
+ decoupled_min_lr ................................ None
42468
+ decrease_batch_size_if_needed ................... False
42469
+ defer_embedding_wgrad_compute ................... False
42470
+ deprecated_use_mcore_models ..................... False
42471
+ deterministic_mode .............................. False
42472
+ dino_bottleneck_size ............................ 256
42473
+ dino_freeze_last_layer .......................... 1
42474
+ dino_head_hidden_size ........................... 2048
42475
+ dino_local_crops_number ......................... 10
42476
+ dino_local_img_size ............................. 96
42477
+ dino_norm_last_layer ............................ False
42478
+ dino_teacher_temp ............................... 0.07
42479
+ dino_warmup_teacher_temp ........................ 0.04
42480
+ dino_warmup_teacher_temp_epochs ................. 30
42481
+ disable_bf16_reduced_precision_matmul ........... False
42482
+ disable_mamba_mem_eff_path ...................... False
42483
+ disable_straggler_on_startup .................... False
42484
+ dist_ckpt_format_deprecated ..................... None
42485
+ dist_ckpt_strictness ............................ assume_ok_unexpected
42486
+ distribute_saved_activations .................... False
42487
+ distributed_backend ............................. nccl
42488
+ distributed_timeout_minutes ..................... 10
42489
+ embedding_path .................................. None
42490
+ empty_unused_memory_level ....................... 0
42491
+ enable_cuda_graph ............................... False
42492
+ enable_ft_package ............................... False
42493
+ enable_gloo_process_groups ...................... True
42494
+ enable_msc ...................................... True
42495
+ enable_one_logger ............................... True
42496
+ encoder_num_layers .............................. 2
42497
+ encoder_pipeline_model_parallel_size ............ 0
42498
+ encoder_seq_length .............................. 131072
42499
+ encoder_tensor_model_parallel_size .............. 0
42500
+ end_weight_decay ................................ 0.1
42501
+ eod_mask_loss ................................... False
42502
+ error_injection_rate ............................ 0
42503
+ error_injection_type ............................ transient_error
42504
+ eval_interval ................................... 16
42505
+ eval_iters ...................................... 1
42506
+ evidence_data_path .............................. None
42507
+ exit_duration_in_mins ........................... None
42508
+ exit_interval ................................... None
42509
+ exit_on_missing_checkpoint ...................... False
42510
+ exit_signal_handler ............................. False
42511
+ exp_avg_dtype ................................... torch.float32
42512
+ exp_avg_sq_dtype ................................ torch.float32
42513
+ expert_model_parallel_size ...................... 1
42514
+ expert_tensor_parallel_size ..................... 4
42515
+ external_cuda_graph ............................. False
42516
+ ffn_hidden_size ................................. 16384
42517
+ finetune ........................................ False
42518
+ first_last_layers_bf16 .......................... False
42519
+ flash_decode .................................... False
42520
+ fp16 ............................................ True
42521
+ fp16_lm_cross_entropy ........................... False
42522
+ fp32_residual_connection ........................ False
42523
+ fp8 ............................................. None
42524
+ fp8_amax_compute_algo ........................... most_recent
42525
+ fp8_amax_history_len ............................ 1
42526
+ fp8_interval .................................... 1
42527
+ fp8_margin ...................................... 0
42528
+ fp8_param_gather ................................ False
42529
+ fp8_recipe ...................................... delayed
42530
+ fp8_wgrad ....................................... True
42531
+ fsdp_double_buffer .............................. False
42532
+ global_batch_size ............................... 1
42533
+ grad_reduce_in_bf16 ............................. False
42534
+ gradient_accumulation_fusion .................... True
42535
+ gradient_reduce_div_fusion ...................... True
42536
+ group_query_attention ........................... True
42537
+ head_lr_mult .................................... 1.0
42538
+ heterogeneous_layers_config_encoded_json ........ None
42539
+ heterogeneous_layers_config_path ................ None
42540
+ hidden_dropout .................................. 0.1
42541
+ hidden_size ..................................... 4096
42542
+ hierarchical_context_parallel_sizes ............. None
42543
+ high_priority_stream_groups ..................... []
42544
+ hybrid_attention_ratio .......................... 0.0
42545
+ hybrid_mlp_ratio ................................ 0.0
42546
+ hybrid_override_pattern ......................... None
42547
+ hysteresis ...................................... 2
42548
+ ict_head_size ................................... None
42549
+ ict_load ........................................ None
42550
+ img_h ........................................... 224
42551
+ img_w ........................................... 224
42552
+ indexer_batch_size .............................. 128
42553
+ indexer_log_interval ............................ 1000
42554
+ inference_batch_times_seqlen_threshold .......... -1
42555
+ inference_dynamic_batching ...................... False
42556
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
42557
+ inference_dynamic_batching_buffer_overflow_factor None
42558
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
42559
+ inference_dynamic_batching_chunk_size ........... 256
42560
+ inference_dynamic_batching_max_requests_override None
42561
+ inference_dynamic_batching_max_tokens_override .. None
42562
+ inference_max_batch_size ........................ 8
42563
+ inference_max_seq_length ........................ 2560
42564
+ inference_rng_tracker ........................... False
42565
+ init_method_std ................................. 0.02
42566
+ init_method_xavier_uniform ...................... False
42567
+ init_model_with_meta_device ..................... False
42568
+ initial_loss_scale .............................. 4294967296
42569
+ inprocess_active_world_size ..................... 32
42570
+ inprocess_barrier_timeout ....................... 120
42571
+ inprocess_completion_timeout .................... 120
42572
+ inprocess_empty_cuda_cache ...................... False
42573
+ inprocess_granularity ........................... node
42574
+ inprocess_hard_timeout .......................... 90
42575
+ inprocess_heartbeat_interval .................... 30
42576
+ inprocess_heartbeat_timeout ..................... 60
42577
+ inprocess_last_call_wait ........................ 1
42578
+ inprocess_max_iterations ........................ None
42579
+ inprocess_monitor_process_interval .............. 1.0
42580
+ inprocess_monitor_thread_interval ............... 1.0
42581
+ inprocess_progress_watchdog_interval ............ 1.0
42582
+ inprocess_restart ............................... False
42583
+ inprocess_soft_timeout .......................... 60
42584
+ inprocess_termination_grace_time ................ 1
42585
+ is_hybrid_model ................................. False
42586
+ iter_per_epoch .................................. 1250
42587
+ iterations_to_skip .............................. []
42588
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
42589
+ kv_channels ..................................... 64
42590
+ kv_lora_rank .................................... 32
42591
+ lazy_mpu_init ................................... None
42592
+ load ............................................ gpt-checkpoint
42593
+ load_model_opt_format ........................... False
42594
+ local_rank ...................................... 0
42595
+ log_interval .................................... 1
42596
+ log_loss_scale_to_tensorboard ................... True
42597
+ log_memory_to_tensorboard ....................... False
42598
+ log_num_zeros_in_grad ........................... False
42599
+ log_params_norm ................................. False
42600
+ log_progress .................................... False
42601
+ log_straggler ................................... False
42602
+ log_throughput .................................. False
42603
+ log_timers_to_tensorboard ....................... False
42604
+ log_validation_ppl_to_tensorboard ............... False
42605
+ log_world_size_to_tensorboard ................... False
42606
+ logging_level ................................... 0
42607
+ loss_scale ...................................... None
42608
+ loss_scale_window ............................... 1000
42609
+ lr .............................................. 0.0005
42610
+ lr_decay_iters .................................. 150000
42611
+ lr_decay_samples ................................ None
42612
+ lr_decay_style .................................. cosine
42613
+ lr_warmup_fraction .............................. None
42614
+ lr_warmup_init .................................. 0.0
42615
+ lr_warmup_iters ................................. 2
42616
+ lr_warmup_samples ............................... 0
42617
+ lr_wsd_decay_iters .............................. None
42618
+ lr_wsd_decay_samples ............................ None
42619
+ lr_wsd_decay_style .............................. exponential
42620
+ main_grads_dtype ................................ torch.float32
42621
+ main_params_dtype ............................... torch.float32
42622
+ make_vocab_size_divisible_by .................... 128
42623
+ mamba_head_dim .................................. 64
42624
+ mamba_num_groups ................................ 8
42625
+ mamba_num_heads ................................. None
42626
+ mamba_state_dim ................................. 128
42627
+ manual_gc ....................................... False
42628
+ manual_gc_eval .................................. True
42629
+ manual_gc_interval .............................. 0
42630
+ mask_factor ..................................... 1.0
42631
+ mask_prob ....................................... 0.15
42632
+ mask_type ....................................... random
42633
+ masked_softmax_fusion ........................... True
42634
+ max_position_embeddings ......................... 131072
42635
+ max_tokens_to_oom ............................... 12000
42636
+ memory_snapshot_path ............................ snapshot.pickle
42637
+ merge_file ...................................... merges.txt
42638
+ micro_batch_size ................................ 1
42639
+ microbatch_group_size_per_vp_stage .............. None
42640
+ mid_level_dataset_surplus ....................... 0.005
42641
+ min_loss_scale .................................. 1.0
42642
+ min_lr .......................................... 0.0
42643
+ mlp_chunks_for_prefill .......................... 1
42644
+ mmap_bin_files .................................. True
42645
+ mock_data ....................................... True
42646
+ moe_apply_probs_on_input ........................ False
42647
+ moe_aux_loss_coeff .............................. 0.0
42648
+ moe_enable_deepep ............................... False
42649
+ moe_expert_capacity_factor ...................... None
42650
+ moe_extended_tp ................................. False
42651
+ moe_ffn_hidden_size ............................. None
42652
+ moe_grouped_gemm ................................ False
42653
+ moe_input_jitter_eps ............................ None
42654
+ moe_layer_freq .................................. 1
42655
+ moe_layer_recompute ............................. False
42656
+ moe_pad_expert_input_to_capacity ................ False
42657
+ moe_per_layer_logging ........................... False
42658
+ moe_permute_fusion .............................. False
42659
+ moe_router_bias_update_rate ..................... 0.001
42660
+ moe_router_dtype ................................ None
42661
+ moe_router_enable_expert_bias ................... False
42662
+ moe_router_force_load_balancing ................. False
42663
+ moe_router_group_topk ........................... None
42664
+ moe_router_load_balancing_type .................. aux_loss
42665
+ moe_router_num_groups ........................... None
42666
+ moe_router_padding_for_fp8 ...................... False
42667
+ moe_router_pre_softmax .......................... False
42668
+ moe_router_score_function ....................... softmax
42669
+ moe_router_topk ................................. 2
42670
+ moe_router_topk_scaling_factor .................. None
42671
+ moe_shared_expert_intermediate_size ............. None
42672
+ moe_shared_expert_overlap ....................... False
42673
+ moe_token_dispatcher_type ....................... allgather
42674
+ moe_token_drop_policy ........................... probs
42675
+ moe_use_legacy_grouped_gemm ..................... False
42676
+ moe_use_upcycling ............................... False
42677
+ moe_z_loss_coeff ................................ None
42678
+ mrope_section ................................... None
42679
+ mscale .......................................... 1.0
42680
+ mscale_all_dim .................................. 1.0
42681
+ mtp_loss_scaling_factor ......................... 0.1
42682
+ mtp_num_layers .................................. None
42683
+ multi_latent_attention .......................... False
42684
+ nccl_all_reduce_for_prefill ..................... False
42685
+ nccl_communicator_config_path ................... None
42686
+ nccl_ub ......................................... False
42687
+ no_load_optim ................................... None
42688
+ no_load_rng ..................................... None
42689
+ no_persist_layer_norm ........................... False
42690
+ no_rope_freq .................................... None
42691
+ no_save_optim ................................... None
42692
+ no_save_rng ..................................... None
42693
+ non_persistent_ckpt_type ........................ None
42694
+ non_persistent_global_ckpt_dir .................. None
42695
+ non_persistent_local_ckpt_algo .................. fully_parallel
42696
+ non_persistent_local_ckpt_dir ................... None
42697
+ non_persistent_save_interval .................... None
42698
+ norm_epsilon .................................... 1e-05
42699
+ normalization ................................... LayerNorm
42700
+ num_attention_heads ............................. 64
42701
+ num_channels .................................... 3
42702
+ num_classes ..................................... 1000
42703
+ num_dataset_builder_threads ..................... 1
42704
+ num_distributed_optimizer_instances ............. 1
42705
+ num_experts ..................................... None
42706
+ num_layers ...................................... 2
42707
+ num_layers_at_end_in_bf16 ....................... 1
42708
+ num_layers_at_start_in_bf16 ..................... 1
42709
+ num_layers_per_virtual_pipeline_stage ........... None
42710
+ num_query_groups ................................ 16
42711
+ num_virtual_stages_per_pipeline_rank ............ None
42712
+ num_workers ..................................... 2
42713
+ object_storage_cache_path ....................... None
42714
+ one_logger_async ................................ False
42715
+ one_logger_project .............................. megatron-lm
42716
+ one_logger_run_name ............................. None
42717
+ onnx_safe ....................................... None
42718
+ openai_gelu ..................................... False
42719
+ optimizer ....................................... adam
42720
+ optimizer_cpu_offload ........................... False
42721
+ optimizer_offload_fraction ...................... 1.0
42722
+ output_bert_embeddings .......................... False
42723
+ overlap_cpu_optimizer_d2h_h2d ................... False
42724
+ overlap_grad_reduce ............................. False
42725
+ overlap_p2p_comm ................................ False
42726
+ overlap_p2p_comm_warmup_flush ................... False
42727
+ overlap_param_gather ............................ False
42728
+ overlap_param_gather_with_optimizer_step ........ False
42729
+ override_opt_param_scheduler .................... False
42730
+ params_dtype .................................... torch.float16
42731
+ patch_dim ....................................... 16
42732
+ per_split_data_args_path ........................ None
42733
+ perform_initialization .......................... True
42734
+ pin_cpu_grads ................................... True
42735
+ pin_cpu_params .................................. True
42736
+ pipeline_model_parallel_comm_backend ............ None
42737
+ pipeline_model_parallel_size .................... 1
42738
+ pipeline_model_parallel_split_rank .............. None
42739
+ position_embedding_type ......................... learned_absolute
42740
+ pretrained_checkpoint ........................... None
42741
+ profile ......................................... False
42742
+ profile_ranks ................................... [0]
42743
+ profile_step_end ................................ 12
42744
+ profile_step_start .............................. 10
42745
+ q_lora_rank ..................................... None
42746
+ qk_head_dim ..................................... 128
42747
+ qk_l2_norm ...................................... False
42748
+ qk_layernorm .................................... False
42749
+ qk_pos_emb_head_dim ............................. 64
42750
+ query_in_block_prob ............................. 0.1
42751
+ rampup_batch_size ............................... None
42752
+ rank ............................................ 0
42753
+ recompute_granularity ........................... None
42754
+ recompute_method ................................ None
42755
+ recompute_modules ............................... None
42756
+ recompute_num_layers ............................ None
42757
+ record_memory_history ........................... False
42758
+ relative_attention_max_distance ................. 128
42759
+ relative_attention_num_buckets .................. 32
42760
+ replication ..................................... False
42761
+ replication_factor .............................. 2
42762
+ replication_jump ................................ None
42763
+ rerun_mode ...................................... disabled
42764
+ reset_attention_mask ............................ False
42765
+ reset_position_ids .............................. False
42766
+ result_rejected_tracker_filename ................ None
42767
+ retriever_report_topk_accuracies ................ []
42768
+ retriever_score_scaling ......................... False
42769
+ retriever_seq_length ............................ 256
42770
+ retro_add_retriever ............................. False
42771
+ retro_attention_gate ............................ 1
42772
+ retro_cyclic_train_iters ........................ None
42773
+ retro_encoder_attention_dropout ................. 0.1
42774
+ retro_encoder_hidden_dropout .................... 0.1
42775
+ retro_encoder_layers ............................ 2
42776
+ retro_num_neighbors ............................. 2
42777
+ retro_num_retrieved_chunks ...................... 2
42778
+ retro_project_dir ............................... None
42779
+ retro_verify_neighbor_count ..................... True
42780
+ rope_scaling_factor ............................. 8.0
42781
+ rotary_base ..................................... 10000
42782
+ rotary_interleaved .............................. False
42783
+ rotary_percent .................................. 1.0
42784
+ rotary_scaling_factor ........................... 1.0
42785
+ rotary_seq_len_interpolation_factor ............. None
42786
+ run_workload_inspector_server ................... False
42787
+ sample_rate ..................................... 1.0
42788
+ save ............................................ gpt-checkpoint
42789
+ save_interval ................................... 16
42790
+ scatter_gather_tensors_in_pipeline .............. True
42791
+ seed ............................................ 1234
42792
+ seq_length ...................................... 131072
42793
+ sequence_parallel ............................... False
42794
+ sgd_momentum .................................... 0.9
42795
+ short_seq_prob .................................. 0.1
42796
+ skip_train ...................................... False
42797
+ skipped_train_samples ........................... 0
42798
+ spec ............................................ None
42799
+ split ........................................... None
42800
+ squared_relu .................................... False
42801
+ start_weight_decay .............................. 0.1
42802
+ straggler_ctrlr_port ............................ 65535
42803
+ straggler_minmax_count .......................... 1
42804
+ suggested_communication_unit_size ............... None
42805
+ swiglu .......................................... False
42806
+ swin_backbone_type .............................. tiny
42807
+ symmetric_ar_type ............................... None
42808
+ te_rng_tracker .................................. False
42809
+ tensor_model_parallel_size ...................... 4
42810
+ tensorboard_dir ................................. tensorboard-logs/
42811
+ tensorboard_log_interval ........................ 1
42812
+ tensorboard_queue_size .......................... 1000
42813
+ test_data_path .................................. None
42814
+ test_mode ....................................... False
42815
+ tiktoken_num_special_tokens ..................... 1000
42816
+ tiktoken_pattern ................................ None
42817
+ tiktoken_special_tokens ......................... None
42818
+ timing_log_level ................................ 0
42819
+ timing_log_option ............................... minmax
42820
+ titles_data_path ................................ None
42821
+ tokenizer_model ................................. None
42822
+ tokenizer_type .................................. GPT2BPETokenizer
42823
+ torch_fsdp2_reshard_after_forward ............... True
42824
+ tp_comm_bootstrap_backend ....................... nccl
42825
+ tp_comm_bulk_dgrad .............................. True
42826
+ tp_comm_bulk_wgrad .............................. True
42827
+ tp_comm_overlap ................................. False
42828
+ tp_comm_overlap_ag .............................. True
42829
+ tp_comm_overlap_cfg ............................. None
42830
+ tp_comm_overlap_rs .............................. True
42831
+ tp_comm_overlap_rs_dgrad ........................ False
42832
+ tp_comm_split_ag ................................ True
42833
+ tp_comm_split_rs ................................ True
42834
+ train_data_path ................................. None
42835
+ train_iters ..................................... 10
42836
+ train_samples ................................... None
42837
+ train_sync_interval ............................. None
42838
+ transformer_impl ................................ transformer_engine
42839
+ transformer_pipeline_model_parallel_size ........ 1
42840
+ untie_embeddings_and_output_weights ............. False
42841
+ use_checkpoint_args ............................. False
42842
+ use_checkpoint_opt_param_scheduler .............. False
42843
+ use_cpu_initialization .......................... None
42844
+ use_custom_fsdp ................................. False
42845
+ use_dist_ckpt ................................... True
42846
+ use_dist_ckpt_deprecated ........................ False
42847
+ use_distributed_optimizer ....................... False
42848
+ use_flash_attn .................................. False
42849
+ use_legacy_models ............................... False
42850
+ use_mp_args_from_checkpoint_args ................ False
42851
+ use_one_sent_docs ............................... False
42852
+ use_persistent_ckpt_worker ...................... False
42853
+ use_precision_aware_optimizer ................... False
42854
+ use_pytorch_profiler ............................ False
42855
+ use_ring_exchange_p2p ........................... False
42856
+ use_rope_scaling ................................ False
42857
+ use_rotary_position_embeddings .................. False
42858
+ use_sharp ....................................... False
42859
+ use_tokenizer_model_from_checkpoint_args ........ True
42860
+ use_torch_fsdp2 ................................. False
42861
+ use_torch_optimizer_for_cpu_offload ............. False
42862
+ use_tp_pp_dp_mapping ............................ False
42863
+ v_head_dim ...................................... 128
42864
+ valid_data_path ................................. None
42865
+ variable_seq_lengths ............................ False
42866
+ virtual_pipeline_model_parallel_size ............ None
42867
+ vision_backbone_type ............................ vit
42868
+ vision_pretraining .............................. False
42869
+ vision_pretraining_type ......................... classify
42870
+ vocab_extra_ids ................................. 0
42871
+ vocab_file ...................................... vocab.json
42872
+ vocab_size ...................................... None
42873
+ wandb_exp_name ..................................
42874
+ wandb_project ...................................
42875
+ wandb_save_dir ..................................
42876
+ weight_decay .................................... 0.1
42877
+ weight_decay_incr_style ......................... constant
42878
+ wgrad_deferral_limit ............................ 0
42879
+ world_size ...................................... 32
42880
+ yaml_cfg ........................................ None
42881
+ -------------------- end of arguments ---------------------
42882
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
42883
+ > building GPT2BPETokenizer tokenizer ...
42884
+ INFO:megatron.training.initialize:Setting logging level to 0
42885
+ INFO:megatron.training.initialize:Setting logging level to 0
42886
+ INFO:megatron.training.initialize:Setting logging level to 0
42887
+ > padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
42888
+ INFO:megatron.training.initialize:Setting logging level to 0
42889
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
42890
+ > initializing torch distributed ...
42891
+ INFO:megatron.training.initialize:Setting logging level to 0
42892
+ INFO:megatron.training.initialize:Setting logging level to 0
42893
+ INFO:megatron.training.initialize:Setting logging level to 0
42894
+ INFO:megatron.training.initialize:Setting logging level to 0
42895
+ INFO:megatron.training.initialize:Setting logging level to 0
42896
+ INFO:megatron.training.initialize:Setting logging level to 0
42897
+ > initialized tensor model parallel with size 4
42898
+ > initialized pipeline model parallel with size 1
42899
+ > setting random seeds to 1234 ...
42900
+ > compiling dataset index builder ...
42901
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
42902
+ make: Nothing to be done for 'default'.
42903
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
42904
+ >>> done with dataset index builder. Compilation time: 0.055 seconds
42905
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
42906
+ > compiling and loading fused kernels ...
42907
+ >>> done with compiling and loading fused kernels. Compilation time: 7.133 seconds
42908
+ time to initialize megatron (seconds): 14.391
42909
+ [after megatron is initialized] datetime: 2025-06-21 22:08:43
42910
+ building GPT model ...
attnserver.run_attnserver.slurm.sh.343215.err.log CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ff05483ff594d4eb49d186bed19e74dedce6319276eebfe587b566f7e22bb44
3
- size 30179596
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d442aa3aa3698c78a8119623862452f4effb5ca97c90181b3013cbcebe4bb6e1
3
+ size 30251346
attnserver.run_attnserver.slurm.sh.343215.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343225.out.log CHANGED
@@ -22628,3 +22628,19 @@ batch tensor after cp: labels torch.Size([1, 65536])
22628
  batch tensor after cp: loss_mask torch.Size([1, 65536])
22629
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22630
  batch tensor after cp: position_ids torch.Size([1, 65536])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22628
  batch tensor after cp: loss_mask torch.Size([1, 65536])
22629
  batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22630
  batch tensor after cp: position_ids torch.Size([1, 65536])
22631
+ Start exporting trace 0
22632
+ Done exporting trace 0
22633
+ [2025-06-21 22:07:40] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 58675.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
22634
+ Number of parameters in transformer block in billions: 0.35
22635
+ Number of parameters in embedding layers in billions: 0.21
22636
+ Total number of parameters in billions: 0.56
22637
+ Number of parameters in most loaded shard in billions: 0.1400
22638
+ Theoretical memory footprints: weight and optimizer=2403.18 MB
22639
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45306.0 | max reserved: 45306.0
22640
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45306.0 | max reserved: 45306.0
22641
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45306.0 | max reserved: 45306.0
22642
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45498.0 | max reserved: 45498.0
22643
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45818.0 | max reserved: 45818.0
22644
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45882.0 | max reserved: 45882.0[Rank 5] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45882.0 | max reserved: 45882.0
22645
+
22646
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 32477.04150390625 | max allocated: 43663.65673828125 | reserved: 45882.0 | max reserved: 45882.0
attnserver.run_attnserver.slurm.sh.343226.out.log CHANGED
@@ -19110,3 +19110,86 @@ batch tensor after cp: labels torch.Size([2, 81920])
19110
  batch tensor after cp: loss_mask torch.Size([2, 81920])
19111
  batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19112
  batch tensor after cp: position_ids torch.Size([2, 81920])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19110
  batch tensor after cp: loss_mask torch.Size([2, 81920])
19111
  batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19112
  batch tensor after cp: position_ids torch.Size([2, 81920])
19113
+ batch tensor: tokens torch.Size([2, 163840])
19114
+ batch tensor: labels torch.Size([2, 163840])
19115
+ batch tensor: loss_mask torch.Size([2, 163840])
19116
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19117
+ batch tensor: position_ids torch.Size([2, 163840])
19118
+ batch tensor after cp: tokens torch.Size([2, 81920])
19119
+ batch tensor after cp: labels torch.Size([2, 81920])
19120
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19121
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19122
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19123
+ batch tensor: tokens torch.Size([2, 163840])
19124
+ batch tensor: labels torch.Size([2, 163840])
19125
+ batch tensor: loss_mask torch.Size([2, 163840])
19126
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19127
+ batch tensor: position_ids torch.Size([2, 163840])
19128
+ batch tensor after cp: tokens torch.Size([2, 81920])
19129
+ batch tensor after cp: labels torch.Size([2, 81920])
19130
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19131
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19132
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19133
+ Start exporting trace 1
19134
+ Done exporting trace 1
19135
+ [2025-06-21 22:08:03] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 89403.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19136
+ batch tensor: tokens torch.Size([2, 163840])
19137
+ batch tensor: labels torch.Size([2, 163840])
19138
+ batch tensor: loss_mask torch.Size([2, 163840])
19139
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19140
+ batch tensor: position_ids torch.Size([2, 163840])
19141
+ batch tensor after cp: tokens torch.Size([2, 81920])
19142
+ batch tensor after cp: labels torch.Size([2, 81920])
19143
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19144
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19145
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19146
+ batch tensor: tokens torch.Size([2, 163840])
19147
+ batch tensor: labels torch.Size([2, 163840])
19148
+ batch tensor: loss_mask torch.Size([2, 163840])
19149
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19150
+ batch tensor: position_ids torch.Size([2, 163840])
19151
+ batch tensor after cp: tokens torch.Size([2, 81920])
19152
+ batch tensor after cp: labels torch.Size([2, 81920])
19153
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19154
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19155
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19156
+ batch tensor: tokens torch.Size([2, 163840])
19157
+ batch tensor: labels torch.Size([2, 163840])
19158
+ batch tensor: loss_mask torch.Size([2, 163840])
19159
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19160
+ batch tensor: position_ids torch.Size([2, 163840])
19161
+ batch tensor after cp: tokens torch.Size([2, 81920])
19162
+ batch tensor after cp: labels torch.Size([2, 81920])
19163
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19164
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19165
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19166
+ batch tensor: tokens torch.Size([2, 163840])
19167
+ batch tensor: labels torch.Size([2, 163840])
19168
+ batch tensor: loss_mask torch.Size([2, 163840])
19169
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19170
+ batch tensor: position_ids torch.Size([2, 163840])
19171
+ batch tensor after cp: tokens torch.Size([2, 81920])
19172
+ batch tensor after cp: labels torch.Size([2, 81920])
19173
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19174
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19175
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19176
+ batch tensor: tokens torch.Size([2, 163840])
19177
+ batch tensor: labels torch.Size([2, 163840])
19178
+ batch tensor: loss_mask torch.Size([2, 163840])
19179
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19180
+ batch tensor: position_ids torch.Size([2, 163840])
19181
+ batch tensor after cp: tokens torch.Size([2, 81920])
19182
+ batch tensor after cp: labels torch.Size([2, 81920])
19183
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19184
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19185
+ batch tensor after cp: position_ids torch.Size([2, 81920])
19186
+ batch tensor: tokens torch.Size([2, 163840])
19187
+ batch tensor: labels torch.Size([2, 163840])
19188
+ batch tensor: loss_mask torch.Size([2, 163840])
19189
+ batch tensor: attention_mask torch.Size([2, 1, 163840, 163840])
19190
+ batch tensor: position_ids torch.Size([2, 163840])
19191
+ batch tensor after cp: tokens torch.Size([2, 81920])
19192
+ batch tensor after cp: labels torch.Size([2, 81920])
19193
+ batch tensor after cp: loss_mask torch.Size([2, 81920])
19194
+ batch tensor after cp: attention_mask torch.Size([2, 1, 81920, 163840])
19195
+ batch tensor after cp: position_ids torch.Size([2, 81920])
attnserver.run_attnserver.slurm.sh.343237.out.log CHANGED
@@ -32688,3 +32688,317 @@ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32688
  batch tensor after cp: position_ids torch.Size([1, 10240])
32689
  Start exporting trace 1
32690
  Done exporting trace 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32688
  batch tensor after cp: position_ids torch.Size([1, 10240])
32689
  Start exporting trace 1
32690
  Done exporting trace 1
32691
+ [2025-06-21 22:07:33] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 74335.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
32692
+ batch tensor: tokens torch.Size([1, 81920])
32693
+ batch tensor: labels torch.Size([1, 81920])
32694
+ batch tensor: loss_mask torch.Size([1, 81920])
32695
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32696
+ batch tensor: position_ids torch.Size([1, 81920])
32697
+ batch tensor after cp: tokens torch.Size([1, 10240])
32698
+ batch tensor after cp: labels torch.Size([1, 10240])
32699
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32700
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32701
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32702
+ batch tensor: tokens torch.Size([1, 81920])
32703
+ batch tensor: labels torch.Size([1, 81920])
32704
+ batch tensor: loss_mask torch.Size([1, 81920])
32705
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32706
+ batch tensor: position_ids torch.Size([1, 81920])
32707
+ batch tensor after cp: tokens torch.Size([1, 10240])
32708
+ batch tensor after cp: labels torch.Size([1, 10240])
32709
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32710
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32711
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32712
+ batch tensor: tokens torch.Size([1, 81920])
32713
+ batch tensor: labels torch.Size([1, 81920])
32714
+ batch tensor: loss_mask torch.Size([1, 81920])
32715
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32716
+ batch tensor: position_ids torch.Size([1, 81920])
32717
+ batch tensor after cp: tokens torch.Size([1, 10240])
32718
+ batch tensor after cp: labels torch.Size([1, 10240])
32719
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32720
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32721
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32722
+ batch tensor: tokens torch.Size([1, 81920])
32723
+ batch tensor: labels torch.Size([1, 81920])
32724
+ batch tensor: loss_mask torch.Size([1, 81920])
32725
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32726
+ batch tensor: position_ids torch.Size([1, 81920])
32727
+ batch tensor after cp: tokens torch.Size([1, 10240])
32728
+ batch tensor after cp: labels torch.Size([1, 10240])
32729
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32730
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32731
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32732
+ batch tensor: tokens torch.Size([1, 81920])
32733
+ batch tensor: labels torch.Size([1, 81920])
32734
+ batch tensor: loss_mask torch.Size([1, 81920])
32735
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32736
+ batch tensor: position_ids torch.Size([1, 81920])
32737
+ batch tensor after cp: tokens torch.Size([1, 10240])
32738
+ batch tensor after cp: labels torch.Size([1, 10240])
32739
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32740
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32741
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32742
+ batch tensor: tokens torch.Size([1, 81920])
32743
+ batch tensor: labels torch.Size([1, 81920])
32744
+ batch tensor: loss_mask torch.Size([1, 81920])
32745
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32746
+ batch tensor: position_ids torch.Size([1, 81920])
32747
+ batch tensor after cp: tokens torch.Size([1, 10240])
32748
+ batch tensor after cp: labels torch.Size([1, 10240])
32749
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32750
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32751
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32752
+ batch tensor: tokens torch.Size([1, 81920])
32753
+ batch tensor: labels torch.Size([1, 81920])
32754
+ batch tensor: loss_mask torch.Size([1, 81920])
32755
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32756
+ batch tensor: position_ids torch.Size([1, 81920])
32757
+ batch tensor after cp: tokens torch.Size([1, 10240])
32758
+ batch tensor after cp: labels torch.Size([1, 10240])
32759
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32760
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32761
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32762
+ batch tensor: tokens torch.Size([1, 81920])
32763
+ batch tensor: labels torch.Size([1, 81920])
32764
+ batch tensor: loss_mask torch.Size([1, 81920])
32765
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32766
+ batch tensor: position_ids torch.Size([1, 81920])
32767
+ batch tensor after cp: tokens torch.Size([1, 10240])
32768
+ batch tensor after cp: labels torch.Size([1, 10240])
32769
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32770
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32771
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32772
+ batch tensor: tokens torch.Size([1, 81920])
32773
+ batch tensor: labels torch.Size([1, 81920])
32774
+ batch tensor: loss_mask torch.Size([1, 81920])
32775
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32776
+ batch tensor: position_ids torch.Size([1, 81920])
32777
+ batch tensor after cp: tokens torch.Size([1, 10240])
32778
+ batch tensor after cp: labels torch.Size([1, 10240])
32779
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32780
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32781
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32782
+ batch tensor: tokens torch.Size([1, 81920])
32783
+ batch tensor: labels torch.Size([1, 81920])
32784
+ batch tensor: loss_mask torch.Size([1, 81920])
32785
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32786
+ batch tensor: position_ids torch.Size([1, 81920])
32787
+ batch tensor after cp: tokens torch.Size([1, 10240])
32788
+ batch tensor after cp: labels torch.Size([1, 10240])
32789
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32790
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32791
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32792
+ batch tensor: tokens torch.Size([1, 81920])
32793
+ batch tensor: labels torch.Size([1, 81920])
32794
+ batch tensor: loss_mask torch.Size([1, 81920])
32795
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32796
+ batch tensor: position_ids torch.Size([1, 81920])
32797
+ batch tensor after cp: tokens torch.Size([1, 10240])
32798
+ batch tensor after cp: labels torch.Size([1, 10240])
32799
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32800
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32801
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32802
+ batch tensor: tokens torch.Size([1, 81920])
32803
+ batch tensor: labels torch.Size([1, 81920])
32804
+ batch tensor: loss_mask torch.Size([1, 81920])
32805
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32806
+ batch tensor: position_ids torch.Size([1, 81920])
32807
+ batch tensor after cp: tokens torch.Size([1, 10240])
32808
+ batch tensor after cp: labels torch.Size([1, 10240])
32809
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32810
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32811
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32812
+ batch tensor: tokens torch.Size([1, 81920])
32813
+ batch tensor: labels torch.Size([1, 81920])
32814
+ batch tensor: loss_mask torch.Size([1, 81920])
32815
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32816
+ batch tensor: position_ids torch.Size([1, 81920])
32817
+ batch tensor after cp: tokens torch.Size([1, 10240])
32818
+ batch tensor after cp: labels torch.Size([1, 10240])
32819
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32820
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32821
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32822
+ batch tensor: tokens torch.Size([1, 81920])
32823
+ batch tensor: labels torch.Size([1, 81920])
32824
+ batch tensor: loss_mask torch.Size([1, 81920])
32825
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32826
+ batch tensor: position_ids torch.Size([1, 81920])
32827
+ batch tensor after cp: tokens torch.Size([1, 10240])
32828
+ batch tensor after cp: labels torch.Size([1, 10240])
32829
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32830
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32831
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32832
+ batch tensor: tokens torch.Size([1, 81920])
32833
+ batch tensor: labels torch.Size([1, 81920])
32834
+ batch tensor: loss_mask torch.Size([1, 81920])
32835
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32836
+ batch tensor: position_ids torch.Size([1, 81920])
32837
+ batch tensor after cp: tokens torch.Size([1, 10240])
32838
+ batch tensor after cp: labels torch.Size([1, 10240])
32839
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32840
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32841
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32842
+ batch tensor: tokens torch.Size([1, 81920])
32843
+ batch tensor: labels torch.Size([1, 81920])
32844
+ batch tensor: loss_mask torch.Size([1, 81920])
32845
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32846
+ batch tensor: position_ids torch.Size([1, 81920])
32847
+ batch tensor after cp: tokens torch.Size([1, 10240])
32848
+ batch tensor after cp: labels torch.Size([1, 10240])
32849
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32850
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32851
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32852
+ Start exporting trace 2
32853
+ Done exporting trace 2
32854
+ [2025-06-21 22:08:14] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 41354.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
32855
+ batch tensor: tokens torch.Size([1, 81920])
32856
+ batch tensor: labels torch.Size([1, 81920])
32857
+ batch tensor: loss_mask torch.Size([1, 81920])
32858
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32859
+ batch tensor: position_ids torch.Size([1, 81920])
32860
+ batch tensor after cp: tokens torch.Size([1, 10240])
32861
+ batch tensor after cp: labels torch.Size([1, 10240])
32862
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32863
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32864
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32865
+ batch tensor: tokens torch.Size([1, 81920])
32866
+ batch tensor: labels torch.Size([1, 81920])
32867
+ batch tensor: loss_mask torch.Size([1, 81920])
32868
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32869
+ batch tensor: position_ids torch.Size([1, 81920])
32870
+ batch tensor after cp: tokens torch.Size([1, 10240])
32871
+ batch tensor after cp: labels torch.Size([1, 10240])
32872
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32873
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32874
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32875
+ batch tensor: tokens torch.Size([1, 81920])
32876
+ batch tensor: labels torch.Size([1, 81920])
32877
+ batch tensor: loss_mask torch.Size([1, 81920])
32878
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32879
+ batch tensor: position_ids torch.Size([1, 81920])
32880
+ batch tensor after cp: tokens torch.Size([1, 10240])
32881
+ batch tensor after cp: labels torch.Size([1, 10240])
32882
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32883
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32884
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32885
+ batch tensor: tokens torch.Size([1, 81920])
32886
+ batch tensor: labels torch.Size([1, 81920])
32887
+ batch tensor: loss_mask torch.Size([1, 81920])
32888
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32889
+ batch tensor: position_ids torch.Size([1, 81920])
32890
+ batch tensor after cp: tokens torch.Size([1, 10240])
32891
+ batch tensor after cp: labels torch.Size([1, 10240])
32892
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32893
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32894
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32895
+ batch tensor: tokens torch.Size([1, 81920])
32896
+ batch tensor: labels torch.Size([1, 81920])
32897
+ batch tensor: loss_mask torch.Size([1, 81920])
32898
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32899
+ batch tensor: position_ids torch.Size([1, 81920])
32900
+ batch tensor after cp: tokens torch.Size([1, 10240])
32901
+ batch tensor after cp: labels torch.Size([1, 10240])
32902
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32903
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32904
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32905
+ batch tensor: tokens torch.Size([1, 81920])
32906
+ batch tensor: labels torch.Size([1, 81920])
32907
+ batch tensor: loss_mask torch.Size([1, 81920])
32908
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32909
+ batch tensor: position_ids torch.Size([1, 81920])
32910
+ batch tensor after cp: tokens torch.Size([1, 10240])
32911
+ batch tensor after cp: labels torch.Size([1, 10240])
32912
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32913
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32914
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32915
+ batch tensor: tokens torch.Size([1, 81920])
32916
+ batch tensor: labels torch.Size([1, 81920])
32917
+ batch tensor: loss_mask torch.Size([1, 81920])
32918
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32919
+ batch tensor: position_ids torch.Size([1, 81920])
32920
+ batch tensor after cp: tokens torch.Size([1, 10240])
32921
+ batch tensor after cp: labels torch.Size([1, 10240])
32922
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32923
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32924
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32925
+ batch tensor: tokens torch.Size([1, 81920])
32926
+ batch tensor: labels torch.Size([1, 81920])
32927
+ batch tensor: loss_mask torch.Size([1, 81920])
32928
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32929
+ batch tensor: position_ids torch.Size([1, 81920])
32930
+ batch tensor after cp: tokens torch.Size([1, 10240])
32931
+ batch tensor after cp: labels torch.Size([1, 10240])
32932
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32933
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32934
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32935
+ batch tensor: tokens torch.Size([1, 81920])
32936
+ batch tensor: labels torch.Size([1, 81920])
32937
+ batch tensor: loss_mask torch.Size([1, 81920])
32938
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32939
+ batch tensor: position_ids torch.Size([1, 81920])
32940
+ batch tensor after cp: tokens torch.Size([1, 10240])
32941
+ batch tensor after cp: labels torch.Size([1, 10240])
32942
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32943
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32944
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32945
+ batch tensor: tokens torch.Size([1, 81920])
32946
+ batch tensor: labels torch.Size([1, 81920])
32947
+ batch tensor: loss_mask torch.Size([1, 81920])
32948
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32949
+ batch tensor: position_ids torch.Size([1, 81920])
32950
+ batch tensor after cp: tokens torch.Size([1, 10240])
32951
+ batch tensor after cp: labels torch.Size([1, 10240])
32952
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32953
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32954
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32955
+ batch tensor: tokens torch.Size([1, 81920])
32956
+ batch tensor: labels torch.Size([1, 81920])
32957
+ batch tensor: loss_mask torch.Size([1, 81920])
32958
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32959
+ batch tensor: position_ids torch.Size([1, 81920])
32960
+ batch tensor after cp: tokens torch.Size([1, 10240])
32961
+ batch tensor after cp: labels torch.Size([1, 10240])
32962
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32963
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32964
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32965
+ batch tensor: tokens torch.Size([1, 81920])
32966
+ batch tensor: labels torch.Size([1, 81920])
32967
+ batch tensor: loss_mask torch.Size([1, 81920])
32968
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32969
+ batch tensor: position_ids torch.Size([1, 81920])
32970
+ batch tensor after cp: tokens torch.Size([1, 10240])
32971
+ batch tensor after cp: labels torch.Size([1, 10240])
32972
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32973
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32974
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32975
+ batch tensor: tokens torch.Size([1, 81920])
32976
+ batch tensor: labels torch.Size([1, 81920])
32977
+ batch tensor: loss_mask torch.Size([1, 81920])
32978
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32979
+ batch tensor: position_ids torch.Size([1, 81920])
32980
+ batch tensor after cp: tokens torch.Size([1, 10240])
32981
+ batch tensor after cp: labels torch.Size([1, 10240])
32982
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32983
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32984
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32985
+ batch tensor: tokens torch.Size([1, 81920])
32986
+ batch tensor: labels torch.Size([1, 81920])
32987
+ batch tensor: loss_mask torch.Size([1, 81920])
32988
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32989
+ batch tensor: position_ids torch.Size([1, 81920])
32990
+ batch tensor after cp: tokens torch.Size([1, 10240])
32991
+ batch tensor after cp: labels torch.Size([1, 10240])
32992
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
32993
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
32994
+ batch tensor after cp: position_ids torch.Size([1, 10240])
32995
+ batch tensor: tokens torch.Size([1, 81920])
32996
+ batch tensor: labels torch.Size([1, 81920])
32997
+ batch tensor: loss_mask torch.Size([1, 81920])
32998
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
32999
+ batch tensor: position_ids torch.Size([1, 81920])
33000
+ batch tensor after cp: tokens torch.Size([1, 10240])
33001
+ batch tensor after cp: labels torch.Size([1, 10240])
33002
+ batch tensor after cp: loss_mask torch.Size([1, 10240])
33003
+ batch tensor after cp: attention_mask torch.Size([1, 1, 10240, 81920])
33004
+ batch tensor after cp: position_ids torch.Size([1, 10240])
attnserver.run_attnserver.slurm.sh.343238.out.log CHANGED
@@ -26756,3 +26756,479 @@ batch tensor after cp: position_ids torch.Size([2, 16384])
26756
  Start exporting trace 1
26757
  Done exporting trace 1
26758
  [2025-06-21 22:07:18] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 35680.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26756
  Start exporting trace 1
26757
  Done exporting trace 1
26758
  [2025-06-21 22:07:18] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 35680.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
26759
+ batch tensor: tokens torch.Size([2, 131072])
26760
+ batch tensor: labels torch.Size([2, 131072])
26761
+ batch tensor: loss_mask torch.Size([2, 131072])
26762
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26763
+ batch tensor: position_ids torch.Size([2, 131072])
26764
+ batch tensor after cp: tokens torch.Size([2, 16384])
26765
+ batch tensor after cp: labels torch.Size([2, 16384])
26766
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26767
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26768
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26769
+ batch tensor: tokens torch.Size([2, 131072])
26770
+ batch tensor: labels torch.Size([2, 131072])
26771
+ batch tensor: loss_mask torch.Size([2, 131072])
26772
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26773
+ batch tensor: position_ids torch.Size([2, 131072])
26774
+ batch tensor after cp: tokens torch.Size([2, 16384])
26775
+ batch tensor after cp: labels torch.Size([2, 16384])
26776
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26777
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26778
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26779
+ batch tensor: tokens torch.Size([2, 131072])
26780
+ batch tensor: labels torch.Size([2, 131072])
26781
+ batch tensor: loss_mask torch.Size([2, 131072])
26782
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26783
+ batch tensor: position_ids torch.Size([2, 131072])
26784
+ batch tensor after cp: tokens torch.Size([2, 16384])
26785
+ batch tensor after cp: labels torch.Size([2, 16384])
26786
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26787
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26788
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26789
+ batch tensor: tokens torch.Size([2, 131072])
26790
+ batch tensor: labels torch.Size([2, 131072])
26791
+ batch tensor: loss_mask torch.Size([2, 131072])
26792
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26793
+ batch tensor: position_ids torch.Size([2, 131072])
26794
+ batch tensor after cp: tokens torch.Size([2, 16384])
26795
+ batch tensor after cp: labels torch.Size([2, 16384])
26796
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26797
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26798
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26799
+ batch tensor: tokens torch.Size([2, 131072])
26800
+ batch tensor: labels torch.Size([2, 131072])
26801
+ batch tensor: loss_mask torch.Size([2, 131072])
26802
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26803
+ batch tensor: position_ids torch.Size([2, 131072])
26804
+ batch tensor after cp: tokens torch.Size([2, 16384])
26805
+ batch tensor after cp: labels torch.Size([2, 16384])
26806
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26807
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26808
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26809
+ batch tensor: tokens torch.Size([2, 131072])
26810
+ batch tensor: labels torch.Size([2, 131072])
26811
+ batch tensor: loss_mask torch.Size([2, 131072])
26812
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26813
+ batch tensor: position_ids torch.Size([2, 131072])
26814
+ batch tensor after cp: tokens torch.Size([2, 16384])
26815
+ batch tensor after cp: labels torch.Size([2, 16384])
26816
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26817
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26818
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26819
+ batch tensor: tokens torch.Size([2, 131072])
26820
+ batch tensor: labels torch.Size([2, 131072])
26821
+ batch tensor: loss_mask torch.Size([2, 131072])
26822
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26823
+ batch tensor: position_ids torch.Size([2, 131072])
26824
+ batch tensor after cp: tokens torch.Size([2, 16384])
26825
+ batch tensor after cp: labels torch.Size([2, 16384])
26826
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26827
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26828
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26829
+ batch tensor: tokens torch.Size([2, 131072])
26830
+ batch tensor: labels torch.Size([2, 131072])
26831
+ batch tensor: loss_mask torch.Size([2, 131072])
26832
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26833
+ batch tensor: position_ids torch.Size([2, 131072])
26834
+ batch tensor after cp: tokens torch.Size([2, 16384])
26835
+ batch tensor after cp: labels torch.Size([2, 16384])
26836
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26837
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26838
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26839
+ batch tensor: tokens torch.Size([2, 131072])
26840
+ batch tensor: labels torch.Size([2, 131072])
26841
+ batch tensor: loss_mask torch.Size([2, 131072])
26842
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26843
+ batch tensor: position_ids torch.Size([2, 131072])
26844
+ batch tensor after cp: tokens torch.Size([2, 16384])
26845
+ batch tensor after cp: labels torch.Size([2, 16384])
26846
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26847
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26848
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26849
+ batch tensor: tokens torch.Size([2, 131072])
26850
+ batch tensor: labels torch.Size([2, 131072])
26851
+ batch tensor: loss_mask torch.Size([2, 131072])
26852
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26853
+ batch tensor: position_ids torch.Size([2, 131072])
26854
+ batch tensor after cp: tokens torch.Size([2, 16384])
26855
+ batch tensor after cp: labels torch.Size([2, 16384])
26856
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26857
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26858
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26859
+ batch tensor: tokens torch.Size([2, 131072])
26860
+ batch tensor: labels torch.Size([2, 131072])
26861
+ batch tensor: loss_mask torch.Size([2, 131072])
26862
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26863
+ batch tensor: position_ids torch.Size([2, 131072])
26864
+ batch tensor after cp: tokens torch.Size([2, 16384])
26865
+ batch tensor after cp: labels torch.Size([2, 16384])
26866
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26867
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26868
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26869
+ batch tensor: tokens torch.Size([2, 131072])
26870
+ batch tensor: labels torch.Size([2, 131072])
26871
+ batch tensor: loss_mask torch.Size([2, 131072])
26872
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26873
+ batch tensor: position_ids torch.Size([2, 131072])
26874
+ batch tensor after cp: tokens torch.Size([2, 16384])
26875
+ batch tensor after cp: labels torch.Size([2, 16384])
26876
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26877
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26878
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26879
+ batch tensor: tokens torch.Size([2, 131072])
26880
+ batch tensor: labels torch.Size([2, 131072])
26881
+ batch tensor: loss_mask torch.Size([2, 131072])
26882
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26883
+ batch tensor: position_ids torch.Size([2, 131072])
26884
+ batch tensor after cp: tokens torch.Size([2, 16384])
26885
+ batch tensor after cp: labels torch.Size([2, 16384])
26886
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26887
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26888
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26889
+ batch tensor: tokens torch.Size([2, 131072])
26890
+ batch tensor: labels torch.Size([2, 131072])
26891
+ batch tensor: loss_mask torch.Size([2, 131072])
26892
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26893
+ batch tensor: position_ids torch.Size([2, 131072])
26894
+ batch tensor after cp: tokens torch.Size([2, 16384])
26895
+ batch tensor after cp: labels torch.Size([2, 16384])
26896
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26897
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26898
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26899
+ batch tensor: tokens torch.Size([2, 131072])
26900
+ batch tensor: labels torch.Size([2, 131072])
26901
+ batch tensor: loss_mask torch.Size([2, 131072])
26902
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26903
+ batch tensor: position_ids torch.Size([2, 131072])
26904
+ batch tensor after cp: tokens torch.Size([2, 16384])
26905
+ batch tensor after cp: labels torch.Size([2, 16384])
26906
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26907
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26908
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26909
+ batch tensor: tokens torch.Size([2, 131072])
26910
+ batch tensor: labels torch.Size([2, 131072])
26911
+ batch tensor: loss_mask torch.Size([2, 131072])
26912
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26913
+ batch tensor: position_ids torch.Size([2, 131072])
26914
+ batch tensor after cp: tokens torch.Size([2, 16384])
26915
+ batch tensor after cp: labels torch.Size([2, 16384])
26916
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26917
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26918
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26919
+ Start exporting trace 2
26920
+ Done exporting trace 2
26921
+ [2025-06-21 22:07:49] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 31377.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
26922
+ batch tensor: tokens torch.Size([2, 131072])
26923
+ batch tensor: labels torch.Size([2, 131072])
26924
+ batch tensor: loss_mask torch.Size([2, 131072])
26925
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26926
+ batch tensor: position_ids torch.Size([2, 131072])
26927
+ batch tensor after cp: tokens torch.Size([2, 16384])
26928
+ batch tensor after cp: labels torch.Size([2, 16384])
26929
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26930
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26931
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26932
+ batch tensor: tokens torch.Size([2, 131072])
26933
+ batch tensor: labels torch.Size([2, 131072])
26934
+ batch tensor: loss_mask torch.Size([2, 131072])
26935
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26936
+ batch tensor: position_ids torch.Size([2, 131072])
26937
+ batch tensor after cp: tokens torch.Size([2, 16384])
26938
+ batch tensor after cp: labels torch.Size([2, 16384])
26939
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26940
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26941
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26942
+ batch tensor: tokens torch.Size([2, 131072])
26943
+ batch tensor: labels torch.Size([2, 131072])
26944
+ batch tensor: loss_mask torch.Size([2, 131072])
26945
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26946
+ batch tensor: position_ids torch.Size([2, 131072])
26947
+ batch tensor after cp: tokens torch.Size([2, 16384])
26948
+ batch tensor after cp: labels torch.Size([2, 16384])
26949
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26950
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26951
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26952
+ batch tensor: tokens torch.Size([2, 131072])
26953
+ batch tensor: labels torch.Size([2, 131072])
26954
+ batch tensor: loss_mask torch.Size([2, 131072])
26955
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26956
+ batch tensor: position_ids torch.Size([2, 131072])
26957
+ batch tensor after cp: tokens torch.Size([2, 16384])
26958
+ batch tensor after cp: labels torch.Size([2, 16384])
26959
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26960
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26961
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26962
+ batch tensor: tokens torch.Size([2, 131072])
26963
+ batch tensor: labels torch.Size([2, 131072])
26964
+ batch tensor: loss_mask torch.Size([2, 131072])
26965
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26966
+ batch tensor: position_ids torch.Size([2, 131072])
26967
+ batch tensor after cp: tokens torch.Size([2, 16384])
26968
+ batch tensor after cp: labels torch.Size([2, 16384])
26969
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26970
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26971
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26972
+ batch tensor: tokens torch.Size([2, 131072])
26973
+ batch tensor: labels torch.Size([2, 131072])
26974
+ batch tensor: loss_mask torch.Size([2, 131072])
26975
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26976
+ batch tensor: position_ids torch.Size([2, 131072])
26977
+ batch tensor after cp: tokens torch.Size([2, 16384])
26978
+ batch tensor after cp: labels torch.Size([2, 16384])
26979
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26980
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26981
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26982
+ batch tensor: tokens torch.Size([2, 131072])
26983
+ batch tensor: labels torch.Size([2, 131072])
26984
+ batch tensor: loss_mask torch.Size([2, 131072])
26985
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26986
+ batch tensor: position_ids torch.Size([2, 131072])
26987
+ batch tensor after cp: tokens torch.Size([2, 16384])
26988
+ batch tensor after cp: labels torch.Size([2, 16384])
26989
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
26990
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
26991
+ batch tensor after cp: position_ids torch.Size([2, 16384])
26992
+ batch tensor: tokens torch.Size([2, 131072])
26993
+ batch tensor: labels torch.Size([2, 131072])
26994
+ batch tensor: loss_mask torch.Size([2, 131072])
26995
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
26996
+ batch tensor: position_ids torch.Size([2, 131072])
26997
+ batch tensor after cp: tokens torch.Size([2, 16384])
26998
+ batch tensor after cp: labels torch.Size([2, 16384])
26999
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27000
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27001
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27002
+ batch tensor: tokens torch.Size([2, 131072])
27003
+ batch tensor: labels torch.Size([2, 131072])
27004
+ batch tensor: loss_mask torch.Size([2, 131072])
27005
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27006
+ batch tensor: position_ids torch.Size([2, 131072])
27007
+ batch tensor after cp: tokens torch.Size([2, 16384])
27008
+ batch tensor after cp: labels torch.Size([2, 16384])
27009
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27010
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27011
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27012
+ batch tensor: tokens torch.Size([2, 131072])
27013
+ batch tensor: labels torch.Size([2, 131072])
27014
+ batch tensor: loss_mask torch.Size([2, 131072])
27015
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27016
+ batch tensor: position_ids torch.Size([2, 131072])
27017
+ batch tensor after cp: tokens torch.Size([2, 16384])
27018
+ batch tensor after cp: labels torch.Size([2, 16384])
27019
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27020
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27021
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27022
+ batch tensor: tokens torch.Size([2, 131072])
27023
+ batch tensor: labels torch.Size([2, 131072])
27024
+ batch tensor: loss_mask torch.Size([2, 131072])
27025
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27026
+ batch tensor: position_ids torch.Size([2, 131072])
27027
+ batch tensor after cp: tokens torch.Size([2, 16384])
27028
+ batch tensor after cp: labels torch.Size([2, 16384])
27029
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27030
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27031
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27032
+ batch tensor: tokens torch.Size([2, 131072])
27033
+ batch tensor: labels torch.Size([2, 131072])
27034
+ batch tensor: loss_mask torch.Size([2, 131072])
27035
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27036
+ batch tensor: position_ids torch.Size([2, 131072])
27037
+ batch tensor after cp: tokens torch.Size([2, 16384])
27038
+ batch tensor after cp: labels torch.Size([2, 16384])
27039
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27040
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27041
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27042
+ batch tensor: tokens torch.Size([2, 131072])
27043
+ batch tensor: labels torch.Size([2, 131072])
27044
+ batch tensor: loss_mask torch.Size([2, 131072])
27045
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27046
+ batch tensor: position_ids torch.Size([2, 131072])
27047
+ batch tensor after cp: tokens torch.Size([2, 16384])
27048
+ batch tensor after cp: labels torch.Size([2, 16384])
27049
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27050
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27051
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27052
+ batch tensor: tokens torch.Size([2, 131072])
27053
+ batch tensor: labels torch.Size([2, 131072])
27054
+ batch tensor: loss_mask torch.Size([2, 131072])
27055
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27056
+ batch tensor: position_ids torch.Size([2, 131072])
27057
+ batch tensor after cp: tokens torch.Size([2, 16384])
27058
+ batch tensor after cp: labels torch.Size([2, 16384])
27059
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27060
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27061
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27062
+ batch tensor: tokens torch.Size([2, 131072])
27063
+ batch tensor: labels torch.Size([2, 131072])
27064
+ batch tensor: loss_mask torch.Size([2, 131072])
27065
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27066
+ batch tensor: position_ids torch.Size([2, 131072])
27067
+ batch tensor after cp: tokens torch.Size([2, 16384])
27068
+ batch tensor after cp: labels torch.Size([2, 16384])
27069
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27070
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27071
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27072
+ batch tensor: tokens torch.Size([2, 131072])
27073
+ batch tensor: labels torch.Size([2, 131072])
27074
+ batch tensor: loss_mask torch.Size([2, 131072])
27075
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27076
+ batch tensor: position_ids torch.Size([2, 131072])
27077
+ batch tensor after cp: tokens torch.Size([2, 16384])
27078
+ batch tensor after cp: labels torch.Size([2, 16384])
27079
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27080
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27081
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27082
+ Start exporting trace 3
27083
+ Done exporting trace 3
27084
+ [2025-06-21 22:08:20] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 31157.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
27085
+ batch tensor: tokens torch.Size([2, 131072])
27086
+ batch tensor: labels torch.Size([2, 131072])
27087
+ batch tensor: loss_mask torch.Size([2, 131072])
27088
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27089
+ batch tensor: position_ids torch.Size([2, 131072])
27090
+ batch tensor after cp: tokens torch.Size([2, 16384])
27091
+ batch tensor after cp: labels torch.Size([2, 16384])
27092
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27093
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27094
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27095
+ batch tensor: tokens torch.Size([2, 131072])
27096
+ batch tensor: labels torch.Size([2, 131072])
27097
+ batch tensor: loss_mask torch.Size([2, 131072])
27098
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27099
+ batch tensor: position_ids torch.Size([2, 131072])
27100
+ batch tensor after cp: tokens torch.Size([2, 16384])
27101
+ batch tensor after cp: labels torch.Size([2, 16384])
27102
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27103
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27104
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27105
+ batch tensor: tokens torch.Size([2, 131072])
27106
+ batch tensor: labels torch.Size([2, 131072])
27107
+ batch tensor: loss_mask torch.Size([2, 131072])
27108
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27109
+ batch tensor: position_ids torch.Size([2, 131072])
27110
+ batch tensor after cp: tokens torch.Size([2, 16384])
27111
+ batch tensor after cp: labels torch.Size([2, 16384])
27112
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27113
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27114
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27115
+ batch tensor: tokens torch.Size([2, 131072])
27116
+ batch tensor: labels torch.Size([2, 131072])
27117
+ batch tensor: loss_mask torch.Size([2, 131072])
27118
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27119
+ batch tensor: position_ids torch.Size([2, 131072])
27120
+ batch tensor after cp: tokens torch.Size([2, 16384])
27121
+ batch tensor after cp: labels torch.Size([2, 16384])
27122
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27123
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27124
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27125
+ batch tensor: tokens torch.Size([2, 131072])
27126
+ batch tensor: labels torch.Size([2, 131072])
27127
+ batch tensor: loss_mask torch.Size([2, 131072])
27128
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27129
+ batch tensor: position_ids torch.Size([2, 131072])
27130
+ batch tensor after cp: tokens torch.Size([2, 16384])
27131
+ batch tensor after cp: labels torch.Size([2, 16384])
27132
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27133
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27134
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27135
+ batch tensor: tokens torch.Size([2, 131072])
27136
+ batch tensor: labels torch.Size([2, 131072])
27137
+ batch tensor: loss_mask torch.Size([2, 131072])
27138
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27139
+ batch tensor: position_ids torch.Size([2, 131072])
27140
+ batch tensor after cp: tokens torch.Size([2, 16384])
27141
+ batch tensor after cp: labels torch.Size([2, 16384])
27142
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27143
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27144
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27145
+ batch tensor: tokens torch.Size([2, 131072])
27146
+ batch tensor: labels torch.Size([2, 131072])
27147
+ batch tensor: loss_mask torch.Size([2, 131072])
27148
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27149
+ batch tensor: position_ids torch.Size([2, 131072])
27150
+ batch tensor after cp: tokens torch.Size([2, 16384])
27151
+ batch tensor after cp: labels torch.Size([2, 16384])
27152
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27153
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27154
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27155
+ batch tensor: tokens torch.Size([2, 131072])
27156
+ batch tensor: labels torch.Size([2, 131072])
27157
+ batch tensor: loss_mask torch.Size([2, 131072])
27158
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27159
+ batch tensor: position_ids torch.Size([2, 131072])
27160
+ batch tensor after cp: tokens torch.Size([2, 16384])
27161
+ batch tensor after cp: labels torch.Size([2, 16384])
27162
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27163
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27164
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27165
+ batch tensor: tokens torch.Size([2, 131072])
27166
+ batch tensor: labels torch.Size([2, 131072])
27167
+ batch tensor: loss_mask torch.Size([2, 131072])
27168
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27169
+ batch tensor: position_ids torch.Size([2, 131072])
27170
+ batch tensor after cp: tokens torch.Size([2, 16384])
27171
+ batch tensor after cp: labels torch.Size([2, 16384])
27172
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27173
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27174
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27175
+ batch tensor: tokens torch.Size([2, 131072])
27176
+ batch tensor: labels torch.Size([2, 131072])
27177
+ batch tensor: loss_mask torch.Size([2, 131072])
27178
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27179
+ batch tensor: position_ids torch.Size([2, 131072])
27180
+ batch tensor after cp: tokens torch.Size([2, 16384])
27181
+ batch tensor after cp: labels torch.Size([2, 16384])
27182
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27183
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27184
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27185
+ batch tensor: tokens torch.Size([2, 131072])
27186
+ batch tensor: labels torch.Size([2, 131072])
27187
+ batch tensor: loss_mask torch.Size([2, 131072])
27188
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27189
+ batch tensor: position_ids torch.Size([2, 131072])
27190
+ batch tensor after cp: tokens torch.Size([2, 16384])
27191
+ batch tensor after cp: labels torch.Size([2, 16384])
27192
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27193
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27194
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27195
+ batch tensor: tokens torch.Size([2, 131072])
27196
+ batch tensor: labels torch.Size([2, 131072])
27197
+ batch tensor: loss_mask torch.Size([2, 131072])
27198
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27199
+ batch tensor: position_ids torch.Size([2, 131072])
27200
+ batch tensor after cp: tokens torch.Size([2, 16384])
27201
+ batch tensor after cp: labels torch.Size([2, 16384])
27202
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27203
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27204
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27205
+ batch tensor: tokens torch.Size([2, 131072])
27206
+ batch tensor: labels torch.Size([2, 131072])
27207
+ batch tensor: loss_mask torch.Size([2, 131072])
27208
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27209
+ batch tensor: position_ids torch.Size([2, 131072])
27210
+ batch tensor after cp: tokens torch.Size([2, 16384])
27211
+ batch tensor after cp: labels torch.Size([2, 16384])
27212
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27213
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27214
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27215
+ batch tensor: tokens torch.Size([2, 131072])
27216
+ batch tensor: labels torch.Size([2, 131072])
27217
+ batch tensor: loss_mask torch.Size([2, 131072])
27218
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27219
+ batch tensor: position_ids torch.Size([2, 131072])
27220
+ batch tensor after cp: tokens torch.Size([2, 16384])
27221
+ batch tensor after cp: labels torch.Size([2, 16384])
27222
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27223
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27224
+ batch tensor after cp: position_ids torch.Size([2, 16384])
27225
+ batch tensor: tokens torch.Size([2, 131072])
27226
+ batch tensor: labels torch.Size([2, 131072])
27227
+ batch tensor: loss_mask torch.Size([2, 131072])
27228
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
27229
+ batch tensor: position_ids torch.Size([2, 131072])
27230
+ batch tensor after cp: tokens torch.Size([2, 16384])
27231
+ batch tensor after cp: labels torch.Size([2, 16384])
27232
+ batch tensor after cp: loss_mask torch.Size([2, 16384])
27233
+ batch tensor after cp: attention_mask torch.Size([2, 1, 16384, 131072])
27234
+ batch tensor after cp: position_ids torch.Size([2, 16384])
attnserver.run_attnserver.slurm.sh.343239.err.log CHANGED
@@ -1186,3 +1186,489 @@ W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766]
1186
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
1187
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1188
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
1187
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1188
  W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
1189
+ [rank1]:[W621 22:07:32.480114235 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1190
+ [rank3]:[W621 22:07:32.480114328 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1191
+ [rank2]:[W621 22:07:32.480220492 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1192
+ [rank7]:[W621 22:07:32.480275848 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1193
+ [rank6]:[W621 22:07:32.481269400 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1194
+ [rank5]:[W621 22:07:32.481507902 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1195
+ [rank15]:[W621 22:07:32.903977596 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1196
+ [rank10]:[W621 22:07:32.909462870 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1197
+ [rank12]:[W621 22:07:32.909537097 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1198
+ [rank11]:[W621 22:07:32.909539083 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1199
+ [rank13]:[W621 22:07:32.909725577 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1200
+ [rank9]:[W621 22:07:32.909834877 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1201
+ [rank4]:[W621 22:07:32.488882234 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1202
+ [rank14]:[W621 22:07:32.910300560 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1203
+ [rank8]:[W621 22:07:32.996916035 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1204
+ [rank0]:[W621 22:07:32.628605508 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1205
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1206
+ warnings.warn(
1207
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1208
+ warnings.warn(
1209
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1210
+ warnings.warn(
1211
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1212
+ warnings.warn(
1213
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1214
+ warnings.warn(
1215
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1216
+ warnings.warn(
1217
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1218
+ warnings.warn(
1219
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1220
+ warnings.warn(
1221
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1222
+ warnings.warn(
1223
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1224
+ warnings.warn(
1225
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1226
+ warnings.warn(
1227
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1228
+ warnings.warn(
1229
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1230
+ warnings.warn(
1231
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1232
+ warnings.warn(
1233
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1234
+ warnings.warn(
1235
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1236
+ warnings.warn(
1237
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1238
+ warnings.warn(
1239
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1240
+ warnings.warn(
1241
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1242
+ warnings.warn(
1243
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1244
+ warnings.warn(
1245
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1246
+ warnings.warn(
1247
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1248
+ warnings.warn(
1249
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1250
+ warnings.warn(
1251
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1252
+ warnings.warn(
1253
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1254
+ warnings.warn(
1255
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1256
+ warnings.warn(
1257
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1258
+ warnings.warn(
1259
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1260
+ warnings.warn(
1261
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1262
+ warnings.warn(
1263
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1264
+ warnings.warn(
1265
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1266
+ warnings.warn(
1267
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1268
+ warnings.warn(
1269
+ [rank8]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__8_0.distcp'
1270
+
1271
+ [rank8]: The above exception was the direct cause of the following exception:
1272
+
1273
+ [rank8]: Traceback (most recent call last):
1274
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1275
+ [rank8]: pretrain(
1276
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1277
+ [rank8]: save_checkpoint(
1278
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1279
+ [rank8]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1280
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1281
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1282
+ [rank8]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1283
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1284
+ [rank8]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1285
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1286
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1287
+ [rank8]: async_calls.maybe_finalize_async_calls(blocking=True)
1288
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1289
+ [rank8]: finalize_fn()
1290
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1291
+ [rank8]: save_state_dict_async_finalize(*save_state_dict_ret)
1292
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1293
+ [rank8]: write_results = storage_writer.retrieve_write_results()
1294
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1295
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1296
+ [rank8]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1297
+ [rank8]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__8_0.distcp'
1298
+ [rank11]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__11_0.distcp'
1299
+
1300
+ [rank11]: The above exception was the direct cause of the following exception:
1301
+
1302
+ [rank11]: Traceback (most recent call last):
1303
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1304
+ [rank11]: pretrain(
1305
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1306
+ [rank11]: save_checkpoint(
1307
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1308
+ [rank11]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1309
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1310
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1311
+ [rank11]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1312
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1313
+ [rank11]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1314
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1315
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1316
+ [rank11]: async_calls.maybe_finalize_async_calls(blocking=True)
1317
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1318
+ [rank11]: finalize_fn()
1319
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1320
+ [rank11]: save_state_dict_async_finalize(*save_state_dict_ret)
1321
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1322
+ [rank11]: write_results = storage_writer.retrieve_write_results()
1323
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1324
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1325
+ [rank11]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1326
+ [rank11]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__11_0.distcp'
1327
+ [rank9]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__9_0.distcp'
1328
+
1329
+ [rank9]: The above exception was the direct cause of the following exception:
1330
+
1331
+ [rank9]: Traceback (most recent call last):
1332
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1333
+ [rank9]: pretrain(
1334
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1335
+ [rank9]: save_checkpoint(
1336
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1337
+ [rank9]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1338
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1339
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1340
+ [rank9]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1341
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1342
+ [rank9]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1343
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1344
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1345
+ [rank9]: async_calls.maybe_finalize_async_calls(blocking=True)
1346
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1347
+ [rank9]: finalize_fn()
1348
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1349
+ [rank9]: save_state_dict_async_finalize(*save_state_dict_ret)
1350
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1351
+ [rank9]: write_results = storage_writer.retrieve_write_results()
1352
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1353
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1354
+ [rank9]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1355
+ [rank9]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__9_0.distcp'
1356
+ [rank14]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__14_0.distcp'
1357
+
1358
+ [rank14]: The above exception was the direct cause of the following exception:
1359
+
1360
+ [rank14]: Traceback (most recent call last):
1361
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1362
+ [rank14]: pretrain(
1363
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1364
+ [rank14]: save_checkpoint(
1365
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1366
+ [rank14]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1367
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1368
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1369
+ [rank14]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1370
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1371
+ [rank14]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1372
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1373
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1374
+ [rank14]: async_calls.maybe_finalize_async_calls(blocking=True)
1375
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1376
+ [rank14]: finalize_fn()
1377
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1378
+ [rank14]: save_state_dict_async_finalize(*save_state_dict_ret)
1379
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1380
+ [rank14]: write_results = storage_writer.retrieve_write_results()
1381
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1382
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1383
+ [rank14]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1384
+ [rank14]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__14_0.distcp'
1385
+ [rank12]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__12_0.distcp'
1386
+
1387
+ [rank12]: The above exception was the direct cause of the following exception:
1388
+
1389
+ [rank12]: Traceback (most recent call last):
1390
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1391
+ [rank12]: pretrain(
1392
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1393
+ [rank12]: save_checkpoint(
1394
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1395
+ [rank12]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1396
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1397
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1398
+ [rank12]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1399
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1400
+ [rank12]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1401
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1402
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1403
+ [rank12]: async_calls.maybe_finalize_async_calls(blocking=True)
1404
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1405
+ [rank12]: finalize_fn()
1406
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1407
+ [rank12]: save_state_dict_async_finalize(*save_state_dict_ret)
1408
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1409
+ [rank12]: write_results = storage_writer.retrieve_write_results()
1410
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1411
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1412
+ [rank12]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1413
+ [rank12]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__12_0.distcp'
1414
+ [rank13]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__13_0.distcp'
1415
+
1416
+ [rank13]: The above exception was the direct cause of the following exception:
1417
+
1418
+ [rank13]: Traceback (most recent call last):
1419
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1420
+ [rank13]: pretrain(
1421
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1422
+ [rank13]: save_checkpoint(
1423
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1424
+ [rank13]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1425
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1426
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1427
+ [rank13]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1428
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1429
+ [rank13]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1430
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1431
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1432
+ [rank13]: async_calls.maybe_finalize_async_calls(blocking=True)
1433
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1434
+ [rank13]: finalize_fn()
1435
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1436
+ [rank13]: save_state_dict_async_finalize(*save_state_dict_ret)
1437
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1438
+ [rank13]: write_results = storage_writer.retrieve_write_results()
1439
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1440
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1441
+ [rank13]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1442
+ [rank13]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__13_0.distcp'
1443
+ [rank10]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__10_0.distcp'
1444
+
1445
+ [rank10]: The above exception was the direct cause of the following exception:
1446
+
1447
+ [rank10]: Traceback (most recent call last):
1448
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1449
+ [rank10]: pretrain(
1450
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1451
+ [rank10]: save_checkpoint(
1452
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1453
+ [rank10]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1454
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1455
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1456
+ [rank10]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1457
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1458
+ [rank10]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1459
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1460
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1461
+ [rank10]: async_calls.maybe_finalize_async_calls(blocking=True)
1462
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1463
+ [rank10]: finalize_fn()
1464
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1465
+ [rank10]: save_state_dict_async_finalize(*save_state_dict_ret)
1466
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1467
+ [rank10]: write_results = storage_writer.retrieve_write_results()
1468
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1469
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1470
+ [rank10]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1471
+ [rank10]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__10_0.distcp'
1472
+ [rank15]: PermissionError: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__15_0.distcp'
1473
+
1474
+ [rank15]: The above exception was the direct cause of the following exception:
1475
+
1476
+ [rank15]: Traceback (most recent call last):
1477
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
1478
+ [rank15]: pretrain(
1479
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
1480
+ [rank15]: save_checkpoint(
1481
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
1482
+ [rank15]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
1483
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1484
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
1485
+ [rank15]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
1486
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
1487
+ [rank15]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
1488
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1489
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
1490
+ [rank15]: async_calls.maybe_finalize_async_calls(blocking=True)
1491
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
1492
+ [rank15]: finalize_fn()
1493
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
1494
+ [rank15]: save_state_dict_async_finalize(*save_state_dict_ret)
1495
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
1496
+ [rank15]: write_results = storage_writer.retrieve_write_results()
1497
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1498
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
1499
+ [rank15]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
1500
+ [rank15]: RuntimeError: Worker failure: [Errno 13] Permission denied: 'gpt-checkpoint/iter_0000010/__15_0.distcp'
1501
+ [rank9]:[W621 22:08:21.261097622 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1502
+ [rank13]:[W621 22:08:21.341754800 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1503
+ [rank11]:[W621 22:08:22.522922287 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1504
+ [rank15]:[W621 22:08:22.784499176 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1505
+ W0621 22:08:23.891000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796574 closing signal SIGTERM
1506
+ W0621 22:08:23.894000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796576 closing signal SIGTERM
1507
+ W0621 22:08:23.898000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796577 closing signal SIGTERM
1508
+ W0621 22:08:23.899000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796578 closing signal SIGTERM
1509
+ W0621 22:08:23.902000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796579 closing signal SIGTERM
1510
+ W0621 22:08:23.903000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796580 closing signal SIGTERM
1511
+ W0621 22:08:23.905000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 796581 closing signal SIGTERM
1512
+ E0621 22:08:25.861000 796503 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 1 (pid: 796575) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
1513
+ Traceback (most recent call last):
1514
+ File "<frozen runpy>", line 198, in _run_module_as_main
1515
+ File "<frozen runpy>", line 88, in _run_code
1516
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
1517
+ main()
1518
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
1519
+ return arg(*args, **kwargs)
1520
+ ^^^^^^^^^^^^^^^^^^^^
1521
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
1522
+ launch(args)
1523
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
1524
+ run(args)
1525
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
1526
+ elastic_launch(
1527
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
1528
+ return launch_agent(self._config, self._entrypoint, list(args))
1529
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1530
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
1531
+ raise ChildFailedError(
1532
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
1533
+ ============================================================
1534
+ ./pretrain_gpt_profile.py FAILED
1535
+ ------------------------------------------------------------
1536
+ Failures:
1537
+ <NO_OTHER_FAILURES>
1538
+ ------------------------------------------------------------
1539
+ Root Cause (first observed failure):
1540
+ [0]:
1541
+ time : 2025-06-21_22:08:23
1542
+ host : fs-mbz-gpu-188
1543
+ rank : 9 (local_rank: 1)
1544
+ exitcode : 1 (pid: 796575)
1545
+ error_file: <N/A>
1546
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
1547
+ ============================================================
1548
+ + set +x
1549
+ W0621 22:08:26.617000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142345 closing signal SIGTERM
1550
+ W0621 22:08:26.619000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142346 closing signal SIGTERM
1551
+ W0621 22:08:26.624000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142347 closing signal SIGTERM
1552
+ W0621 22:08:26.628000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142348 closing signal SIGTERM
1553
+ W0621 22:08:26.632000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142349 closing signal SIGTERM
1554
+ W0621 22:08:26.633000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142350 closing signal SIGTERM
1555
+ W0621 22:08:26.667000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142351 closing signal SIGTERM
1556
+ W0621 22:08:26.673000 2142274 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2142352 closing signal SIGTERM
1557
+ [W621 22:08:29.974772999 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-141]:55442, remote=[fs-mbz-gpu-188]:29500): Broken pipe
1558
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
1559
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14603c1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
1560
+ frame #1: <unknown function> + 0x5ba8afe (0x14602545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1561
+ frame #2: <unknown function> + 0x5baa358 (0x14602545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1562
+ frame #3: <unknown function> + 0x5babb3e (0x14602545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1563
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x146025457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1564
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x146025457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1565
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x146025458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1566
+ frame #7: <unknown function> + 0xc0f526 (0x14603478b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
1567
+ frame #8: <unknown function> + 0x37f17d (0x146033efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
1568
+ <omitting python frames>
1569
+ frame #26: <unknown function> + 0x29d90 (0x14603d49ad90 in /lib/x86_64-linux-gnu/libc.so.6)
1570
+ frame #27: __libc_start_main + 0x80 (0x14603d49ae40 in /lib/x86_64-linux-gnu/libc.so.6)
1571
+
1572
+ W0621 22:08:29.975000 2142274 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-141_2142274_0' has failed to shutdown the rendezvous '343239' due to an error of type RendezvousConnectionError.
1573
+ [W621 22:08:29.989429258 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-141]:55442, remote=[fs-mbz-gpu-188]:29500): Broken pipe
1574
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
1575
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14603c1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
1576
+ frame #1: <unknown function> + 0x5ba8afe (0x14602545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1577
+ frame #2: <unknown function> + 0x5baa358 (0x14602545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1578
+ frame #3: <unknown function> + 0x5babb3e (0x14602545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1579
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x146025457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1580
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x146025457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1581
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x146025458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
1582
+ frame #7: <unknown function> + 0xc0f526 (0x14603478b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
1583
+ frame #8: <unknown function> + 0x37f17d (0x146033efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
1584
+ <omitting python frames>
1585
+ frame #26: <unknown function> + 0x29d90 (0x14603d49ad90 in /lib/x86_64-linux-gnu/libc.so.6)
1586
+ frame #27: __libc_start_main + 0x80 (0x14603d49ae40 in /lib/x86_64-linux-gnu/libc.so.6)
1587
+
1588
+ W0621 22:08:29.987000 2142274 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-141_2142274_0' has failed to shutdown the rendezvous '343239' due to an error of type RendezvousConnectionError.
1589
+ Traceback (most recent call last):
1590
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
1591
+ return getattr(self._store, store_op)(*args, **kwargs)
1592
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1593
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
1594
+
1595
+ The above exception was the direct cause of the following exception:
1596
+
1597
+ Traceback (most recent call last):
1598
+ File "<frozen runpy>", line 198, in _run_module_as_main
1599
+ File "<frozen runpy>", line 88, in _run_code
1600
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
1601
+ main()
1602
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
1603
+ return arg(*args, **kwargs)
1604
+ ^^^^^^^^^^^^^^^^^^^^
1605
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
1606
+ launch(args)
1607
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
1608
+ run(args)
1609
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
1610
+ elastic_launch(
1611
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
1612
+ return launch_agent(self._config, self._entrypoint, list(args))
1613
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1614
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
1615
+ result = agent.run()
1616
+ ^^^^^^^^^^^
1617
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
1618
+ result = f(*args, **kwargs)
1619
+ ^^^^^^^^^^^^^^^^^^
1620
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
1621
+ result = self._invoke_run(role)
1622
+ ^^^^^^^^^^^^^^^^^^^^^^
1623
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
1624
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
1625
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1626
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
1627
+ self._state_holder.sync()
1628
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
1629
+ get_response = self._backend.get_state()
1630
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
1631
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
1632
+ base64_state: bytes = self._call_store("get", self._key)
1633
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1634
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
1635
+ raise RendezvousConnectionError(
1636
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
1637
+ + set +x
1638
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
1639
+ + export PROF_CTX_LENGTH=16384
1640
+ + PROF_CTX_LENGTH=16384
1641
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L16384*tp2.cp8.bs4.json'
1642
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L16384*tp2.cp8.bs4.json' ']'
1643
+ + echo 'Running ctx_length=16384, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=4'
1644
+ + srun bash ./attnserver.sh
1645
+ + which python3
1646
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343239 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 16384 --max-position-embeddings 16384 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
1647
+ + which python3
1648
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343239 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 16384 --max-position-embeddings 16384 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
1649
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
1650
+ and will be removed in future. Use torchrun.
1651
+ Note that --use-env is set by default in torchrun.
1652
+ If your script expects `--local-rank` argument to be set, please
1653
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
1654
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
1655
+ further instructions
1656
+
1657
+ main()
1658
+ W0621 22:08:33.204000 2145381 site-packages/torch/distributed/run.py:766]
1659
+ W0621 22:08:33.204000 2145381 site-packages/torch/distributed/run.py:766] *****************************************
1660
+ W0621 22:08:33.204000 2145381 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1661
+ W0621 22:08:33.204000 2145381 site-packages/torch/distributed/run.py:766] *****************************************
1662
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
1663
+ and will be removed in future. Use torchrun.
1664
+ Note that --use-env is set by default in torchrun.
1665
+ If your script expects `--local-rank` argument to be set, please
1666
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
1667
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
1668
+ further instructions
1669
+
1670
+ main()
1671
+ W0621 22:08:33.247000 799671 site-packages/torch/distributed/run.py:766]
1672
+ W0621 22:08:33.247000 799671 site-packages/torch/distributed/run.py:766] *****************************************
1673
+ W0621 22:08:33.247000 799671 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1674
+ W0621 22:08:33.247000 799671 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343239.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343240.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343240.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343243.out.log CHANGED
@@ -19170,3 +19170,88 @@ batch tensor after cp: loss_mask torch.Size([1, 20480])
19170
  batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19171
  batch tensor after cp: position_ids torch.Size([1, 20480])
19172
  Start exporting trace 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19170
  batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19171
  batch tensor after cp: position_ids torch.Size([1, 20480])
19172
  Start exporting trace 1
19173
+ Done exporting trace 1
19174
+ [2025-06-21 22:08:05] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 69290.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19175
+ batch tensor: tokens torch.Size([1, 81920])
19176
+ batch tensor: labels torch.Size([1, 81920])
19177
+ batch tensor: loss_mask torch.Size([1, 81920])
19178
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19179
+ batch tensor: position_ids torch.Size([1, 81920])
19180
+ batch tensor after cp: tokens torch.Size([1, 20480])
19181
+ batch tensor after cp: labels torch.Size([1, 20480])
19182
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19183
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19184
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19185
+ batch tensor: tokens torch.Size([1, 81920])
19186
+ batch tensor: labels torch.Size([1, 81920])
19187
+ batch tensor: loss_mask torch.Size([1, 81920])
19188
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19189
+ batch tensor: position_ids torch.Size([1, 81920])
19190
+ batch tensor after cp: tokens torch.Size([1, 20480])
19191
+ batch tensor after cp: labels torch.Size([1, 20480])
19192
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19193
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19194
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19195
+ batch tensor: tokens torch.Size([1, 81920])
19196
+ batch tensor: labels torch.Size([1, 81920])
19197
+ batch tensor: loss_mask torch.Size([1, 81920])
19198
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19199
+ batch tensor: position_ids torch.Size([1, 81920])
19200
+ batch tensor after cp: tokens torch.Size([1, 20480])
19201
+ batch tensor after cp: labels torch.Size([1, 20480])
19202
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19203
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19204
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19205
+ batch tensor: tokens torch.Size([1, 81920])
19206
+ batch tensor: labels torch.Size([1, 81920])
19207
+ batch tensor: loss_mask torch.Size([1, 81920])
19208
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19209
+ batch tensor: position_ids torch.Size([1, 81920])
19210
+ batch tensor after cp: tokens torch.Size([1, 20480])
19211
+ batch tensor after cp: labels torch.Size([1, 20480])
19212
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19213
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19214
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19215
+ batch tensor: tokens torch.Size([1, 81920])
19216
+ batch tensor: labels torch.Size([1, 81920])
19217
+ batch tensor: loss_mask torch.Size([1, 81920])
19218
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19219
+ batch tensor: position_ids torch.Size([1, 81920])
19220
+ batch tensor after cp: tokens torch.Size([1, 20480])
19221
+ batch tensor after cp: labels torch.Size([1, 20480])
19222
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19223
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19224
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19225
+ batch tensor: tokens torch.Size([1, 81920])
19226
+ batch tensor: labels torch.Size([1, 81920])
19227
+ batch tensor: loss_mask torch.Size([1, 81920])
19228
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19229
+ batch tensor: position_ids torch.Size([1, 81920])
19230
+ batch tensor after cp: tokens torch.Size([1, 20480])
19231
+ batch tensor after cp: labels torch.Size([1, 20480])
19232
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19233
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19234
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19235
+ batch tensor: tokens torch.Size([1, 81920])
19236
+ batch tensor: labels torch.Size([1, 81920])
19237
+ batch tensor: loss_mask torch.Size([1, 81920])
19238
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19239
+ batch tensor: position_ids torch.Size([1, 81920])
19240
+ batch tensor after cp: tokens torch.Size([1, 20480])
19241
+ batch tensor after cp: labels torch.Size([1, 20480])
19242
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19243
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19244
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19245
+ batch tensor: tokens torch.Size([1, 81920])
19246
+ batch tensor: labels torch.Size([1, 81920])
19247
+ batch tensor: loss_mask torch.Size([1, 81920])
19248
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
19249
+ batch tensor: position_ids torch.Size([1, 81920])
19250
+ batch tensor after cp: tokens torch.Size([1, 20480])
19251
+ batch tensor after cp: labels torch.Size([1, 20480])
19252
+ batch tensor after cp: loss_mask torch.Size([1, 20480])
19253
+ batch tensor after cp: attention_mask torch.Size([1, 1, 20480, 81920])
19254
+ batch tensor after cp: position_ids torch.Size([1, 20480])
19255
+ Start exporting trace 2
19256
+ Done exporting trace 2
19257
+ [2025-06-21 22:08:40] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 34210.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
attnserver.run_attnserver.slurm.sh.343244.err.log CHANGED
@@ -3936,3 +3936,43 @@ W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766]
3936
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
3937
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
3938
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3936
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
3937
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
3938
  W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
3939
+ [rank3]:[W621 22:07:35.287546926 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3940
+ [rank7]:[W621 22:07:35.287556554 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3941
+ [rank1]:[W621 22:07:35.287576921 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3942
+ [rank5]:[W621 22:07:35.287600314 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3943
+ [rank2]:[W621 22:07:35.294269895 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3944
+ [rank6]:[W621 22:07:35.294280883 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3945
+ [rank4]:[W621 22:07:35.297098720 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3946
+ [rank0]:[W621 22:07:35.484410809 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3947
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3948
+ warnings.warn(
3949
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3950
+ warnings.warn(
3951
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3952
+ warnings.warn(
3953
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3954
+ warnings.warn(
3955
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3956
+ warnings.warn(
3957
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3958
+ warnings.warn(
3959
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3960
+ warnings.warn(
3961
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3962
+ warnings.warn(
3963
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3964
+ warnings.warn(
3965
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3966
+ warnings.warn(
3967
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3968
+ warnings.warn(
3969
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3970
+ warnings.warn(
3971
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3972
+ warnings.warn(
3973
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3974
+ warnings.warn(
3975
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3976
+ warnings.warn(
3977
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3978
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343244.out.log CHANGED
@@ -15010,3 +15010,723 @@ CHECKPOINT_PATH: gpt-checkpoint
15010
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
15011
  --------------------------------
15012
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15010
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
15011
  --------------------------------
15012
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
15013
+ using world size: 8, data-parallel size: 1, context-parallel size: 4, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 2, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
15014
+ Number of virtual stages per pipeline stage: None
15015
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
15016
+ using torch.float16 for parameters ...
15017
+ ------------------------ arguments ------------------------
15018
+ account_for_embedding_in_pipeline_split ......... False
15019
+ account_for_loss_in_pipeline_split .............. False
15020
+ accumulate_allreduce_grads_in_fp32 .............. False
15021
+ adam_beta1 ...................................... 0.9
15022
+ adam_beta2 ...................................... 0.999
15023
+ adam_eps ........................................ 1e-08
15024
+ add_bias_linear ................................. True
15025
+ add_position_embedding .......................... True
15026
+ add_qkv_bias .................................... True
15027
+ adlr_autoresume ................................. False
15028
+ adlr_autoresume_interval ........................ 1000
15029
+ align_grad_reduce ............................... True
15030
+ align_param_gather .............................. False
15031
+ app_tag_run_name ................................ None
15032
+ app_tag_run_version ............................. 0.0.0
15033
+ apply_layernorm_1p .............................. False
15034
+ apply_query_key_layer_scaling ................... False
15035
+ apply_residual_connection_post_layernorm ........ False
15036
+ apply_rope_fusion ............................... False
15037
+ async_save ...................................... None
15038
+ async_tensor_model_parallel_allreduce ........... True
15039
+ attention_backend ............................... AttnBackend.auto
15040
+ attention_dropout ............................... 0.1
15041
+ attention_softmax_in_fp32 ....................... False
15042
+ auto_detect_ckpt_format ......................... False
15043
+ barrier_with_L1_time ............................ True
15044
+ bert_binary_head ................................ True
15045
+ bert_embedder_type .............................. megatron
15046
+ bert_load ....................................... None
15047
+ bf16 ............................................ False
15048
+ bias_dropout_fusion ............................. True
15049
+ bias_gelu_fusion ................................ True
15050
+ bias_swiglu_fusion .............................. True
15051
+ biencoder_projection_dim ........................ 0
15052
+ biencoder_shared_query_context_model ............ False
15053
+ block_data_path ................................. None
15054
+ calc_ft_timeouts ................................ False
15055
+ calculate_per_token_loss ........................ False
15056
+ check_for_large_grads ........................... False
15057
+ check_for_nan_in_loss_and_grad .................. False
15058
+ check_for_spiky_loss ............................ False
15059
+ check_weight_hash_across_dp_replicas_interval ... None
15060
+ ckpt_assume_constant_structure .................. False
15061
+ ckpt_convert_format ............................. None
15062
+ ckpt_convert_save ............................... None
15063
+ ckpt_convert_update_legacy_dist_opt_format ...... False
15064
+ ckpt_format ..................................... torch_dist
15065
+ ckpt_fully_parallel_load ........................ False
15066
+ ckpt_fully_parallel_save ........................ True
15067
+ ckpt_fully_parallel_save_deprecated ............. False
15068
+ ckpt_step ....................................... None
15069
+ classes_fraction ................................ 1.0
15070
+ clip_grad ....................................... 1.0
15071
+ clone_scatter_output_in_embedding ............... True
15072
+ config_logger_dir ...............................
15073
+ consumed_train_samples .......................... 0
15074
+ consumed_valid_samples .......................... 0
15075
+ context_parallel_size ........................... 4
15076
+ cp_comm_type .................................... ['p2p']
15077
+ create_attention_mask_in_dataloader ............. True
15078
+ cross_entropy_fusion_impl ....................... native
15079
+ cross_entropy_loss_fusion ....................... False
15080
+ cuda_graph_scope ................................ full
15081
+ cuda_graph_warmup_steps ......................... 3
15082
+ data_args_path .................................. None
15083
+ data_cache_path ................................. None
15084
+ data_parallel_random_init ....................... False
15085
+ data_parallel_sharding_strategy ................. no_shard
15086
+ data_parallel_size .............................. 1
15087
+ data_path ....................................... None
15088
+ data_per_class_fraction ......................... 1.0
15089
+ data_sharding ................................... True
15090
+ dataloader_type ................................. single
15091
+ ddp_average_in_collective ....................... False
15092
+ ddp_bucket_size ................................. None
15093
+ ddp_num_buckets ................................. None
15094
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
15095
+ decoder_first_pipeline_num_layers ............... None
15096
+ decoder_last_pipeline_num_layers ................ None
15097
+ decoder_num_layers .............................. None
15098
+ decoder_seq_length .............................. None
15099
+ decoupled_lr .................................... None
15100
+ decoupled_min_lr ................................ None
15101
+ decrease_batch_size_if_needed ................... False
15102
+ defer_embedding_wgrad_compute ................... False
15103
+ deprecated_use_mcore_models ..................... False
15104
+ deterministic_mode .............................. False
15105
+ dino_bottleneck_size ............................ 256
15106
+ dino_freeze_last_layer .......................... 1
15107
+ dino_head_hidden_size ........................... 2048
15108
+ dino_local_crops_number ......................... 10
15109
+ dino_local_img_size ............................. 96
15110
+ dino_norm_last_layer ............................ False
15111
+ dino_teacher_temp ............................... 0.07
15112
+ dino_warmup_teacher_temp ........................ 0.04
15113
+ dino_warmup_teacher_temp_epochs ................. 30
15114
+ disable_bf16_reduced_precision_matmul ........... False
15115
+ disable_mamba_mem_eff_path ...................... False
15116
+ disable_straggler_on_startup .................... False
15117
+ dist_ckpt_format_deprecated ..................... None
15118
+ dist_ckpt_strictness ............................ assume_ok_unexpected
15119
+ distribute_saved_activations .................... False
15120
+ distributed_backend ............................. nccl
15121
+ distributed_timeout_minutes ..................... 10
15122
+ embedding_path .................................. None
15123
+ empty_unused_memory_level ....................... 0
15124
+ enable_cuda_graph ............................... False
15125
+ enable_ft_package ............................... False
15126
+ enable_gloo_process_groups ...................... True
15127
+ enable_msc ...................................... True
15128
+ enable_one_logger ............................... True
15129
+ encoder_num_layers .............................. 2
15130
+ encoder_pipeline_model_parallel_size ............ 0
15131
+ encoder_seq_length .............................. 65536
15132
+ encoder_tensor_model_parallel_size .............. 0
15133
+ end_weight_decay ................................ 0.1
15134
+ eod_mask_loss ................................... False
15135
+ error_injection_rate ............................ 0
15136
+ error_injection_type ............................ transient_error
15137
+ eval_interval ................................... 16
15138
+ eval_iters ...................................... 1
15139
+ evidence_data_path .............................. None
15140
+ exit_duration_in_mins ........................... None
15141
+ exit_interval ................................... None
15142
+ exit_on_missing_checkpoint ...................... False
15143
+ exit_signal_handler ............................. False
15144
+ exp_avg_dtype ................................... torch.float32
15145
+ exp_avg_sq_dtype ................................ torch.float32
15146
+ expert_model_parallel_size ...................... 1
15147
+ expert_tensor_parallel_size ..................... 2
15148
+ external_cuda_graph ............................. False
15149
+ ffn_hidden_size ................................. 16384
15150
+ finetune ........................................ False
15151
+ first_last_layers_bf16 .......................... False
15152
+ flash_decode .................................... False
15153
+ fp16 ............................................ True
15154
+ fp16_lm_cross_entropy ........................... False
15155
+ fp32_residual_connection ........................ False
15156
+ fp8 ............................................. None
15157
+ fp8_amax_compute_algo ........................... most_recent
15158
+ fp8_amax_history_len ............................ 1
15159
+ fp8_interval .................................... 1
15160
+ fp8_margin ...................................... 0
15161
+ fp8_param_gather ................................ False
15162
+ fp8_recipe ...................................... delayed
15163
+ fp8_wgrad ....................................... True
15164
+ fsdp_double_buffer .............................. False
15165
+ global_batch_size ............................... 1
15166
+ grad_reduce_in_bf16 ............................. False
15167
+ gradient_accumulation_fusion .................... True
15168
+ gradient_reduce_div_fusion ...................... True
15169
+ group_query_attention ........................... True
15170
+ head_lr_mult .................................... 1.0
15171
+ heterogeneous_layers_config_encoded_json ........ None
15172
+ heterogeneous_layers_config_path ................ None
15173
+ hidden_dropout .................................. 0.1
15174
+ hidden_size ..................................... 4096
15175
+ hierarchical_context_parallel_sizes ............. None
15176
+ high_priority_stream_groups ..................... []
15177
+ hybrid_attention_ratio .......................... 0.0
15178
+ hybrid_mlp_ratio ................................ 0.0
15179
+ hybrid_override_pattern ......................... None
15180
+ hysteresis ...................................... 2
15181
+ ict_head_size ................................... None
15182
+ ict_load ........................................ None
15183
+ img_h ........................................... 224
15184
+ img_w ........................................... 224
15185
+ indexer_batch_size .............................. 128
15186
+ indexer_log_interval ............................ 1000
15187
+ inference_batch_times_seqlen_threshold .......... -1
15188
+ inference_dynamic_batching ...................... False
15189
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
15190
+ inference_dynamic_batching_buffer_overflow_factor None
15191
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
15192
+ inference_dynamic_batching_chunk_size ........... 256
15193
+ inference_dynamic_batching_max_requests_override None
15194
+ inference_dynamic_batching_max_tokens_override .. None
15195
+ inference_max_batch_size ........................ 8
15196
+ inference_max_seq_length ........................ 2560
15197
+ inference_rng_tracker ........................... False
15198
+ init_method_std ................................. 0.02
15199
+ init_method_xavier_uniform ...................... False
15200
+ init_model_with_meta_device ..................... False
15201
+ initial_loss_scale .............................. 4294967296
15202
+ inprocess_active_world_size ..................... 8
15203
+ inprocess_barrier_timeout ....................... 120
15204
+ inprocess_completion_timeout .................... 120
15205
+ inprocess_empty_cuda_cache ...................... False
15206
+ inprocess_granularity ........................... node
15207
+ inprocess_hard_timeout .......................... 90
15208
+ inprocess_heartbeat_interval .................... 30
15209
+ inprocess_heartbeat_timeout ..................... 60
15210
+ inprocess_last_call_wait ........................ 1
15211
+ inprocess_max_iterations ........................ None
15212
+ inprocess_monitor_process_interval .............. 1.0
15213
+ inprocess_monitor_thread_interval ............... 1.0
15214
+ inprocess_progress_watchdog_interval ............ 1.0
15215
+ inprocess_restart ............................... False
15216
+ inprocess_soft_timeout .......................... 60
15217
+ inprocess_termination_grace_time ................ 1
15218
+ is_hybrid_model ................................. False
15219
+ iter_per_epoch .................................. 1250
15220
+ iterations_to_skip .............................. []
15221
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
15222
+ kv_channels ..................................... 64
15223
+ kv_lora_rank .................................... 32
15224
+ lazy_mpu_init ................................... None
15225
+ load ............................................ gpt-checkpoint
15226
+ load_model_opt_format ........................... False
15227
+ local_rank ...................................... 0
15228
+ log_interval .................................... 1
15229
+ log_loss_scale_to_tensorboard ................... True
15230
+ log_memory_to_tensorboard ....................... False
15231
+ log_num_zeros_in_grad ........................... False
15232
+ log_params_norm ................................. False
15233
+ log_progress .................................... False
15234
+ log_straggler ................................... False
15235
+ log_throughput .................................. False
15236
+ log_timers_to_tensorboard ....................... False
15237
+ log_validation_ppl_to_tensorboard ............... False
15238
+ log_world_size_to_tensorboard ................... False
15239
+ logging_level ................................... 0
15240
+ loss_scale ...................................... None
15241
+ loss_scale_window ............................... 1000
15242
+ lr .............................................. 0.0005
15243
+ lr_decay_iters .................................. 150000
15244
+ lr_decay_samples ................................ None
15245
+ lr_decay_style .................................. cosine
15246
+ lr_warmup_fraction .............................. None
15247
+ lr_warmup_init .................................. 0.0
15248
+ lr_warmup_iters ................................. 2
15249
+ lr_warmup_samples ............................... 0
15250
+ lr_wsd_decay_iters .............................. None
15251
+ lr_wsd_decay_samples ............................ None
15252
+ lr_wsd_decay_style .............................. exponential
15253
+ main_grads_dtype ................................ torch.float32
15254
+ main_params_dtype ............................... torch.float32
15255
+ make_vocab_size_divisible_by .................... 128
15256
+ mamba_head_dim .................................. 64
15257
+ mamba_num_groups ................................ 8
15258
+ mamba_num_heads ................................. None
15259
+ mamba_state_dim ................................. 128
15260
+ manual_gc ....................................... False
15261
+ manual_gc_eval .................................. True
15262
+ manual_gc_interval .............................. 0
15263
+ mask_factor ..................................... 1.0
15264
+ mask_prob ....................................... 0.15
15265
+ mask_type ....................................... random
15266
+ masked_softmax_fusion ........................... True
15267
+ max_position_embeddings ......................... 65536
15268
+ max_tokens_to_oom ............................... 12000
15269
+ memory_snapshot_path ............................ snapshot.pickle
15270
+ merge_file ...................................... merges.txt
15271
+ micro_batch_size ................................ 1
15272
+ microbatch_group_size_per_vp_stage .............. None
15273
+ mid_level_dataset_surplus ....................... 0.005
15274
+ min_loss_scale .................................. 1.0
15275
+ min_lr .......................................... 0.0
15276
+ mlp_chunks_for_prefill .......................... 1
15277
+ mmap_bin_files .................................. True
15278
+ mock_data ....................................... True
15279
+ moe_apply_probs_on_input ........................ False
15280
+ moe_aux_loss_coeff .............................. 0.0
15281
+ moe_enable_deepep ............................... False
15282
+ moe_expert_capacity_factor ...................... None
15283
+ moe_extended_tp ................................. False
15284
+ moe_ffn_hidden_size ............................. None
15285
+ moe_grouped_gemm ................................ False
15286
+ moe_input_jitter_eps ............................ None
15287
+ moe_layer_freq .................................. 1
15288
+ moe_layer_recompute ............................. False
15289
+ moe_pad_expert_input_to_capacity ................ False
15290
+ moe_per_layer_logging ........................... False
15291
+ moe_permute_fusion .............................. False
15292
+ moe_router_bias_update_rate ..................... 0.001
15293
+ moe_router_dtype ................................ None
15294
+ moe_router_enable_expert_bias ................... False
15295
+ moe_router_force_load_balancing ................. False
15296
+ moe_router_group_topk ........................... None
15297
+ moe_router_load_balancing_type .................. aux_loss
15298
+ moe_router_num_groups ........................... None
15299
+ moe_router_padding_for_fp8 ...................... False
15300
+ moe_router_pre_softmax .......................... False
15301
+ moe_router_score_function ....................... softmax
15302
+ moe_router_topk ................................. 2
15303
+ moe_router_topk_scaling_factor .................. None
15304
+ moe_shared_expert_intermediate_size ............. None
15305
+ moe_shared_expert_overlap ....................... False
15306
+ moe_token_dispatcher_type ....................... allgather
15307
+ moe_token_drop_policy ........................... probs
15308
+ moe_use_legacy_grouped_gemm ..................... False
15309
+ moe_use_upcycling ............................... False
15310
+ moe_z_loss_coeff ................................ None
15311
+ mrope_section ................................... None
15312
+ mscale .......................................... 1.0
15313
+ mscale_all_dim .................................. 1.0
15314
+ mtp_loss_scaling_factor ......................... 0.1
15315
+ mtp_num_layers .................................. None
15316
+ multi_latent_attention .......................... False
15317
+ nccl_all_reduce_for_prefill ..................... False
15318
+ nccl_communicator_config_path ................... None
15319
+ nccl_ub ......................................... False
15320
+ no_load_optim ................................... None
15321
+ no_load_rng ..................................... None
15322
+ no_persist_layer_norm ........................... False
15323
+ no_rope_freq .................................... None
15324
+ no_save_optim ................................... None
15325
+ no_save_rng ..................................... None
15326
+ non_persistent_ckpt_type ........................ None
15327
+ non_persistent_global_ckpt_dir .................. None
15328
+ non_persistent_local_ckpt_algo .................. fully_parallel
15329
+ non_persistent_local_ckpt_dir ................... None
15330
+ non_persistent_save_interval .................... None
15331
+ norm_epsilon .................................... 1e-05
15332
+ normalization ................................... LayerNorm
15333
+ num_attention_heads ............................. 64
15334
+ num_channels .................................... 3
15335
+ num_classes ..................................... 1000
15336
+ num_dataset_builder_threads ..................... 1
15337
+ num_distributed_optimizer_instances ............. 1
15338
+ num_experts ..................................... None
15339
+ num_layers ...................................... 2
15340
+ num_layers_at_end_in_bf16 ....................... 1
15341
+ num_layers_at_start_in_bf16 ..................... 1
15342
+ num_layers_per_virtual_pipeline_stage ........... None
15343
+ num_query_groups ................................ 16
15344
+ num_virtual_stages_per_pipeline_rank ............ None
15345
+ num_workers ..................................... 2
15346
+ object_storage_cache_path ....................... None
15347
+ one_logger_async ................................ False
15348
+ one_logger_project .............................. megatron-lm
15349
+ one_logger_run_name ............................. None
15350
+ onnx_safe ....................................... None
15351
+ openai_gelu ..................................... False
15352
+ optimizer ....................................... adam
15353
+ optimizer_cpu_offload ........................... False
15354
+ optimizer_offload_fraction ...................... 1.0
15355
+ output_bert_embeddings .......................... False
15356
+ overlap_cpu_optimizer_d2h_h2d ................... False
15357
+ overlap_grad_reduce ............................. False
15358
+ overlap_p2p_comm ................................ False
15359
+ overlap_p2p_comm_warmup_flush ................... False
15360
+ overlap_param_gather ............................ False
15361
+ overlap_param_gather_with_optimizer_step ........ False
15362
+ override_opt_param_scheduler .................... False
15363
+ params_dtype .................................... torch.float16
15364
+ patch_dim ....................................... 16
15365
+ per_split_data_args_path ........................ None
15366
+ perform_initialization .......................... True
15367
+ pin_cpu_grads ................................... True
15368
+ pin_cpu_params .................................. True
15369
+ pipeline_model_parallel_comm_backend ............ None
15370
+ pipeline_model_parallel_size .................... 1
15371
+ pipeline_model_parallel_split_rank .............. None
15372
+ position_embedding_type ......................... learned_absolute
15373
+ pretrained_checkpoint ........................... None
15374
+ profile ......................................... False
15375
+ profile_ranks ................................... [0]
15376
+ profile_step_end ................................ 12
15377
+ profile_step_start .............................. 10
15378
+ q_lora_rank ..................................... None
15379
+ qk_head_dim ..................................... 128
15380
+ qk_l2_norm ...................................... False
15381
+ qk_layernorm .................................... False
15382
+ qk_pos_emb_head_dim ............................. 64
15383
+ query_in_block_prob ............................. 0.1
15384
+ rampup_batch_size ............................... None
15385
+ rank ............................................ 0
15386
+ recompute_granularity ........................... None
15387
+ recompute_method ................................ None
15388
+ recompute_modules ............................... None
15389
+ recompute_num_layers ............................ None
15390
+ record_memory_history ........................... False
15391
+ relative_attention_max_distance ................. 128
15392
+ relative_attention_num_buckets .................. 32
15393
+ replication ..................................... False
15394
+ replication_factor .............................. 2
15395
+ replication_jump ................................ None
15396
+ rerun_mode ...................................... disabled
15397
+ reset_attention_mask ............................ False
15398
+ reset_position_ids .............................. False
15399
+ result_rejected_tracker_filename ................ None
15400
+ retriever_report_topk_accuracies ................ []
15401
+ retriever_score_scaling ......................... False
15402
+ retriever_seq_length ............................ 256
15403
+ retro_add_retriever ............................. False
15404
+ retro_attention_gate ............................ 1
15405
+ retro_cyclic_train_iters ........................ None
15406
+ retro_encoder_attention_dropout ................. 0.1
15407
+ retro_encoder_hidden_dropout .................... 0.1
15408
+ retro_encoder_layers ............................ 2
15409
+ retro_num_neighbors ............................. 2
15410
+ retro_num_retrieved_chunks ...................... 2
15411
+ retro_project_dir ............................... None
15412
+ retro_verify_neighbor_count ..................... True
15413
+ rope_scaling_factor ............................. 8.0
15414
+ rotary_base ..................................... 10000
15415
+ rotary_interleaved .............................. False
15416
+ rotary_percent .................................. 1.0
15417
+ rotary_scaling_factor ........................... 1.0
15418
+ rotary_seq_len_interpolation_factor ............. None
15419
+ run_workload_inspector_server ................... False
15420
+ sample_rate ..................................... 1.0
15421
+ save ............................................ gpt-checkpoint
15422
+ save_interval ................................... 16
15423
+ scatter_gather_tensors_in_pipeline .............. True
15424
+ seed ............................................ 1234
15425
+ seq_length ...................................... 65536
15426
+ sequence_parallel ............................... False
15427
+ sgd_momentum .................................... 0.9
15428
+ short_seq_prob .................................. 0.1
15429
+ skip_train ...................................... False
15430
+ skipped_train_samples ........................... 0
15431
+ spec ............................................ None
15432
+ split ........................................... None
15433
+ squared_relu .................................... False
15434
+ start_weight_decay .............................. 0.1
15435
+ straggler_ctrlr_port ............................ 65535
15436
+ straggler_minmax_count .......................... 1
15437
+ suggested_communication_unit_size ............... None
15438
+ swiglu .......................................... False
15439
+ swin_backbone_type .............................. tiny
15440
+ symmetric_ar_type ............................... None
15441
+ te_rng_tracker .................................. False
15442
+ tensor_model_parallel_size ...................... 2
15443
+ tensorboard_dir ................................. tensorboard-logs/
15444
+ tensorboard_log_interval ........................ 1
15445
+ tensorboard_queue_size .......................... 1000
15446
+ test_data_path .................................. None
15447
+ test_mode ....................................... False
15448
+ tiktoken_num_special_tokens ..................... 1000
15449
+ tiktoken_pattern ................................ None
15450
+ tiktoken_special_tokens ......................... None
15451
+ timing_log_level ................................ 0
15452
+ timing_log_option ............................... minmax
15453
+ titles_data_path ................................ None
15454
+ tokenizer_model ................................. None
15455
+ tokenizer_type .................................. GPT2BPETokenizer
15456
+ torch_fsdp2_reshard_after_forward ............... True
15457
+ tp_comm_bootstrap_backend ....................... nccl
15458
+ tp_comm_bulk_dgrad .............................. True
15459
+ tp_comm_bulk_wgrad .............................. True
15460
+ tp_comm_overlap ................................. False
15461
+ tp_comm_overlap_ag .............................. True
15462
+ tp_comm_overlap_cfg ............................. None
15463
+ tp_comm_overlap_rs .............................. True
15464
+ tp_comm_overlap_rs_dgrad ........................ False
15465
+ tp_comm_split_ag ................................ True
15466
+ tp_comm_split_rs ................................ True
15467
+ train_data_path ................................. None
15468
+ train_iters ..................................... 10
15469
+ train_samples ................................... None
15470
+ train_sync_interval ............................. None
15471
+ transformer_impl ................................ transformer_engine
15472
+ transformer_pipeline_model_parallel_size ........ 1
15473
+ untie_embeddings_and_output_weights ............. False
15474
+ use_checkpoint_args ............................. False
15475
+ use_checkpoint_opt_param_scheduler .............. False
15476
+ use_cpu_initialization .......................... None
15477
+ use_custom_fsdp ................................. False
15478
+ use_dist_ckpt ................................... True
15479
+ use_dist_ckpt_deprecated ........................ False
15480
+ use_distributed_optimizer ....................... False
15481
+ use_flash_attn .................................. False
15482
+ use_legacy_models ............................... False
15483
+ use_mp_args_from_checkpoint_args ................ False
15484
+ use_one_sent_docs ............................... False
15485
+ use_persistent_ckpt_worker ...................... False
15486
+ use_precision_aware_optimizer ................... False
15487
+ use_pytorch_profiler ............................ False
15488
+ use_ring_exchange_p2p ........................... False
15489
+ use_rope_scaling ................................ False
15490
+ use_rotary_position_embeddings .................. False
15491
+ use_sharp ....................................... False
15492
+ use_tokenizer_model_from_checkpoint_args ........ True
15493
+ use_torch_fsdp2 ................................. False
15494
+ use_torch_optimizer_for_cpu_offload ............. False
15495
+ use_tp_pp_dp_mapping ............................ False
15496
+ v_head_dim ...................................... 128
15497
+ valid_data_path ................................. None
15498
+ variable_seq_lengths ............................ False
15499
+ virtual_pipeline_model_parallel_size ............ None
15500
+ vision_backbone_type ............................ vit
15501
+ vision_pretraining .............................. False
15502
+ vision_pretraining_type ......................... classify
15503
+ vocab_extra_ids ................................. 0
15504
+ vocab_file ...................................... vocab.json
15505
+ vocab_size ...................................... None
15506
+ wandb_exp_name ..................................
15507
+ wandb_project ...................................
15508
+ wandb_save_dir ..................................
15509
+ weight_decay .................................... 0.1
15510
+ weight_decay_incr_style ......................... constant
15511
+ wgrad_deferral_limit ............................ 0
15512
+ world_size ...................................... 8
15513
+ yaml_cfg ........................................ None
15514
+ -------------------- end of arguments ---------------------
15515
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
15516
+ > building GPT2BPETokenizer tokenizer ...
15517
+ INFO:megatron.training.initialize:Setting logging level to 0
15518
+ > padded vocab (size: 50257) with 175 dummy tokens (new size: 50432)
15519
+ INFO:megatron.training.initialize:Setting logging level to 0
15520
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
15521
+ > initializing torch distributed ...
15522
+ INFO:megatron.training.initialize:Setting logging level to 0
15523
+ INFO:megatron.training.initialize:Setting logging level to 0
15524
+ INFO:megatron.training.initialize:Setting logging level to 0
15525
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
15526
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
15527
+ INFO:megatron.training.initialize:Setting logging level to 0
15528
+ INFO:megatron.training.initialize:Setting logging level to 0
15529
+ INFO:megatron.training.initialize:Setting logging level to 0
15530
+ > initialized tensor model parallel with size 2
15531
+ > initialized pipeline model parallel with size 1
15532
+ > setting random seeds to 1234 ...
15533
+ > compiling dataset index builder ...
15534
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15535
+ make: Nothing to be done for 'default'.
15536
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15537
+ >>> done with dataset index builder. Compilation time: 0.043 seconds
15538
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
15539
+ > compiling and loading fused kernels ...
15540
+ >>> done with compiling and loading fused kernels. Compilation time: 2.203 seconds
15541
+ time to initialize megatron (seconds): 8.105
15542
+ [after megatron is initialized] datetime: 2025-06-21 22:07:42
15543
+ building GPT model ...
15544
+ >>> embedding
15545
+ >>> decoder
15546
+ >>> output_layer
15547
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 547960832
15548
+ >>> embedding
15549
+ >>> decoder
15550
+ >>> output_layer
15551
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 547960832
15552
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
15553
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
15554
+ Params for bucket 1 (547960832 elements, 547960832 padded size):
15555
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
15556
+ module.embedding.position_embeddings.weight
15557
+ module.decoder.layers.1.mlp.linear_fc1.bias
15558
+ module.decoder.layers.0.mlp.linear_fc2.weight
15559
+ module.decoder.layers.0.mlp.linear_fc1.bias
15560
+ module.embedding.word_embeddings.weight
15561
+ module.decoder.final_layernorm.bias
15562
+ module.decoder.layers.1.self_attention.linear_qkv.weight
15563
+ module.decoder.layers.1.self_attention.linear_proj.weight
15564
+ module.decoder.layers.0.self_attention.linear_qkv.bias
15565
+ module.decoder.layers.1.mlp.linear_fc2.weight
15566
+ module.decoder.layers.1.self_attention.linear_proj.bias
15567
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
15568
+ module.decoder.final_layernorm.weight
15569
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
15570
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
15571
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
15572
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
15573
+ module.decoder.layers.1.self_attention.linear_qkv.bias
15574
+ module.decoder.layers.0.mlp.linear_fc2.bias
15575
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
15576
+ module.decoder.layers.1.mlp.linear_fc1.weight
15577
+ module.decoder.layers.0.mlp.linear_fc1.weight
15578
+ module.decoder.layers.0.self_attention.linear_proj.weight
15579
+ module.decoder.layers.1.mlp.linear_fc2.bias
15580
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
15581
+ module.decoder.layers.0.self_attention.linear_qkv.weight
15582
+ module.decoder.layers.0.self_attention.linear_proj.bias
15583
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14648e78ab40>, config_logger_dir='')
15584
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
15585
+ >>> embedding
15586
+ >>> decoder
15587
+ >>> output_layer
15588
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 547960832
15589
+ >>> embedding
15590
+ >>> decoder
15591
+ >>> output_layer
15592
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 547960832
15593
+ >>> embedding
15594
+ >>> decoder
15595
+ >>> output_layer
15596
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 547960832
15597
+ >>> embedding
15598
+ >>> decoder
15599
+ >>> output_layer
15600
+ >>> embedding
15601
+ >>> decoder
15602
+ >>> output_layer
15603
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 547960832
15604
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 547960832
15605
+ >>> embedding
15606
+ >>> decoder
15607
+ >>> output_layer
15608
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 547960832
15609
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
15610
+ will not load any checkpoints and will start from random
15611
+ (min, max) time across ranks (ms):
15612
+ load-checkpoint ................................: (3.34, 3.61)
15613
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 22:07:45
15614
+ > building train, validation, and test datasets ...
15615
+ > datasets target sizes (minimum size):
15616
+ train: 10
15617
+ validation: 1
15618
+ test: 1
15619
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
15620
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
15621
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
15622
+ > building train, validation, and test datasets for GPT ...
15623
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=65536, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x146492c8d430>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
15624
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
15625
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15626
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15627
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005054 seconds
15628
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1040
15629
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15630
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
15631
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15632
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15633
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001612 seconds
15634
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1040
15635
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15636
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
15637
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15638
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15639
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001329 seconds
15640
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1041
15641
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15642
+ > finished creating GPT datasets ...
15643
+ [after dataloaders are built] datetime: 2025-06-21 22:07:45
15644
+ done with setup ...
15645
+ training ...
15646
+ (min, max) time across ranks (ms):
15647
+ model-and-optimizer-setup ......................: (3145.17, 3164.84)
15648
+ train/valid/test-data-iterators-setup ..........: (20.84, 151.43)
15649
+ Setting rerun_state_machine.current_iteration to 0...
15650
+ [before the start of training step] datetime: 2025-06-21 22:07:45
15651
+ batch tensor: tokens torch.Size([2, 131072])
15652
+ batch tensor: labels torch.Size([2, 131072])
15653
+ batch tensor: loss_mask torch.Size([2, 131072])
15654
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15655
+ batch tensor: position_ids torch.Size([2, 131072])
15656
+ batch tensor after cp: tokens torch.Size([2, 32768])
15657
+ batch tensor after cp: labels torch.Size([2, 32768])
15658
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15659
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15660
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15661
+ batch tensor: tokens torch.Size([2, 131072])
15662
+ batch tensor: labels torch.Size([2, 131072])
15663
+ batch tensor: loss_mask torch.Size([2, 131072])
15664
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15665
+ batch tensor: position_ids torch.Size([2, 131072])
15666
+ batch tensor: tokens torch.Size([2, 131072])
15667
+ batch tensor: labels torch.Size([2, 131072])
15668
+ batch tensor: loss_mask torch.Size([2, 131072])
15669
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15670
+ batch tensor: position_ids torch.Size([2, 131072])
15671
+ batch tensor: tokens torch.Size([2, 131072])
15672
+ batch tensor: labels torch.Size([2, 131072])
15673
+ batch tensor: loss_mask torch.Size([2, 131072])
15674
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15675
+ batch tensor: position_ids torch.Size([2, 131072])
15676
+ batch tensor after cp: tokens torch.Size([2, 32768])
15677
+ batch tensor after cp: labels torch.Size([2, 32768])
15678
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15679
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15680
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15681
+ batch tensor: tokens torch.Size([2, 131072])
15682
+ batch tensor: labels torch.Size([2, 131072])
15683
+ batch tensor: loss_mask torch.Size([2, 131072])
15684
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15685
+ batch tensor: position_ids torch.Size([2, 131072])
15686
+ batch tensor after cp: tokens torch.Size([2, 32768])
15687
+ batch tensor after cp: labels torch.Size([2, 32768])
15688
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15689
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15690
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15691
+ batch tensor after cp: tokens torch.Size([2, 32768])
15692
+ batch tensor after cp: labels torch.Size([2, 32768])
15693
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15694
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15695
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15696
+ batch tensor after cp: tokens torch.Size([2, 32768])
15697
+ batch tensor after cp: labels torch.Size([2, 32768])
15698
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15699
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15700
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15701
+ batch tensor: tokens torch.Size([2, 131072])
15702
+ batch tensor: labels torch.Size([2, 131072])
15703
+ batch tensor: loss_mask torch.Size([2, 131072])
15704
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15705
+ batch tensor: position_ids torch.Size([2, 131072])
15706
+ batch tensor after cp: tokens torch.Size([2, 32768])
15707
+ batch tensor after cp: labels torch.Size([2, 32768])
15708
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15709
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15710
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15711
+ batch tensor: tokens torch.Size([2, 131072])
15712
+ batch tensor: labels torch.Size([2, 131072])
15713
+ batch tensor: loss_mask torch.Size([2, 131072])
15714
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15715
+ batch tensor: position_ids torch.Size([2, 131072])
15716
+ batch tensor after cp: tokens torch.Size([2, 32768])
15717
+ batch tensor after cp: labels torch.Size([2, 32768])
15718
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15719
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15720
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15721
+ batch tensor: tokens torch.Size([2, 131072])
15722
+ batch tensor: labels torch.Size([2, 131072])
15723
+ batch tensor: loss_mask torch.Size([2, 131072])
15724
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
15725
+ batch tensor: position_ids torch.Size([2, 131072])
15726
+ batch tensor after cp: tokens torch.Size([2, 32768])
15727
+ batch tensor after cp: labels torch.Size([2, 32768])
15728
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
15729
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
15730
+ batch tensor after cp: position_ids torch.Size([2, 32768])
15731
+ Start exporting trace 0
15732
+ Done exporting trace 0
attnserver.run_attnserver.slurm.sh.343248.err.log CHANGED
@@ -1979,3 +1979,671 @@ W0621 22:07:02.709000 2401561 site-packages/torch/distributed/run.py:766] ******
1979
  [rank2]:[W621 22:07:25.571074360 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1980
  [rank4]:[W621 22:07:25.571438088 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1981
  [rank0]:[W621 22:07:25.706691733 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
  [rank2]:[W621 22:07:25.571074360 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1980
  [rank4]:[W621 22:07:25.571438088 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1981
  [rank0]:[W621 22:07:25.706691733 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1982
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1983
+ warnings.warn(
1984
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1985
+ warnings.warn(
1986
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1987
+ warnings.warn(
1988
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1989
+ warnings.warn(
1990
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1991
+ warnings.warn(
1992
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1993
+ warnings.warn(
1994
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1995
+ warnings.warn(
1996
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1997
+ warnings.warn(
1998
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1999
+ warnings.warn(
2000
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2001
+ warnings.warn(
2002
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2003
+ warnings.warn(
2004
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2005
+ warnings.warn(
2006
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2007
+ warnings.warn(
2008
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2009
+ warnings.warn(
2010
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2011
+ warnings.warn(
2012
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2013
+ warnings.warn(
2014
+ [rank3]: Traceback (most recent call last):
2015
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2016
+ [rank3]: pretrain(
2017
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2018
+ [rank3]: iteration, num_floating_point_operations_so_far = train(
2019
+ [rank3]: ^^^^^^
2020
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2021
+ [rank3]: ) = train_step(
2022
+ [rank3]: ^^^^^^^^^^^
2023
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2024
+ [rank3]: losses_reduced = forward_backward_func(
2025
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^
2026
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2027
+ [rank3]: output_tensor, num_tokens = forward_step(
2028
+ [rank3]: ^^^^^^^^^^^^^
2029
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2030
+ [rank3]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2031
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2032
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2033
+ [rank3]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2034
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^
2035
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2036
+ [rank3]: batch = next(global_batches)
2037
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^
2038
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2039
+ [rank3]: attention_mask = torch.ones(
2040
+ [rank3]: ^^^^^^^^^^^
2041
+ [rank3]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2042
+ [rank5]: Traceback (most recent call last):
2043
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2044
+ [rank5]: pretrain(
2045
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2046
+ [rank5]: iteration, num_floating_point_operations_so_far = train(
2047
+ [rank5]: ^^^^^^
2048
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2049
+ [rank5]: ) = train_step(
2050
+ [rank5]: ^^^^^^^^^^^
2051
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2052
+ [rank5]: losses_reduced = forward_backward_func(
2053
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^
2054
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2055
+ [rank5]: output_tensor, num_tokens = forward_step(
2056
+ [rank5]: ^^^^^^^^^^^^^
2057
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2058
+ [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2059
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2060
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2061
+ [rank5]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2062
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^
2063
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2064
+ [rank5]: batch = next(global_batches)
2065
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^
2066
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2067
+ [rank5]: attention_mask = torch.ones(
2068
+ [rank5]: ^^^^^^^^^^^
2069
+ [rank5]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2070
+ [rank4]: Traceback (most recent call last):
2071
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2072
+ [rank4]: pretrain(
2073
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2074
+ [rank4]: iteration, num_floating_point_operations_so_far = train(
2075
+ [rank4]: ^^^^^^
2076
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2077
+ [rank4]: ) = train_step(
2078
+ [rank4]: ^^^^^^^^^^^
2079
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2080
+ [rank4]: losses_reduced = forward_backward_func(
2081
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^
2082
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2083
+ [rank4]: output_tensor, num_tokens = forward_step(
2084
+ [rank4]: ^^^^^^^^^^^^^
2085
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2086
+ [rank4]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2087
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2088
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2089
+ [rank4]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2090
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^
2091
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2092
+ [rank4]: batch = next(global_batches)
2093
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^
2094
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2095
+ [rank4]: attention_mask = torch.ones(
2096
+ [rank4]: ^^^^^^^^^^^
2097
+ [rank4]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2098
+ [rank2]: Traceback (most recent call last):
2099
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2100
+ [rank2]: pretrain(
2101
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2102
+ [rank2]: iteration, num_floating_point_operations_so_far = train(
2103
+ [rank2]: ^^^^^^
2104
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2105
+ [rank2]: ) = train_step(
2106
+ [rank2]: ^^^^^^^^^^^
2107
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2108
+ [rank2]: losses_reduced = forward_backward_func(
2109
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^
2110
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2111
+ [rank2]: output_tensor, num_tokens = forward_step(
2112
+ [rank2]: ^^^^^^^^^^^^^
2113
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2114
+ [rank2]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2115
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2116
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2117
+ [rank2]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2118
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^
2119
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2120
+ [rank2]: batch = next(global_batches)
2121
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^
2122
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2123
+ [rank2]: attention_mask = torch.ones(
2124
+ [rank2]: ^^^^^^^^^^^
2125
+ [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2126
+ [rank1]: Traceback (most recent call last):
2127
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2128
+ [rank1]: pretrain(
2129
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2130
+ [rank1]: iteration, num_floating_point_operations_so_far = train(
2131
+ [rank1]: ^^^^^^
2132
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2133
+ [rank1]: ) = train_step(
2134
+ [rank1]: ^^^^^^^^^^^
2135
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2136
+ [rank1]: losses_reduced = forward_backward_func(
2137
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^
2138
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2139
+ [rank1]: output_tensor, num_tokens = forward_step(
2140
+ [rank1]: ^^^^^^^^^^^^^
2141
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2142
+ [rank1]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2143
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2144
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2145
+ [rank1]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2146
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^
2147
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2148
+ [rank1]: batch = next(global_batches)
2149
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^
2150
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2151
+ [rank1]: attention_mask = torch.ones(
2152
+ [rank1]: ^^^^^^^^^^^
2153
+ [rank1]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2154
+ [rank0]: Traceback (most recent call last):
2155
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2156
+ [rank0]: pretrain(
2157
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2158
+ [rank0]: iteration, num_floating_point_operations_so_far = train(
2159
+ [rank0]: ^^^^^^
2160
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2161
+ [rank0]: ) = train_step(
2162
+ [rank0]: ^^^^^^^^^^^
2163
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2164
+ [rank0]: losses_reduced = forward_backward_func(
2165
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^
2166
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2167
+ [rank0]: output_tensor, num_tokens = forward_step(
2168
+ [rank0]: ^^^^^^^^^^^^^
2169
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2170
+ [rank0]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2171
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2172
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2173
+ [rank0]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2174
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^
2175
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2176
+ [rank0]: batch = next(global_batches)
2177
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^
2178
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2179
+ [rank0]: attention_mask = torch.ones(
2180
+ [rank0]: ^^^^^^^^^^^
2181
+ [rank0]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2182
+ [rank6]: Traceback (most recent call last):
2183
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2184
+ [rank6]: pretrain(
2185
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2186
+ [rank6]: iteration, num_floating_point_operations_so_far = train(
2187
+ [rank6]: ^^^^^^
2188
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2189
+ [rank6]: ) = train_step(
2190
+ [rank6]: ^^^^^^^^^^^
2191
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2192
+ [rank6]: losses_reduced = forward_backward_func(
2193
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^
2194
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2195
+ [rank6]: output_tensor, num_tokens = forward_step(
2196
+ [rank6]: ^^^^^^^^^^^^^
2197
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2198
+ [rank6]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2199
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2200
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2201
+ [rank6]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2202
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^
2203
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2204
+ [rank6]: batch = next(global_batches)
2205
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^
2206
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2207
+ [rank6]: attention_mask = torch.ones(
2208
+ [rank6]: ^^^^^^^^^^^
2209
+ [rank6]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2210
+ [rank7]: Traceback (most recent call last):
2211
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2212
+ [rank7]: pretrain(
2213
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2214
+ [rank7]: iteration, num_floating_point_operations_so_far = train(
2215
+ [rank7]: ^^^^^^
2216
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2217
+ [rank7]: ) = train_step(
2218
+ [rank7]: ^^^^^^^^^^^
2219
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2220
+ [rank7]: losses_reduced = forward_backward_func(
2221
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^
2222
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2223
+ [rank7]: output_tensor, num_tokens = forward_step(
2224
+ [rank7]: ^^^^^^^^^^^^^
2225
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2226
+ [rank7]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2227
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2228
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2229
+ [rank7]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2230
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^
2231
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2232
+ [rank7]: batch = next(global_batches)
2233
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^
2234
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2235
+ [rank7]: attention_mask = torch.ones(
2236
+ [rank7]: ^^^^^^^^^^^
2237
+ [rank7]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 18432.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 134.86 GiB is free. Including non-PyTorch memory, this process has 4.95 GiB memory in use. Of the allocated memory 3.30 GiB is allocated by PyTorch, and 193.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2238
+ [rank1]:[W621 22:07:35.083637830 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2239
+ [rank3]:[W621 22:07:35.101784035 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2240
+ [rank7]:[W621 22:07:35.119439484 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2241
+ [rank5]:[W621 22:07:35.149691968 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2242
+ W0621 22:07:37.317000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401632 closing signal SIGTERM
2243
+ W0621 22:07:37.319000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401634 closing signal SIGTERM
2244
+ W0621 22:07:37.323000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401635 closing signal SIGTERM
2245
+ W0621 22:07:37.324000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401636 closing signal SIGTERM
2246
+ W0621 22:07:37.341000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401637 closing signal SIGTERM
2247
+ W0621 22:07:37.342000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401638 closing signal SIGTERM
2248
+ W0621 22:07:37.355000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2401639 closing signal SIGTERM
2249
+ E0621 22:07:37.530000 2401561 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 1 (pid: 2401633) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2250
+ Traceback (most recent call last):
2251
+ File "<frozen runpy>", line 198, in _run_module_as_main
2252
+ File "<frozen runpy>", line 88, in _run_code
2253
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2254
+ main()
2255
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2256
+ return arg(*args, **kwargs)
2257
+ ^^^^^^^^^^^^^^^^^^^^
2258
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2259
+ launch(args)
2260
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2261
+ run(args)
2262
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2263
+ elastic_launch(
2264
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2265
+ return launch_agent(self._config, self._entrypoint, list(args))
2266
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2267
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2268
+ raise ChildFailedError(
2269
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2270
+ ============================================================
2271
+ ./pretrain_gpt_profile.py FAILED
2272
+ ------------------------------------------------------------
2273
+ Failures:
2274
+ <NO_OTHER_FAILURES>
2275
+ ------------------------------------------------------------
2276
+ Root Cause (first observed failure):
2277
+ [0]:
2278
+ time : 2025-06-21_22:07:37
2279
+ host : fs-mbz-gpu-791
2280
+ rank : 1 (local_rank: 1)
2281
+ exitcode : 1 (pid: 2401633)
2282
+ error_file: <N/A>
2283
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2284
+ ============================================================
2285
+ + set +x
2286
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2287
+ + export PROF_CTX_LENGTH=32768
2288
+ + PROF_CTX_LENGTH=32768
2289
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L32768*tp2.cp4.bs32.json'
2290
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L32768*tp2.cp4.bs32.json' ']'
2291
+ + echo 'Running ctx_length=32768, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=32'
2292
+ + srun bash ./attnserver.sh
2293
+ + which python3
2294
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343248 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-791:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 32768 --max-position-embeddings 32768 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2295
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2296
+ and will be removed in future. Use torchrun.
2297
+ Note that --use-env is set by default in torchrun.
2298
+ If your script expects `--local-rank` argument to be set, please
2299
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2300
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2301
+ further instructions
2302
+
2303
+ main()
2304
+ W0621 22:07:41.521000 2403416 site-packages/torch/distributed/run.py:766]
2305
+ W0621 22:07:41.521000 2403416 site-packages/torch/distributed/run.py:766] *****************************************
2306
+ W0621 22:07:41.521000 2403416 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2307
+ W0621 22:07:41.521000 2403416 site-packages/torch/distributed/run.py:766] *****************************************
2308
+ [rank6]:[W621 22:08:04.724807006 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2309
+ [rank2]:[W621 22:08:04.724811060 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2310
+ [rank4]:[W621 22:08:04.724828424 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2311
+ [rank1]:[W621 22:08:04.725748608 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2312
+ [rank5]:[W621 22:08:04.725887611 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2313
+ [rank7]:[W621 22:08:04.726081401 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2314
+ [rank3]:[W621 22:08:04.730565763 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2315
+ [rank0]:[W621 22:08:04.851008941 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2316
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2317
+ warnings.warn(
2318
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2319
+ warnings.warn(
2320
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2321
+ warnings.warn(
2322
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2323
+ warnings.warn(
2324
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2325
+ warnings.warn(
2326
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2327
+ warnings.warn(
2328
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2329
+ warnings.warn(
2330
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2331
+ warnings.warn(
2332
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2333
+ warnings.warn(
2334
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2335
+ warnings.warn(
2336
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2337
+ warnings.warn(
2338
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2339
+ warnings.warn(
2340
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2341
+ warnings.warn(
2342
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2343
+ warnings.warn(
2344
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2345
+ warnings.warn(
2346
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2347
+ warnings.warn(
2348
+ [rank3]: Traceback (most recent call last):
2349
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2350
+ [rank3]: pretrain(
2351
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2352
+ [rank3]: iteration, num_floating_point_operations_so_far = train(
2353
+ [rank3]: ^^^^^^
2354
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2355
+ [rank3]: ) = train_step(
2356
+ [rank3]: ^^^^^^^^^^^
2357
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2358
+ [rank3]: losses_reduced = forward_backward_func(
2359
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^
2360
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2361
+ [rank3]: output_tensor, num_tokens = forward_step(
2362
+ [rank3]: ^^^^^^^^^^^^^
2363
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2364
+ [rank3]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2365
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2366
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2367
+ [rank3]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2368
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^
2369
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2370
+ [rank3]: batch = next(global_batches)
2371
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^
2372
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2373
+ [rank3]: attention_mask = torch.ones(
2374
+ [rank3]: ^^^^^^^^^^^
2375
+ [rank3]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2376
+ [rank4]: Traceback (most recent call last):
2377
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2378
+ [rank4]: pretrain(
2379
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2380
+ [rank4]: iteration, num_floating_point_operations_so_far = train(
2381
+ [rank4]: ^^^^^^
2382
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2383
+ [rank4]: ) = train_step(
2384
+ [rank4]: ^^^^^^^^^^^
2385
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2386
+ [rank4]: losses_reduced = forward_backward_func(
2387
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^
2388
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2389
+ [rank4]: output_tensor, num_tokens = forward_step(
2390
+ [rank4]: ^^^^^^^^^^^^^
2391
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2392
+ [rank4]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2393
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2394
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2395
+ [rank4]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2396
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^
2397
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2398
+ [rank4]: batch = next(global_batches)
2399
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^
2400
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2401
+ [rank4]: attention_mask = torch.ones(
2402
+ [rank4]: ^^^^^^^^^^^
2403
+ [rank4]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2404
+ [rank5]: Traceback (most recent call last):
2405
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2406
+ [rank5]: pretrain(
2407
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2408
+ [rank5]: iteration, num_floating_point_operations_so_far = train(
2409
+ [rank5]: ^^^^^^
2410
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2411
+ [rank5]: ) = train_step(
2412
+ [rank5]: ^^^^^^^^^^^
2413
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2414
+ [rank5]: losses_reduced = forward_backward_func(
2415
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^
2416
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2417
+ [rank5]: output_tensor, num_tokens = forward_step(
2418
+ [rank5]: ^^^^^^^^^^^^^
2419
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2420
+ [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2421
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2422
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2423
+ [rank5]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2424
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^
2425
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2426
+ [rank5]: batch = next(global_batches)
2427
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^
2428
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2429
+ [rank5]: attention_mask = torch.ones(
2430
+ [rank5]: ^^^^^^^^^^^
2431
+ [rank5]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2432
+ [rank0]: Traceback (most recent call last):
2433
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2434
+ [rank0]: pretrain(
2435
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2436
+ [rank0]: iteration, num_floating_point_operations_so_far = train(
2437
+ [rank0]: ^^^^^^
2438
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2439
+ [rank0]: ) = train_step(
2440
+ [rank0]: ^^^^^^^^^^^
2441
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2442
+ [rank0]: losses_reduced = forward_backward_func(
2443
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^
2444
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2445
+ [rank0]: output_tensor, num_tokens = forward_step(
2446
+ [rank0]: ^^^^^^^^^^^^^
2447
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2448
+ [rank0]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2449
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2450
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2451
+ [rank0]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2452
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^
2453
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2454
+ [rank0]: batch = next(global_batches)
2455
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^
2456
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2457
+ [rank0]: attention_mask = torch.ones(
2458
+ [rank0]: ^^^^^^^^^^^
2459
+ [rank0]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2460
+ [rank6]: Traceback (most recent call last):
2461
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2462
+ [rank6]: pretrain(
2463
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2464
+ [rank6]: iteration, num_floating_point_operations_so_far = train(
2465
+ [rank6]: ^^^^^^
2466
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2467
+ [rank6]: ) = train_step(
2468
+ [rank6]: ^^^^^^^^^^^
2469
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2470
+ [rank6]: losses_reduced = forward_backward_func(
2471
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^
2472
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2473
+ [rank6]: output_tensor, num_tokens = forward_step(
2474
+ [rank6]: ^^^^^^^^^^^^^
2475
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2476
+ [rank6]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2477
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2478
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2479
+ [rank6]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2480
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^
2481
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2482
+ [rank6]: batch = next(global_batches)
2483
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^
2484
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2485
+ [rank6]: attention_mask = torch.ones(
2486
+ [rank6]: ^^^^^^^^^^^
2487
+ [rank6]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2488
+ [rank7]: Traceback (most recent call last):
2489
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2490
+ [rank7]: pretrain(
2491
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2492
+ [rank7]: iteration, num_floating_point_operations_so_far = train(
2493
+ [rank7]: ^^^^^^
2494
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2495
+ [rank7]: ) = train_step(
2496
+ [rank7]: ^^^^^^^^^^^
2497
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2498
+ [rank7]: losses_reduced = forward_backward_func(
2499
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^
2500
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2501
+ [rank7]: output_tensor, num_tokens = forward_step(
2502
+ [rank7]: ^^^^^^^^^^^^^
2503
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2504
+ [rank7]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2505
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2506
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2507
+ [rank7]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2508
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^
2509
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2510
+ [rank7]: batch = next(global_batches)
2511
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^
2512
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2513
+ [rank7]: attention_mask = torch.ones(
2514
+ [rank7]: ^^^^^^^^^^^
2515
+ [rank7]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2516
+ [rank2]: Traceback (most recent call last):
2517
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2518
+ [rank2]: pretrain(
2519
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2520
+ [rank2]: iteration, num_floating_point_operations_so_far = train(
2521
+ [rank2]: ^^^^^^
2522
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2523
+ [rank2]: ) = train_step(
2524
+ [rank2]: ^^^^^^^^^^^
2525
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2526
+ [rank2]: losses_reduced = forward_backward_func(
2527
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^
2528
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2529
+ [rank2]: output_tensor, num_tokens = forward_step(
2530
+ [rank2]: ^^^^^^^^^^^^^
2531
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2532
+ [rank2]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2533
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2534
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2535
+ [rank2]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2536
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^
2537
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2538
+ [rank2]: batch = next(global_batches)
2539
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^
2540
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2541
+ [rank2]: attention_mask = torch.ones(
2542
+ [rank2]: ^^^^^^^^^^^
2543
+ [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2544
+ [rank1]: Traceback (most recent call last):
2545
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2546
+ [rank1]: pretrain(
2547
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
2548
+ [rank1]: iteration, num_floating_point_operations_so_far = train(
2549
+ [rank1]: ^^^^^^
2550
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
2551
+ [rank1]: ) = train_step(
2552
+ [rank1]: ^^^^^^^^^^^
2553
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
2554
+ [rank1]: losses_reduced = forward_backward_func(
2555
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^
2556
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
2557
+ [rank1]: output_tensor, num_tokens = forward_step(
2558
+ [rank1]: ^^^^^^^^^^^^^
2559
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
2560
+ [rank1]: output_tensor, loss_func = forward_step_func(data_iterator, model)
2561
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2562
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
2563
+ [rank1]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
2564
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^
2565
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
2566
+ [rank1]: batch = next(global_batches)
2567
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^
2568
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
2569
+ [rank1]: attention_mask = torch.ones(
2570
+ [rank1]: ^^^^^^^^^^^
2571
+ [rank1]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32768.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 134.42 GiB is free. Including non-PyTorch memory, this process has 5.38 GiB memory in use. Of the allocated memory 3.71 GiB is allocated by PyTorch, and 225.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
2572
+ [rank5]:[W621 22:08:15.174747082 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2573
+ [rank1]:[W621 22:08:15.215304489 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2574
+ [rank7]:[W621 22:08:15.215349183 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2575
+ [rank3]:[W621 22:08:15.235729396 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2576
+ W0621 22:08:17.165000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403487 closing signal SIGTERM
2577
+ W0621 22:08:17.169000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403488 closing signal SIGTERM
2578
+ W0621 22:08:17.169000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403489 closing signal SIGTERM
2579
+ W0621 22:08:17.171000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403490 closing signal SIGTERM
2580
+ W0621 22:08:17.171000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403491 closing signal SIGTERM
2581
+ W0621 22:08:17.190000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403493 closing signal SIGTERM
2582
+ W0621 22:08:17.193000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2403494 closing signal SIGTERM
2583
+ E0621 22:08:17.736000 2403416 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 5 (pid: 2403492) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2584
+ Traceback (most recent call last):
2585
+ File "<frozen runpy>", line 198, in _run_module_as_main
2586
+ File "<frozen runpy>", line 88, in _run_code
2587
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2588
+ main()
2589
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2590
+ return arg(*args, **kwargs)
2591
+ ^^^^^^^^^^^^^^^^^^^^
2592
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2593
+ launch(args)
2594
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2595
+ run(args)
2596
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2597
+ elastic_launch(
2598
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2599
+ return launch_agent(self._config, self._entrypoint, list(args))
2600
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2601
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2602
+ raise ChildFailedError(
2603
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2604
+ ============================================================
2605
+ ./pretrain_gpt_profile.py FAILED
2606
+ ------------------------------------------------------------
2607
+ Failures:
2608
+ <NO_OTHER_FAILURES>
2609
+ ------------------------------------------------------------
2610
+ Root Cause (first observed failure):
2611
+ [0]:
2612
+ time : 2025-06-21_22:08:17
2613
+ host : fs-mbz-gpu-791
2614
+ rank : 5 (local_rank: 5)
2615
+ exitcode : 1 (pid: 2403492)
2616
+ error_file: <N/A>
2617
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2618
+ ============================================================
2619
+ + set +x
2620
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2621
+ + export PROF_CTX_LENGTH=40960
2622
+ + PROF_CTX_LENGTH=40960
2623
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp2.cp4.bs32.json'
2624
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp2.cp4.bs32.json' ']'
2625
+ + echo 'Running ctx_length=40960, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=32'
2626
+ + srun bash ./attnserver.sh
2627
+ + which python3
2628
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343248 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-791:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 40960 --max-position-embeddings 40960 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2629
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2630
+ and will be removed in future. Use torchrun.
2631
+ Note that --use-env is set by default in torchrun.
2632
+ If your script expects `--local-rank` argument to be set, please
2633
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2634
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2635
+ further instructions
2636
+
2637
+ main()
2638
+ W0621 22:08:22.025000 2405252 site-packages/torch/distributed/run.py:766]
2639
+ W0621 22:08:22.025000 2405252 site-packages/torch/distributed/run.py:766] *****************************************
2640
+ W0621 22:08:22.025000 2405252 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2641
+ W0621 22:08:22.025000 2405252 site-packages/torch/distributed/run.py:766] *****************************************
2642
+ [rank5]:[W621 22:08:44.405819851 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2643
+ [rank3]:[W621 22:08:44.405819770 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2644
+ [rank7]:[W621 22:08:44.405833491 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2645
+ [rank1]:[W621 22:08:44.407927906 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2646
+ [rank4]:[W621 22:08:44.411396081 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2647
+ [rank6]:[W621 22:08:44.411456484 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2648
+ [rank2]:[W621 22:08:44.413885260 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2649
+ [rank0]:[W621 22:08:44.551861768 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
attnserver.run_attnserver.slurm.sh.343248.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343261.err.log CHANGED
@@ -200,3 +200,146 @@ W0621 22:06:13.082000 2070539 site-packages/torch/distributed/run.py:766] ******
200
  [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
201
  [rank0]: torch._C.PyTorchFileWriter(
202
  [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
  [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
201
  [rank0]: torch._C.PyTorchFileWriter(
202
  [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
203
+ [rank0]:[W621 22:07:31.451041648 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
204
+ W0621 22:07:35.198000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070611 closing signal SIGTERM
205
+ W0621 22:07:35.202000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070612 closing signal SIGTERM
206
+ W0621 22:07:35.205000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070613 closing signal SIGTERM
207
+ W0621 22:07:35.208000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070614 closing signal SIGTERM
208
+ W0621 22:07:35.228000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070615 closing signal SIGTERM
209
+ W0621 22:07:35.233000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070616 closing signal SIGTERM
210
+ W0621 22:07:35.235000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2070617 closing signal SIGTERM
211
+ E0621 22:07:36.786000 2070539 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 2070610) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
212
+ Traceback (most recent call last):
213
+ File "<frozen runpy>", line 198, in _run_module_as_main
214
+ File "<frozen runpy>", line 88, in _run_code
215
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
216
+ main()
217
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
218
+ return arg(*args, **kwargs)
219
+ ^^^^^^^^^^^^^^^^^^^^
220
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
221
+ launch(args)
222
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
223
+ run(args)
224
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
225
+ elastic_launch(
226
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
227
+ return launch_agent(self._config, self._entrypoint, list(args))
228
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
229
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
230
+ raise ChildFailedError(
231
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
232
+ ============================================================
233
+ ./pretrain_gpt_profile.py FAILED
234
+ ------------------------------------------------------------
235
+ Failures:
236
+ <NO_OTHER_FAILURES>
237
+ ------------------------------------------------------------
238
+ Root Cause (first observed failure):
239
+ [0]:
240
+ time : 2025-06-21_22:07:35
241
+ host : fs-mbz-gpu-830
242
+ rank : 0 (local_rank: 0)
243
+ exitcode : 1 (pid: 2070610)
244
+ error_file: <N/A>
245
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
246
+ ============================================================
247
+ + set +x
248
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
249
+ + export PROF_CTX_LENGTH=2048
250
+ + PROF_CTX_LENGTH=2048
251
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp1.cp8.bs1.json'
252
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp1.cp8.bs1.json' ']'
253
+ + echo 'Running ctx_length=2048, TP_SIZE=1, CP_SIZE=8, BATCH_SIZE=1'
254
+ + srun bash ./attnserver.sh
255
+ + which python3
256
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343261 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-830:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 1 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
257
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
258
+ and will be removed in future. Use torchrun.
259
+ Note that --use-env is set by default in torchrun.
260
+ If your script expects `--local-rank` argument to be set, please
261
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
262
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
263
+ further instructions
264
+
265
+ main()
266
+ W0621 22:07:40.187000 2073806 site-packages/torch/distributed/run.py:766]
267
+ W0621 22:07:40.187000 2073806 site-packages/torch/distributed/run.py:766] *****************************************
268
+ W0621 22:07:40.187000 2073806 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
269
+ W0621 22:07:40.187000 2073806 site-packages/torch/distributed/run.py:766] *****************************************
270
+ [rank5]:[W621 22:08:01.536122863 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
271
+ [rank2]:[W621 22:08:01.536729225 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
272
+ [rank6]:[W621 22:08:01.537138778 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
273
+ [rank7]:[W621 22:08:01.537688344 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
274
+ [rank4]:[W621 22:08:01.538826954 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
275
+ [rank3]:[W621 22:08:01.539080415 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
276
+ [rank1]:[W621 22:08:01.544484319 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
277
+ [rank0]:[W621 22:08:02.687400636 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
278
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
279
+ warnings.warn(
280
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
281
+ warnings.warn(
282
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
283
+ warnings.warn(
284
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
285
+ warnings.warn(
286
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
287
+ warnings.warn(
288
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
289
+ warnings.warn(
290
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
291
+ warnings.warn(
292
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
293
+ warnings.warn(
294
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
295
+ warnings.warn(
296
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
297
+ warnings.warn(
298
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
299
+ warnings.warn(
300
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
301
+ warnings.warn(
302
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
303
+ warnings.warn(
304
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
305
+ warnings.warn(
306
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
307
+ warnings.warn(
308
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
309
+ warnings.warn(
310
+ [rank0]: Traceback (most recent call last):
311
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
312
+ [rank0]: pretrain(
313
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
314
+ [rank0]: save_checkpoint(
315
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
316
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
317
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
318
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
319
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
320
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
321
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
322
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
323
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
324
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
325
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
326
+ [rank0]: finalize_fn()
327
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
328
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
329
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 243, in save_state_dict_async_finalize
330
+ [rank0]: storage_writer.finish(global_metadata, all_results)
331
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 483, in finish
332
+ [rank0]: super().finish(metadata, results)
333
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 697, in finish
334
+ [rank0]: with self.fs.create_stream(tmp_path, "wb") as metadata_file:
335
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
336
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/contextlib.py", line 137, in __enter__
337
+ [rank0]: return next(self.gen)
338
+ [rank0]: ^^^^^^^^^^^^^^
339
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 476, in create_stream
340
+ [rank0]: with path.open(mode) as stream:
341
+ [rank0]: ^^^^^^^^^^^^^^^
342
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/pathlib.py", line 1013, in open
343
+ [rank0]: return io.open(self, mode, buffering, encoding, errors, newline)
344
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
345
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/.metadata.tmp'
attnserver.run_attnserver.slurm.sh.343261.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343262.err.log ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=1
115
+ + PROF_TP_SIZE=1
116
+ + export PROF_CP_SIZE=8
117
+ + PROF_CP_SIZE=8
118
+ + export PROF_BS=2
119
+ + PROF_BS=2
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs2.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs2.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=1, CP_SIZE=8, BATCH_SIZE=2'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343262 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-570:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 1 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
130
+ and will be removed in future. Use torchrun.
131
+ Note that --use-env is set by default in torchrun.
132
+ If your script expects `--local-rank` argument to be set, please
133
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
134
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
135
+ further instructions
136
+
137
+ main()
138
+ W0621 22:07:39.919000 3216603 site-packages/torch/distributed/run.py:766]
139
+ W0621 22:07:39.919000 3216603 site-packages/torch/distributed/run.py:766] *****************************************
140
+ W0621 22:07:39.919000 3216603 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
141
+ W0621 22:07:39.919000 3216603 site-packages/torch/distributed/run.py:766] *****************************************
142
+ [rank7]:[W621 22:08:01.735665882 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
143
+ [rank1]:[W621 22:08:01.735666035 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
144
+ [rank6]:[W621 22:08:01.735714247 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
145
+ [rank4]:[W621 22:08:01.735803924 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
146
+ [rank2]:[W621 22:08:01.736885617 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
147
+ [rank3]:[W621 22:08:01.741263660 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
148
+ [rank5]:[W621 22:08:01.741595043 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
149
+ [rank0]:[W621 22:08:01.923892828 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
150
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
151
+ warnings.warn(
152
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
153
+ warnings.warn(
154
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
155
+ warnings.warn(
156
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
157
+ warnings.warn(
158
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
159
+ warnings.warn(
160
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
161
+ warnings.warn(
162
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
163
+ warnings.warn(
164
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
165
+ warnings.warn(
166
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
167
+ warnings.warn(
168
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
169
+ warnings.warn(
170
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
171
+ warnings.warn(
172
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
173
+ warnings.warn(
174
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
175
+ warnings.warn(
176
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
177
+ warnings.warn(
178
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
179
+ warnings.warn(
180
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
181
+ warnings.warn(
182
+ [rank0]: Traceback (most recent call last):
183
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
184
+ [rank0]: pretrain(
185
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
186
+ [rank0]: save_checkpoint(
187
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
188
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
189
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
190
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
191
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
192
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
193
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
194
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
195
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
196
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
197
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
198
+ [rank0]: finalize_fn()
199
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
200
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
201
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 243, in save_state_dict_async_finalize
202
+ [rank0]: storage_writer.finish(global_metadata, all_results)
203
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 483, in finish
204
+ [rank0]: super().finish(metadata, results)
205
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 697, in finish
206
+ [rank0]: with self.fs.create_stream(tmp_path, "wb") as metadata_file:
207
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
208
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/contextlib.py", line 137, in __enter__
209
+ [rank0]: return next(self.gen)
210
+ [rank0]: ^^^^^^^^^^^^^^
211
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 476, in create_stream
212
+ [rank0]: with path.open(mode) as stream:
213
+ [rank0]: ^^^^^^^^^^^^^^^
214
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/pathlib.py", line 1013, in open
215
+ [rank0]: return io.open(self, mode, buffering, encoding, errors, newline)
216
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
217
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/.metadata.tmp'
attnserver.run_attnserver.slurm.sh.343262.out.log ADDED
The diff for this file is too large to render. See raw diff