Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
28
28
label
class label
10 classes
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
End of preview. Expand in Data Studio

MNIST 28×28 Grayscale Dataset

The original MNIST dataset with handwritten digits in 28×28 grayscale format, stored in efficient Parquet format for modern deep learning applications.

Overview

This dataset contains the original MNIST handwritten digit dataset in its native format:

  • Format: 28×28 grayscale images
  • Digit labels: 0-9 (single-label classification)
  • Image format: Grayscale PIL Images
  • Storage: Parquet format for efficient loading

Dataset Statistics

Training Set (60,000 samples)

Digit Count Digit Count
0 5,923 5 5,421
1 6,742 6 5,918
2 5,958 7 6,265
3 6,131 8 5,851
4 5,842 9 5,949

Test Set (10,000 samples)

Digit Count Digit Count
0 980 5 892
1 1,135 6 958
2 1,032 7 1,028
3 1,010 8 974
4 982 9 1,009

Directory Structure

mnist_28/
├── README.md                               # This documentation
├── train-00000-of-00001.parquet            # Training data (Parquet format)
└── test-00000-of-00001.parquet             # Test data (Parquet format)

Key Features

  • Original Resolution: Maintains original 28×28 pixel resolution
  • Grayscale Format: Single-channel grayscale format as in original MNIST
  • PIL Integration: Images loaded as PIL RGB objects ready for preprocessing
  • Standard Splits: Maintains original MNIST train/test division
  • HuggingFace Compatible: Full integration with datasets library
  • Efficient Loading: Parquet format for fast columnar data access and compression

Usage

Loading with HuggingFace Datasets

from datasets import load_dataset

# Load the dataset using the custom script
dataset = load_dataset("FrankCCCCC/mnist_28", trust_remote_code=True)

print(f"Train samples: {len(dataset['train'])}")
print(f"Test samples: {len(dataset['test'])}")

# Access a sample
sample = dataset['train'][0]
print(f"Image shape: {sample['image'].size}")    # (28, 28)
print(f"Image mode: {sample['image'].mode}")     # L (Grayscale)
print(f"Label: {sample['label']}")               # Integer: 0-9

Transformations Applied

The dataset preprocessing pipeline includes:

  1. Format Conversion: IDX → Parquet
  2. Data Storage: Parquet format for efficient storage and loading
  3. Data Type: PIL Image objects for easy integration
  4. Format Preservation: Maintains original 28×28 grayscale format

Dataset Format

Each sample contains:

{
    'image': PIL.Image,    # 28×28 grayscale image
    'label': int,          # Digit class (0-9)
}

Technical Details

  • Original Source: MNIST Database of Handwritten Digits
  • Format: Parquet files for efficient columnar storage
  • Preprocessing: Maintains original grayscale format and 28×28 resolution
  • Loading: HuggingFace Datasets with custom GeneratorBasedBuilder
  • Compression: Parquet format provides built-in compression and fast access

Citation

@article{lecun1998mnist,
  title={The MNIST database of handwritten digits},
  author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
  year={1998},
  url={http://yann.lecun.com/exdb/mnist/}
}

@misc{mnist28,
  title={MNIST 28×28 Grayscale Dataset},
  author={Original MNIST for Deep Learning},
  year={2024},
  note={Original MNIST dataset in efficient Parquet format}
}

License

This dataset follows the same license as the original MNIST dataset. The original MNIST database is available under the Creative Commons Attribution-Share Alike 3.0 license.

Acknowledgments

  • Based on the original MNIST dataset by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges
  • Preserved in original format for classical deep learning applications
  • Compatible with HuggingFace Datasets ecosystem for seamless integration
  • Optimized for CNN architectures and transfer learning applications
Downloads last month
112