Datasets:
license: cc-by-nc-4.0
task_categories:
- object-detection
pretty_name: WildBe
size_categories:
- 1K<n<10K
tags:
- drone imagery
- agriculture
- in the wild
dataset_info:
features:
- name: index
dtype: int64
- name: image
dtype: image
- name: width
dtype: int64
- name: height
dtype: int64
- name: split
dtype: string
- name: altitude
dtype: float64
- name: aperture
dtype: float64
- name: area
dtype: float64
- name: date
dtype: string
- name: device
dtype: string
- name: exposure
dtype: float64
- name: focal
dtype: float64
- name: iso
dtype: float64
- name: latitude_deg
dtype: float64
- name: latitude_dir
dtype: string
- name: longitude_deg
dtype: float64
- name: longitude_dir
dtype: string
- name: source_image_id
dtype: string
- name: time
dtype: string
- name: labels
sequence:
- name: class
dtype: int64
- name: label
dtype: int64
- name: x
dtype: float32
- name: 'y'
dtype: float32
- name: width
dtype: float32
- name: height
dtype: float32
Wild Berry image dataset collected in Finnish forests and peatlands using drones
Introduction
Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe in- cludes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe light variations and in cluttered environments. WildBe features 3,516 images, including a total of 18,468 annotated bounding boxes.
How to use: an example of visualization
import json
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageDraw
# Color map for classes
classes_color_map = {
0: (225,15,10),
1: (40, 150, 210),
2: (10,0,210) ,
3: (130,5,125) ,
}
# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe", split="validation")
image_bytes = dataset[50]["image"]["bytes"]
np_image = np.frombuffer(image_bytes, dtype=np.uint8)
np_image = np_image.reshape(dataset[50]["height"], dataset[50]["width"], 3)
image = Image.fromarray(np_image)
labels = json.loads(dataset[50]["labels"])
draw = ImageDraw.Draw(image)
for label in labels:
center_x = label["x"] * dataset[50]["width"]
center_y = label["y"] * dataset[50]["height"]
width = label["width"] * dataset[50]["width"]
height = label["height"] * dataset[50]["height"]
draw.rectangle(
[
(center_x - width / 2, center_y - height / 2),
(center_x + width / 2, center_y + height / 2),
],
outline=classes_color_map[label["class"]],
width=2,
)
image.show()
ArXiv link
https://arxiv.org/abs/2405.07550
APA Citaion
Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., ... & Poiesi, F. (2024). Wild Berry image dataset collected in Finnish forests and peatlands using drones. arXiv preprint arXiv:2405.07550.
Bibtex
@article{riz2024wild,
title={Wild Berry image dataset collected in Finnish forests and peatlands using drones},
author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
journal={arXiv preprint arXiv:2405.07550},
year={2024}
}
Acknowledgement

The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).
Partners
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |