Datasets:
File size: 7,613 Bytes
f26c7f6 7365da5 f26c7f6 c42372e 44b2baf c42372e 0f6a111 c42372e 0f6a111 c42372e 0f6a111 c42372e 0f6a111 c42372e 0f6a111 c42372e 0f6a111 c42372e 0f6a111 c42372e e17f34f f26c7f6 5ff4b7a f26c7f6 89a652f f26c7f6 731a5f9 f26c7f6 c42372e f26c7f6 c42372e f26c7f6 731a5f9 c42372e f26c7f6 c42372e f26c7f6 c42372e 5f3feea c42372e f26c7f6 c42372e f26c7f6 c42372e f26c7f6 c42372e f26c7f6 731a5f9 5f3feea 8b4566a f26c7f6 0e39770 39e42e2 3ae1da9 39e42e2 9ee0377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: cc-by-nc-4.0
task_categories:
- object-detection
pretty_name: WildBe
size_categories:
- 1K<n<10K
tags:
- drone imagery
- agriculture
- in the wild
dataset_info:
features:
- name: index
dtype: int64
- name: image
dtype: image
- name: width
dtype: int64
- name: height
dtype: int64
- name: split
dtype: string
- name: altitude
dtype: float64
- name: aperture
dtype: float64
- name: area
dtype: float64
- name: date
dtype: string
- name: device
dtype: string
- name: exposure
dtype: float64
- name: focal
dtype: float64
- name: iso
dtype: float64
- name: latitude_deg
dtype: float64
- name: latitude_dir
dtype: string
- name: longitude_deg
dtype: float64
- name: longitude_dir
dtype: string
- name: source_image_id
dtype: string
- name: time
dtype: string
- name: labels
dtype: string
---
# Wild Berry image dataset collected in Finnish forests and peatlands using drones
## Dataset Description
- Homepage: https://ferox.fbk.eu/
- Paper: https://arxiv.org/abs/2405.07550
## Introduction
Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe includes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe light variations and in cluttered environments.

## How to use: an example of visualization
```python
import json
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageDraw
# Color map for classes
classes_color_map = {
0: (225,15,10),
1: (40, 150, 210),
2: (10,0,210) ,
3: (130,5,125) ,
}
# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe", split="validation")
image = dataset[50]["image"]
labels = json.loads(dataset[50]["labels"])
draw = ImageDraw.Draw(image)
for label in labels:
center_x = label["x"] * dataset[50]["width"]
center_y = label["y"] * dataset[50]["height"]
width = label["width"] * dataset[50]["width"]
height = label["height"] * dataset[50]["height"]
draw.rectangle(
[
(center_x - width / 2, center_y - height / 2),
(center_x + width / 2, center_y + height / 2),
],
outline=classes_color_map[label["class"]],
width=2,
)
image.show()
```

## Data Fields
```
index: An integer representing the unique identifier for each example.
image: A PIL image.
split: A string indicating the data split, e.g., 'train', 'validation', or 'test'.
labels: A list of dictionaries, each containing:
class: An integer representing the class identifier.
label: A string representing the class name.
x: A float representing the normalized x-coordinate of the center of the bounding box.
y: A float representing the normalized y-coordinate of the center of the bounding box.
width: A float representing the normalized width of the bounding box.
height: A float representing the normalized height of the bounding box.
altitude: A float representing the altitude at which the image was taken (if available).
aperture: A float representing the aperture setting of the camera (if available).
area: A float representing the code of the geo-area in which the image was taken (if available).
date: A string representing the date when the image was taken (if available).
device: A string representing the device used to capture the image (if available).
exposure: A float representing the exposure time of the camera (if available).
focal: A float representing the focal length of the camera lens (if available).
height: An integer representing the height of the image in pixels.
width: An integer representing the width of the image in pixels.
iso: A float representing the ISO setting of the camera (if available).
latitude_deg: A float representing the latitude degree where the image was taken (if available).
latitude_dir: A string representing the latitude direction (if available).
longitude_deg: A float representing the longitude degree where the image was taken (if available).
longitude_dir: A string representing the longitude direction (if available).
source_image_id: A string representing the unique identifier for the source image from which the image was cropped.
time: A string representing the time when the image was taken (if available).
```
## ArXiv link
https://arxiv.org/abs/2405.07550
## APA Citaion
Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., ... & Poiesi, F. (2024). Wild Berry image dataset collected in Finnish forests and peatlands using drones. arXiv preprint arXiv:2405.07550.
## Bibtex
```
@article{riz2024wild,
title={Wild Berry image dataset collected in Finnish forests and peatlands using drones},
author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
journal={arXiv preprint arXiv:2405.07550},
year={2024}
}
```
## Acknowledgement
<style>
.list_view{
display:flex;
align-items:center;
}
.list_view p{
padding:10px;
}
</style>
<div class="list_view">
<a href="https://ferox.fbk.eu/" target="_blank">
<img src="resources/FEROX_logo.png" alt="FEROX logo" style="max-width:200px">
</a>
<p>
The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).
</p>
</div>
## Partners
<style>
table {
width: 100%;
table-layout: fixed;
border-collapse: collapse;
}
th, td {
text-align: center;
padding: 10px;
vertical-align: middle;
}
</style>
<table>
<tbody>
<tr>
<td><a href="https://www.fbk.eu/en" target="_blank"><img src="resources/FBK_logo.jpg" alt="FBK"></a></td>
<td><a href="https://www.tuni.fi/en" target="_blank"><img src="resources/Tampere_University_logo.png" alt="TAU"></a></td>
<td><a href="https://www.upv.es/index-en.html" target="_blank"><img src="resources/UPV_logo.jpeg" alt="UPV"></a></td>
<td><a href="https://ingeniarius.pt/" target="_blank"><img src="resources/ingeniarius_logo.png" alt="ING"></a></td>
<td><a href="https://www.maanmittauslaitos.fi/en/research" target="_blank"><img src="resources/FGI_logo.png" alt="FGI"></a></td>
<td><a href="https://www.cranfield.ac.uk/" target="_blank"><img src="resources/cranfield_logo.png" alt="CU"></a></td>
<td><a href="https://deepforestry.com/" target="_blank"><img src="resources/df_logo.png" alt="DF"></a></td>
<td><a href="https://gemmo.ai/" target="_blank"><img src="resources/gemmoai_logo.jpeg" alt="GEM"></a></td>
<td><a href="https://www.arktisetaromit.fi/" target="_blank"><img src="resources/afa_logo.png" alt="AFA"></a></td>
</tr>
</tbody>
</table>
|