Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
SPovoli commited on
Commit
f26c7f6
·
verified ·
1 Parent(s): 0a0d340

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - object-detection
5
+ pretty_name: WildBe
6
+ size_categories:
7
+ - 1K<n<10K
8
+ arxiv: null
9
+ tags:
10
+ - drone imagery
11
+ - agriculture
12
+ - in the wild
13
+ ---
14
+ # Wild Berry image dataset collected in Finnish forests and peatlands using drones
15
+
16
+ ## Introduction
17
+ Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The
18
+ integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising
19
+ harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in
20
+ peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe in-
21
+ cludes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe
22
+ light variations and in cluttered environments. WildBe features 3,516 images, including a total of 18,468 annotated
23
+ bounding boxes.
24
+
25
+ ## How to use: an example of visualization
26
+ ```python
27
+ import json
28
+ import numpy as np
29
+ from datasets import load_dataset
30
+ from PIL import Image, ImageDraw
31
+ # Color map for classes
32
+ classes_color_map = {
33
+ 0: (0, 0, 0),
34
+ 1: (255, 0, 0),
35
+ 2: (0, 255, 0),
36
+ 3: (0, 0, 255),
37
+ }
38
+ # Load the dataset
39
+ dataset = load_dataset("FBK-TeV/WildBe", split="validation")
40
+ #Read first image and its lables
41
+ image_bytes = dataset[0]["image"]
42
+ np_image = np.frombuffer(image_bytes, dtype=np.uint8)
43
+ np_image = np_image.reshape(dataset[0]["image_height"], dataset[0]["image_width"], 3)
44
+ image = Image.fromarray(np_image)
45
+ labels = json.loads(dataset[0]["labels"])
46
+ draw = ImageDraw.Draw(image)
47
+ #Draw lables
48
+ for label in labels:
49
+ center_x = label["x"] * dataset[0]["image_width"]
50
+ center_y = label["y"] * dataset[0]["image_height"]
51
+ width = label["width"] * dataset[0]["image_width"]
52
+ height = label["height"] * dataset[0]["image_height"]
53
+ draw.rectangle(
54
+ [
55
+ (center_x - width / 2, center_y - height / 2),
56
+ (center_x + width / 2, center_y + height / 2),
57
+ ],
58
+ outline=classes_color_map[label["class"]],
59
+ width=2,
60
+ )
61
+ image.show()
62
+ ```
63
+
64
+ ## APA Citaion
65
+ Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., ... & Poiesi, F. (2024). Wild Berry image dataset collected in Finnish forests and peatlands using drones. arXiv preprint arXiv:2405.07550.
66
+
67
+ ## Bibtex
68
+ ```
69
+ @article{riz2024wild,
70
+ title={Wild Berry image dataset collected in Finnish forests and peatlands using drones},
71
+ author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
72
+ journal={arXiv preprint arXiv:2405.07550},
73
+ year={2024}
74
+ }
75
+ ```