Datasets:
File size: 5,522 Bytes
f26c7f6 7365da5 f26c7f6 731a5f9 f26c7f6 731a5f9 f26c7f6 731a5f9 8b4566a f26c7f6 0e39770 39e42e2 3ae1da9 39e42e2 9ee0377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: cc-by-nc-4.0
task_categories:
- object-detection
pretty_name: WildBe
size_categories:
- 1K<n<10K
tags:
- drone imagery
- agriculture
- in the wild
---
# Wild Berry image dataset collected in Finnish forests and peatlands using drones
## Introduction
Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The
integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising
harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in
peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe in-
cludes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe
light variations and in cluttered environments. WildBe features 3,516 images, including a total of 18,468 annotated
bounding boxes.

## How to use: an example of visualization
```python
import json
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageDraw
# Color map for classes
classes_color_map = {
0: (225,15,10),
1: (40, 150, 210),
2: (10,0,210),
3: (130,5,125),
}
# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe", split="validation")
#Read first image and its lables
image_bytes = dataset[0]["image"]
np_image = np.frombuffer(image_bytes, dtype=np.uint8)
np_image = np_image.reshape(dataset[0]["image_height"], dataset[0]["image_width"], 3)
image = Image.fromarray(np_image)
labels = json.loads(dataset[0]["labels"])
draw = ImageDraw.Draw(image)
#Draw lables
for label in labels:
center_x = label["x"] * dataset[0]["image_width"]
center_y = label["y"] * dataset[0]["image_height"]
width = label["width"] * dataset[0]["image_width"]
height = label["height"] * dataset[0]["image_height"]
draw.rectangle(
[
(center_x - width / 2, center_y - height / 2),
(center_x + width / 2, center_y + height / 2),
],
outline=classes_color_map[label["class"]],
width=2,
)
image.show()
```

## ArXiv link
https://arxiv.org/abs/2405.07550
## APA Citaion
Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., ... & Poiesi, F. (2024). Wild Berry image dataset collected in Finnish forests and peatlands using drones. arXiv preprint arXiv:2405.07550.
## Bibtex
```
@article{riz2024wild,
title={Wild Berry image dataset collected in Finnish forests and peatlands using drones},
author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
journal={arXiv preprint arXiv:2405.07550},
year={2024}
}
```
## Acknowledgement
<style>
.list_view{
display:flex;
align-items:center;
}
.list_view p{
padding:10px;
}
</style>
<div class="list_view">
<a href="https://ferox.fbk.eu/" target="_blank">
<img src="resources/FEROX_logo.png" alt="FEROX logo" style="max-width:200px">
</a>
<p>
The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).
</p>
</div>
## Partners
<style>
table {
width: 100%;
table-layout: fixed;
border-collapse: collapse;
}
th, td {
text-align: center;
padding: 10px;
vertical-align: middle;
}
</style>
<table>
<thead>
<tr>
<th>FONDAZIONE BRUNO KESSLER<br>Italy</th>
<th>TAMPERE UNIVERSITY<br>Finland</th>
<th>UNIVERSITAT POLITECNICA DE VALENCIA<br>Spain</th>
<th>INGENIARIUS<br>Portugal</th>
<th>FINNISH GEOSPATIAL RESEARCH INSTITUTE<br>Finland</th>
<th>CRANFIELD UNIVERSITY<br>United Kingdom</th>
<th>DEEP FORESTRY<br>Sweden</th>
<th>GEMMO AI<br>Ireland</th>
<th>ARKTISET AROMIT<br>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://www.fbk.eu/en" target="_blank"><img src="resources/FBK_logo.jpg" alt="FBK"></a></td>
<td><a href="https://www.tuni.fi/en" target="_blank"><img src="resources/Tampere_University_logo.png" alt="TAU"></a></td>
<td><a href="https://www.upv.es/index-en.html" target="_blank"><img src="resources/UPV_logo.jpeg" alt="UPV"></a></td>
<td><a href="https://ingeniarius.pt/" target="_blank"><img src="resources/ingeniarius_logo.png" alt="ING"></a></td>
<td><a href="https://www.maanmittauslaitos.fi/en/research" target="_blank"><img src="resources/FGI_logo.png" alt="FGI"></a></td>
<td><a href="https://www.cranfield.ac.uk/" target="_blank"><img src="resources/cranfield_logo.png" alt="CU"></a></td>
<td><a href="https://deepforestry.com/" target="_blank"><img src="resources/df_logo.png" alt="DF"></a></td>
<td><a href="https://gemmo.ai/" target="_blank"><img src="resources/gemmoai_logo.jpeg" alt="GEM"></a></td>
<td><a href="https://www.arktisetaromit.fi/" target="_blank"><img src="resources/afa_logo.png" alt="AFA"></a></td>
</tr>
</tbody>
</table>
|