metadata
license: cc-by-nc-nd-4.0
dataset_info:
- config_name: default
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 678202759.44
num_examples: 27000
- name: val
num_bytes: 75355862.16
num_examples: 3000
- name: test
num_bytes: 188389655.4
num_examples: 7500
download_size: 520788766
dataset_size: 941948277
- config_name: email-corpus
features:
- name: file
dtype: string
- name: message
dtype: string
splits:
- name: train
num_bytes: 1424661264
num_examples: 517401
download_size: 606473179
dataset_size: 1424661264
- config_name: indic-corpus
features:
- name: lang_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 242818701
num_examples: 11
download_size: 105665834
dataset_size: 242818701
- config_name: wiki-topics
features:
- name: article
dtype: string
- name: category
dtype: string
- name: text
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 338290047
num_examples: 8000
- name: test
num_bytes: 84610785
num_examples: 2000
download_size: 236620494
dataset_size: 422900832
- config_name: Assignment-3-word2vec
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 59964905
num_examples: 200000
download_size: 59964905
dataset_size: 59964905
- config_name: Assignment-3-word2vec-analogy
features:
- name: word1
dtype: string
- name: word2
dtype: string
- name: word3
dtype: string
splits:
- name: test
num_bytes: 25776
num_examples: 1000
download_size: 25776
dataset_size: 25776
- config_name: Assignment-3-naive-bayes
features:
- name: text
dtype: string
- name: category
dtype: string
splits:
- name: train
num_bytes: 690247310
num_examples: 8000
- name: test
num_bytes: 171875690
num_examples: 2000
download_size: 862123000
dataset_size: 862123000
- config_name: Assignment-3-em
features:
- name: text
dtype: string
- name: category
dtype: string
splits:
- name: train
num_bytes: 683095685
num_examples: 8000
- name: test
num_bytes: 171875690
num_examples: 2000
download_size: 854971375
dataset_size: 854971375
- config_name: Assignment-4
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: int32
splits:
- name: train
num_bytes: 38232055
num_examples: 75827
- name: val
num_bytes: 5464732
num_examples: 10851
- name: test
num_bytes: 10939918
num_examples: 21657
download_size: 54636705
dataset_size: 54636705
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
- config_name: email-corpus
data_files:
- split: train
path: email-corpus/train-*
- config_name: indic-corpus
data_files:
- split: train
path: indic-corpus/train-*
- config_name: wiki-topics
data_files:
- split: train
path: wiki-topics/train-*
- split: test
path: wiki-topics/test-*
- config_name: Assignment-3-word2vec
data_files:
- split: train
path: Assignment-3/word2vec/train*
- config_name: Assignment-3-word2vec-analogy
data_files:
- split: test
path: Assignment-3/word2vec/test*
- config_name: Assignment-3-naive-bayes
data_files:
- split: train
path: Assignment-3/naive_bayes/train*
- split: test
path: Assignment-3/naive_bayes/test_nb_with_labels*
- config_name: Assignment-3-em
data_files:
- split: train
path: Assignment-3/em/train*
- split: test
path: Assignment-3/em/test*
- config_name: Assignment-4
data_files:
- split: train
path: Assignment-4/train*
- split: test
path: Assignment-4/test*
- split: val
path: Assignment-4/val*
CS779-Fall 2025 IIT-Kanpur
Instructor: Dr. Ashutosh Modi
Assignment-3
There are 3 main tasks in Assignment-3:
- Neural Network Implementation from Scratch for Word2Vec using Wikipedia Text
- Naive Bayes Classifier for Topic classification on Wikipedia Articles
- Expectation-Maximization Based clustering on Wikipedia Articles
The data can be fetched using the datasets API as follows:
from datasets import load_dataset
# Word2Vec Dataset
word2vec_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-word2vec", split="train")
word2vec_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-word2vec-analogy", split="test")
# Naive Bayes
naive_bayes_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-naive-bayes", split="train")
naive_bayes_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-naive-bayes", split="test")
# Expectation-Maximization
em_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-em", split="train")
em_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-em", split="test")
Assignment-4
This assignment involves Named Entity Recognition (NER) on a Hindi dataset (NED) on a custom dataset. The dataset consists of sentences with tokens and their corresponding NER tags. The list of NER tags includes:
- B-FESTIVAL
- B-GAME
- B-LANGUAGE
- B-LITERATURE
- B-LOCATION
- B-MISC
- B-NUMEX
- B-ORGANIZATION
- B-PERSON
- B-RELIGION
- B-TIMEX
- I-FESTIVAL
- I-GAME
- I-LANGUAGE
- I-LITERATURE
- I-LOCATION
- I-MISC
- I-NUMEX
- I-ORGANIZATION
- I-PERSON
- I-RELIGION
- I-TIMEX
- O
The data can be fetched using the datasets API as follows:
from datasets import load_dataset
# Train
train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="train")
# Test
test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="test")
# Validation
val = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="val")