Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
CS779-Fall25 / README.md
Divyaksh Shukla
Changing split info for word2vec
55e2928
metadata
license: cc-by-nc-nd-4.0
dataset_info:
  - config_name: default
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 678202759.44
        num_examples: 27000
      - name: val
        num_bytes: 75355862.16
        num_examples: 3000
      - name: test
        num_bytes: 188389655.4
        num_examples: 7500
    download_size: 520788766
    dataset_size: 941948277
  - config_name: email-corpus
    features:
      - name: file
        dtype: string
      - name: message
        dtype: string
    splits:
      - name: train
        num_bytes: 1424661264
        num_examples: 517401
    download_size: 606473179
    dataset_size: 1424661264
  - config_name: indic-corpus
    features:
      - name: lang_id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 242818701
        num_examples: 11
    download_size: 105665834
    dataset_size: 242818701
  - config_name: wiki-topics
    features:
      - name: article
        dtype: string
      - name: category
        dtype: string
      - name: text
        dtype: string
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 338290047
        num_examples: 8000
      - name: test
        num_bytes: 84610785
        num_examples: 2000
    download_size: 236620494
    dataset_size: 422900832
  - config_name: Assignment-3-word2vec
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 59964905
        num_examples: 200000
    download_size: 59964905
    dataset_size: 59964905
  - config_name: Assignment-3-word2vec-analogy
    features:
      - name: word1
        dtype: string
      - name: word2
        dtype: string
      - name: word3
        dtype: string
    splits:
      - name: test
        num_bytes: 25776
        num_examples: 1000
    download_size: 25776
    dataset_size: 25776
  - config_name: Assignment-3-naive-bayes
    features:
      - name: text
        dtype: string
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 690247310
        num_examples: 8000
      - name: test
        num_bytes: 171875690
        num_examples: 2000
    download_size: 862123000
    dataset_size: 862123000
  - config_name: Assignment-3-em
    features:
      - name: text
        dtype: string
      - name: category
        dtype: string
    splits:
      - name: train
        num_bytes: 683095685
        num_examples: 8000
      - name: test
        num_bytes: 171875690
        num_examples: 2000
    download_size: 854971375
    dataset_size: 854971375
  - config_name: Assignment-4
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence: int32
    splits:
      - name: train
        num_bytes: 38232055
        num_examples: 75827
      - name: val
        num_bytes: 5464732
        num_examples: 10851
      - name: test
        num_bytes: 10939918
        num_examples: 21657
    download_size: 54636705
    dataset_size: 54636705
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: val
        path: data/val-*
      - split: test
        path: data/test-*
  - config_name: email-corpus
    data_files:
      - split: train
        path: email-corpus/train-*
  - config_name: indic-corpus
    data_files:
      - split: train
        path: indic-corpus/train-*
  - config_name: wiki-topics
    data_files:
      - split: train
        path: wiki-topics/train-*
      - split: test
        path: wiki-topics/test-*
  - config_name: Assignment-3-word2vec
    data_files:
      - split: train
        path: Assignment-3/word2vec/train*
  - config_name: Assignment-3-word2vec-analogy
    data_files:
      - split: test
        path: Assignment-3/word2vec/test*
  - config_name: Assignment-3-naive-bayes
    data_files:
      - split: train
        path: Assignment-3/naive_bayes/train*
      - split: test
        path: Assignment-3/naive_bayes/test_nb_with_labels*
  - config_name: Assignment-3-em
    data_files:
      - split: train
        path: Assignment-3/em/train*
      - split: test
        path: Assignment-3/em/test*
  - config_name: Assignment-4
    data_files:
      - split: train
        path: Assignment-4/train*
      - split: test
        path: Assignment-4/test*
      - split: val
        path: Assignment-4/val*

CS779-Fall 2025 IIT-Kanpur

Instructor: Dr. Ashutosh Modi

Assignment-3

There are 3 main tasks in Assignment-3:

  1. Neural Network Implementation from Scratch for Word2Vec using Wikipedia Text
  2. Naive Bayes Classifier for Topic classification on Wikipedia Articles
  3. Expectation-Maximization Based clustering on Wikipedia Articles

The data can be fetched using the datasets API as follows:

from datasets import load_dataset

# Word2Vec Dataset
word2vec_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-word2vec", split="train")
word2vec_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-word2vec-analogy", split="test")

# Naive Bayes
naive_bayes_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-naive-bayes", split="train")
naive_bayes_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-naive-bayes", split="test")

# Expectation-Maximization
em_train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-em", split="train")
em_test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-3-em", split="test")

Assignment-4

This assignment involves Named Entity Recognition (NER) on a Hindi dataset (NED) on a custom dataset. The dataset consists of sentences with tokens and their corresponding NER tags. The list of NER tags includes:

  • B-FESTIVAL
  • B-GAME
  • B-LANGUAGE
  • B-LITERATURE
  • B-LOCATION
  • B-MISC
  • B-NUMEX
  • B-ORGANIZATION
  • B-PERSON
  • B-RELIGION
  • B-TIMEX
  • I-FESTIVAL
  • I-GAME
  • I-LANGUAGE
  • I-LITERATURE
  • I-LOCATION
  • I-MISC
  • I-NUMEX
  • I-ORGANIZATION
  • I-PERSON
  • I-RELIGION
  • I-TIMEX
  • O

The data can be fetched using the datasets API as follows:

from datasets import load_dataset

# Train
train = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="train")
# Test
test = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="test")
# Validation
val = load_dataset("Exploration-Lab/CS779-Fall25", "Assignment-4", split="val")