|
import os |
|
import warnings |
|
from io import BytesIO |
|
from typing import Dict, Optional, Union |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
|
|
class customized_features(datasets.features.Audio): |
|
|
|
def decode_example(self, value): |
|
"""Decode example audio file into audio data. |
|
|
|
Args: |
|
value: Audio file path. |
|
|
|
Returns: |
|
dict |
|
""" |
|
|
|
array, sampling_rate = ( |
|
self._decode_example_with_torchaudio(value) |
|
if value.endswith(".mp3") |
|
else self._decode_example_with_librosa(value) |
|
) |
|
return {"path": value, "array": array, "sampling_rate": sampling_rate} |
|
|
|
|
|
def _decode_example_with_librosa(self, value): |
|
try: |
|
import librosa |
|
except ImportError as err: |
|
raise ImportError("To support decoding audio files, please install 'librosa'.") from err |
|
|
|
try: |
|
with open(value, "rb") as f: |
|
array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono) |
|
except Exception as e: |
|
warnings.warn(f"Error while reading {value} using librosa: {e}") |
|
array = np.empty(0) |
|
sampling_rate = self.sampling_rate |
|
return array, sampling_rate |
|
|
|
def _decode_example_with_torchaudio(self, value): |
|
try: |
|
import torchaudio |
|
import torchaudio.transforms as T |
|
except ImportError as err: |
|
raise ImportError("To support decoding 'mp3' audio files, please install 'torchaudio'.") from err |
|
try: |
|
torchaudio.set_audio_backend("sox_io") |
|
except RuntimeError as err: |
|
raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.") from err |
|
|
|
array, sampling_rate = torchaudio.load(value) |
|
if self.sampling_rate and self.sampling_rate != sampling_rate: |
|
if not hasattr(self, "_resampler"): |
|
self._resampler = T.Resample(sampling_rate, self.sampling_rate) |
|
array = self._resampler(array) |
|
sampling_rate = self.sampling_rate |
|
array = array.numpy() |
|
if self.mono: |
|
array = array.mean(axis=0) |
|
return array, sampling_rate |
|
|
|
def decode_batch(self, values): |
|
decoded_batch = defaultdict(list) |
|
for value in values: |
|
decoded_example = self.decode_example(value) |
|
for k, v in decoded_example.items(): |
|
decoded_batch[k].append(v) |
|
return dict(decoded_batch) |