File size: 2,574 Bytes
cdc5412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import warnings
from io import BytesIO
from typing import Dict, Optional, Union

import datasets
import numpy as np


class customized_features(datasets.features.Audio):

    def decode_example(self, value):
        """Decode example audio file into audio data.

        Args:
            value: Audio file path.

        Returns:
            dict
        """
        # TODO: backard compatibility for users without audio dependencies
        array, sampling_rate = (
            self._decode_example_with_torchaudio(value)
            if value.endswith(".mp3")
            else self._decode_example_with_librosa(value)
        )
        return {"path": value, "array": array, "sampling_rate": sampling_rate}


    def _decode_example_with_librosa(self, value):
        try:
            import librosa
        except ImportError as err:
            raise ImportError("To support decoding audio files, please install 'librosa'.") from err

        try:
            with open(value, "rb") as f:
                array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono)
        except Exception as e:
            warnings.warn(f"Error while reading {value} using librosa: {e}")
            array = np.empty(0)
            sampling_rate = self.sampling_rate
        return array, sampling_rate

    def _decode_example_with_torchaudio(self, value):
        try:
            import torchaudio
            import torchaudio.transforms as T
        except ImportError as err:
            raise ImportError("To support decoding 'mp3' audio files, please install 'torchaudio'.") from err
        try:
            torchaudio.set_audio_backend("sox_io")
        except RuntimeError as err:
            raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.") from err

        array, sampling_rate = torchaudio.load(value)
        if self.sampling_rate and self.sampling_rate != sampling_rate:
            if not hasattr(self, "_resampler"):
                self._resampler = T.Resample(sampling_rate, self.sampling_rate)
            array = self._resampler(array)
            sampling_rate = self.sampling_rate
        array = array.numpy()
        if self.mono:
            array = array.mean(axis=0)
        return array, sampling_rate

    def decode_batch(self, values):
        decoded_batch = defaultdict(list)
        for value in values:
            decoded_example = self.decode_example(value)
            for k, v in decoded_example.items():
                decoded_batch[k].append(v)
        return dict(decoded_batch)