Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
sequence
jd
float32
diffmaglim
float32
magpsf
float32
sigmapsf
float32
chipsf
float32
magap
float32
sigmagap
float32
distnr
float32
magnr
float32
chinr
float32
sharpnr
float32
sky
float32
magdiff
float32
fwhm
float32
classtar
float32
mindtoedge
float32
seeratio
float32
magapbig
float32
sigmagapbig
float32
sgmag1
float32
srmag1
float32
simag1
float32
szmag1
float32
sgscore1
float32
distpsnr1
float32
jdstarthist
float32
scorr
float32
sgmag2
float32
srmag2
float32
simag2
float32
szmag2
float32
sgscore2
float32
distpsnr2
float32
sgmag3
float32
srmag3
float32
simag3
float32
szmag3
float32
sgscore3
float32
distpsnr3
float32
jdstartref
float32
dsnrms
float32
ssnrms
float32
magzpsci
float32
magzpsciunc
float32
magzpscirms
float32
clrcoeff
float32
clrcounc
float32
neargaia
float32
neargaiabright
float32
maggaia
float32
maggaiabright
float32
exptime
float32
drb
float32
acai_h
float32
acai_v
float32
acai_o
float32
acai_n
float32
acai_b
float32
new_drb
float32
peakmag
float32
maxmag
float32
peakmag_so_far
float32
maxmag_so_far
float32
age
float32
days_since_peak
float32
days_to_peak
float32
label
int64
fid
int64
programid
int64
object_id
int64
field
int64
nneg
int64
nbad
int64
ndethist
int64
ncovhist
int64
nmtchps
int64
nnotdet
int64
N
int64
isdiffpos
bool
is_SN
bool
near_threshold
bool
is_rise
bool
OBJECT_ID_
string
source_set
string
split
string
{"band":["b'g'","b'g'","b'g'"],"view":["science","reference","difference"],"array":[[[0.017881536856(...TRUNCATED)
2,458,831.75
19.369986
19.45463
0.212216
1.281023
20.0602
0.6921
0.388758
17.584
1.16
0.078
0.306355
0.60557
1.33572
0.683
505.2435
2
19.8508
0.731
17.9779
17.726801
17.1325
17.1586
0.431048
0.28953
2,458,045.75
5.288178
-999
18.9711
-999
-999
0.5
1.411415
-999
-999
-999
-999
-999
-999
2,458,315
5.301506
6.92569
26.039631
0.000044
0.041179
-0.035626
0.000079
0.28619
-999
17.745216
-999
30
0.999043
null
null
null
null
null
0.983682
18.320438
20.020849
18.889647
19.915491
785.901245
73.732559
712.168701
0
1
1
1,077,248,771,415,015,000
453
7
0
118
394
2
276
82
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'r'","b'r'","b'r'"],"view":["science","reference","difference"],"array":[[[0.014369091950(...TRUNCATED)
2,458,861.75
19.663786
19.127804
0.161631
1.388002
19.4112
0.264
0.266145
17.337999
1.936
0.162
-0.085855
0.283397
1.85
0.948
257.933685
1.630106
19.5212
0.3704
17.9779
17.726801
17.1325
17.1586
0.431048
0.387808
2,458,045.75
8.919523
-999
18.9711
-999
-999
0.5
1.090872
-999
-999
-999
-999
-999
-999
2,458,324
7.940216
13.629725
26.034803
0.000016
0.040921
0.094081
0.000022
0.386686
-999
17.745216
-999
30
0.999696
null
null
null
null
null
0.999646
18.320438
20.020849
18.889647
19.915491
815.829346
103.660645
712.168701
0
2
1
1,107,176,860,315,015,000
452
3
0
137
435
2
298
33
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'g'","b'g'","b'g'"],"view":["science","reference","difference"],"array":[[[0.015891997143(...TRUNCATED)
2,458,894.75
20.241062
19.736546
0.203912
2.604011
19.5278
0.2162
0.14889
17.584
1.16
0.078
-0.015088
-0.208746
1.219556
0.947
526.505371
2
19.4443
0.2529
17.9779
17.726801
17.1325
17.1586
0.431048
0.104987
2,458,045.75
8.165382
-999
18.9711
-999
-999
0.5
1.244676
-999
-999
-999
-999
-999
-999
2,458,315
9.896614
13.566287
26.068546
0.000025
0.041233
-0.071597
0.000035
0.097244
-999
17.745216
-999
30
0.994776
null
null
null
null
null
0.995893
18.320438
20.020849
18.889647
19.915491
848.802185
136.633453
712.168701
0
1
1
1,140,149,671,415,015,000
453
7
0
175
516
2
341
50
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'r'","b'r'","b'r'"],"view":["science","reference","difference"],"array":[[[0.014976682141(...TRUNCATED)
2,459,468
20.386137
19.708645
0.116782
1.204898
19.680901
0.217
0.228542
20.049
1.703
0.11
-0.374822
-0.027745
2
0.979
784.4422
1.181415
19.7071
0.2844
20.5781
20.3125
20.1241
20.0842
0
0.185127
2,459,466
12.753405
-999
-999
21.7771
21.3251
0.663917
23.527456
21.3622
20.327499
19.7575
19.475
0
24.109192
2,458,320
12.488751
17.817694
26.151646
0.000011
0.038576
0.0986
0.000016
43.117779
-999
19.824417
-999
30
1
0.232807
0.000052
0.935914
0.242393
0.000101
0.999999
18.876114
19.853174
19.708645
19.708645
1.958762
0
1.958762
0
2
1
1,713,399,425,315,015,000
402
6
0
2
783
3
781
12
true
true
false
true
ZTF21acaohho
dims
train
{"band":["b'g'","b'g'","b'g'"],"view":["science","reference","difference"],"array":[[[0.015399125404(...TRUNCATED)
2,458,699
20.378368
19.668589
0.143024
1.399841
19.403
0.1698
0.159458
17.584
1.16
0.078
0.09002
-0.265588
1.252765
0.879
425.713989
2
19.2995
0.1934
17.9779
17.726801
17.1325
17.1586
0.431048
0.25626
2,458,045.75
6.131322
-999
18.9711
-999
-999
0.5
1.087712
-999
-999
-999
-999
-999
-999
2,458,315
15.241911
19.281872
25.904589
0.000021
0.038067
-0.06621
0.000028
0.255589
-999
17.745216
-999
30
0.999968
null
null
null
null
null
0.9998
18.320438
20.020849
19.029413
19.915491
653.105896
270.162201
382.943695
0
1
1
944,453,401,415,015,000
453
4
0
23
226
2
203
46
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'r'","b'r'","b'r'"],"view":["science","reference","difference"],"array":[[[0.015225598588(...TRUNCATED)
2,459,087
20.540646
18.902143
0.082447
1.422845
18.685301
0.0813
5.431983
22.809999
1.021
-0.303
0.041597
-0.216843
1.82
0.981
371.139496
1.254946
18.713699
0.1072
18.7666
17.877199
17.6248
17.3241
0.021875
8.562884
2,459,077
27.384245
18.573799
17.7498
17.3839
17.214399
1
28.040306
-999
-999
-999
-999
-999
-999
2,458,320
32.356014
42.797611
26.183144
0.000008
0.041194
0.111632
0.000012
28.049931
-999
17.638859
-999
30
0.999941
null
null
null
null
null
0.999998
18.902143
20.673637
18.902143
20.325697
10.027349
0
10.027349
0
2
1
1,332,452,472,615,015,000
453
3
0
8
361
2
353
17
true
true
false
true
ZTF20absvwdh
dims
train
{"band":["b'g'","b'g'","b'g'"],"view":["science","reference","difference"],"array":[[[0.014814256690(...TRUNCATED)
2,458,874.75
20.234703
19.064037
0.123392
2.401415
19.2082
0.1561
0.323776
17.601
1.56
0.088
-0.471061
0.144163
2.31
0.984
225.619095
1.113717
19.220699
0.1983
17.9779
17.726801
17.1325
17.1586
0.431048
0.345714
2,458,045.75
11.970293
-999
18.9711
-999
-999
0.5
0.885034
-999
-999
-999
-999
-999
-999
2,458,315
9.63241
25.03603
25.931038
0.000025
0.038519
-0.05729
0.000036
0.349768
-999
17.745216
-999
30
0.999352
null
null
null
null
null
0.996798
18.320438
20.020849
18.889647
19.915491
828.819092
116.650406
712.168701
0
1
1
1,120,166,620,315,015,000
452
2
0
150
453
2
303
74
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'g'","b'g'","b'g'"],"view":["science","reference","difference"],"array":[[[0.015913462266(...TRUNCATED)
2,458,736
20.247972
19.629002
0.143525
0.997614
19.514099
0.1635
0.47572
17.584
1.16
0.078
-0.074914
-0.114901
2.53
0.663
471.7099
1.298924
19.4526
0.1927
17.9779
17.726801
17.1325
17.1586
0.431048
0.570275
2,458,045.75
6.21045
-999
18.9711
-999
-999
0.5
1.106183
-999
-999
-999
-999
-999
-999
2,458,315
3.315491
16.689917
26.040001
0.000031
0.048949
-0.101407
0.000043
0.569053
-999
17.745216
-999
30
0.998573
null
null
null
null
null
0.999684
18.320438
20.020849
19.029413
19.915491
690.092896
307.149231
382.943695
0
1
1
981,440,411,415,015,000
453
3
0
68
296
2
228
4
true
false
false
true
ZTF18abvfejf
rejects
train
{"band":["b'r'","b'r'","b'r'"],"view":["science","reference","difference"],"array":[[[0.014367106370(...TRUNCATED)
2,459,094
19.823456
19.199476
0.153123
1.418192
19.641001
0.3416
5.431481
22.809999
1.021
-0.303
0.215418
0.441524
1.69
0.981
672.14563
1.432497
19.351
0.337
18.7666
17.877199
17.6248
17.3241
0.021875
8.397249
2,459,077
14.123182
18.573799
17.7498
17.3839
17.214399
1
28.029152
-999
-999
-999
-999
-999
-999
2,458,320
12.408703
16.699469
26.291475
0.00002
0.048044
0.111033
0.000027
28.038767
-999
17.638859
-999
30
0.999895
null
null
null
null
null
0.996432
18.902143
20.673637
18.902143
20.325697
17.058067
7.030717
10.027349
0
2
1
1,339,483,192,615,015,000
453
5
0
20
375
2
355
6
true
true
false
false
ZTF20absvwdh
dims
train
{"band":["b'r'","b'r'","b'r'"],"view":["science","reference","difference"],"array":[[[0.014514981769(...TRUNCATED)
2,458,814.75
19.908722
19.696611
0.186893
1.372828
19.444099
0.2383
0.6917
17.261
2.313
0.237
0.320742
-0.252511
1.404855
0.476
497.841003
2
19.814899
0.4215
17.9779
17.726801
17.1325
17.1586
0.431048
0.78659
2,458,045.75
5.072039
-999
18.9711
-999
-999
0.5
1.520332
-999
-999
-999
-999
-999
-999
2,458,320
2.974869
8.150133
25.831612
0.000016
0.042527
0.10163
0.000021
0.781507
-999
17.745216
-999
30
0.984463
null
null
null
null
null
0.974037
18.320438
20.020849
18.889647
19.915491
768.86261
56.693913
712.168701
0
2
1
1,060,210,121,415,015,000
453
2
0
115
387
2
272
19
true
false
false
true
ZTF18abvfejf
rejects
train
End of preview. Expand in Data Studio
---
description: 'This is the production version of the BTSbot training set, limited to

public (programid=1) ZTF alerts.

Original codebase: https://github.com/nabeelre/BTSbot

' homepage: https://zenodo.org/records/10839691 version: 1.0.0 citation: "% % ACKNOWLEDGEMENTS\n% % Based on the Acknowledgements in Rehemtulla et
\ al. (2024). We suggest including a variant of the following in your acknowledgements:\n
% A great number of people have contributed to BTS and BTS scanning over the years.
\ We thank the following people who have saved 10 or more sources to internal BTS
\ catalogs on Fritz as of October 2023: Ivan Altunin, Raphael Baer-Way, Pallas A.
\ Beddow, Ofek Bengiat, Joshua S. Bloom, Ola Bochenek, Emma Born, Kate Bostow, Victoria
\ Mei Brendel, Rachel Bruch, Vidhi Chander, Matthew Chu, Elma Chuang, Aishwarya
\ Dahiwale, Asia deGraw, Dmitry Duev, Kingsley Ehrich, Eli Gendreau-Distler, Nachiket
\ Girish, Xander Hall, KRyan Hinds, Ido Irani, Cooper Jacobus, Connor Jennings,
\ Joel Johansson, Snehaa Ganesh Kumar, Michael May, William Meynardie, Shaunak Modak,
\ Kishore Patra, Neil Pichay, Sophia Risin, Yashvi Sharma, Gabrielle Stewart, Nora
\ Linn Strotjohann, James Sunseri, Edgar Vidal, Jacob Wise, Abel Yagubyan, Yoomee
\ Zeng, and Erez A. Zimmerman.\n% \n% We also thank Jakob Nordin for discussions
\ relating to AMPEL.\n% \n% The material contained in this document is based upon
\ work supported by a National Aeronautics and Space Administration (NASA) grant
\ or cooperative agreement. Any opinions, findings, conclusions, or recommendations
\ expressed in this material are those of the author and do not necessarily reflect
\ the views of NASA. This work was supported through a NASA grant awarded to the
\ Illinois/NASA Space Grant Consortium. This research was supported in part through
\ the computational resources and staff contributions provided for the Quest high
\ performance computing facility at Northwestern University which is jointly supported
\ by the Office of the Provost, the Office for Research, and Northwestern University
\ Information Technology.\n% \n% Based on observations obtained with the Samuel
\ Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory
\ as part of the Zwicky Transient Facility project. ZTF is supported by the National
\ Science Foundation under Grants No. AST-1440341 and AST-2034437 and a collaboration
\ including current partners Caltech, IPAC, the Oskar Klein Center at Stockholm
\ University, the University of Maryland, University of California, Berkeley , the
\ University of Wisconsin at Milwaukee, University of Warwick, Ruhr University,
\ Cornell University, Northwestern University and Drexel University. Operations
\ are conducted by COO, IPAC, and UW.\n% \n% CITATION\n@misc{rehemtulla2024zwicky,\n
\ title={The Zwicky Transient Facility Bright Transient Survey. III. $\texttt{BTSbot}$:
\ Automated Identification and Follow-up of Bright Transients with Deep Learning},
\ \n author={Nabeel Rehemtulla and Adam A. Miller and Theophile Jegou Du Laz
\ and Michael W. Coughlin and Christoffer Fremling and Daniel A. Perley and Yu-Jing
\ Qin and Jesper Sollerman and Ashish A. Mahabal and Russ R. Laher and Reed Riddle
\ and Ben Rusholme and Shrinivas R. Kulkarni},\n year={2024},\n eprint={2401.15167},\n
\ archivePrefix={arXiv},\n primaryClass={astro-ph.IM}\n}\n\n@ARTICLE{Rehemtulla2024BTWBot,\n
\ author = {{Rehemtulla}, Nabeel and {Miller}, Adam A. and {Jegou Du Laz},
\ Theophile and {Coughlin}, Michael W. and {Fremling}, Christoffer and {Perley},
\ Daniel A. and {Qin}, Yu-Jing and {Sollerman}, Jesper and {Mahabal}, Ashish A.
\ and {Laher}, Russ R. and {Riddle}, Reed and {Rusholme}, Ben and {Kulkarni}, Shrinivas
\ R.},\n title = "{The Zwicky Transient Facility Bright Transient Survey.
\ III. BTSbot: Automated Identification and Follow-up of Bright Transients with
\ Deep Learning}",\n journal = {\apj},\n keywords = {Time domain astronomy,
\ Sky surveys, Supernovae, Convolutional neural networks, 2109, 1464, 1668, 1938,
\ Astrophysics - Instrumentation and Methods for Astrophysics},\n year =
\ 2024,\n month = sep,\n volume = {972},\n number = {1},\n
\ eid = {7},\n pages = {7},\n doi = {10.3847/1538-4357/ad5666},\n
archivePrefix = {arXiv},\n eprint = {2401.15167},\n primaryClass = {astro-ph.IM},\n
\ adsurl = {https://ui.adsabs.harvard.edu/abs/2024ApJ...972....7R},\n
\ adsnote = {Provided by the SAO/NASA Astrophysics Data System}\n}\n" ---

# Btsbot Dataset

CC BY 4.0

This is the production version of the BTSbot training set, limited to public (programid=1) ZTF alerts.

Original codebase: https://github.com/nabeelre/BTSbot

% % ACKNOWLEDGEMENTS

% % Based on the Acknowledgements in Rehemtulla et al. (2024). We suggest including a variant of the following in your acknowledgements: % A great number of people have contributed to BTS and BTS scanning over the years. We thank the following people who have saved 10 or more sources to internal BTS catalogs on Fritz as of October 2023: Ivan Altunin, Raphael Baer-Way, Pallas A. Beddow, Ofek Bengiat, Joshua S. Bloom, Ola Bochenek, Emma Born, Kate Bostow, Victoria Mei Brendel, Rachel Bruch, Vidhi Chander, Matthew Chu, Elma Chuang, Aishwarya Dahiwale, Asia deGraw, Dmitry Duev, Kingsley Ehrich, Eli Gendreau-Distler, Nachiket Girish, Xander Hall, KRyan Hinds, Ido Irani, Cooper Jacobus, Connor Jennings, Joel Johansson, Snehaa Ganesh Kumar, Michael May, William Meynardie, Shaunak Modak, Kishore Patra, Neil Pichay, Sophia Risin, Yashvi Sharma, Gabrielle Stewart, Nora Linn Strotjohann, James Sunseri, Edgar Vidal, Jacob Wise, Abel Yagubyan, Yoomee Zeng, and Erez A. Zimmerman. % % We also thank Jakob Nordin for discussions relating to AMPEL. % % The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA. This work was supported through a NASA grant awarded to the Illinois/NASA Space Grant Consortium. This research was supported in part through the computational resources and staff contributions provided for the Quest high performance computing facility at Northwestern University which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. % % Based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National Science Foundation under Grants No. AST-1440341 and AST-2034437 and a collaboration including current partners Caltech, IPAC, the Oskar Klein Center at Stockholm University, the University of Maryland, University of California, Berkeley , the University of Wisconsin at Milwaukee, University of Warwick, Ruhr University, Cornell University, Northwestern University and Drexel University. Operations are conducted by COO, IPAC, and UW. % % CITATION @misc{rehemtulla2024zwicky, title={The Zwicky Transient Facility Bright Transient Survey. III. $\texttt{BTSbot}$: Automated Identification and Follow-up of Bright Transients with Deep Learning}, author={Nabeel Rehemtulla and Adam A. Miller and Theophile Jegou Du Laz and Michael W. Coughlin and Christoffer Fremling and Daniel A. Perley and Yu-Jing Qin and Jesper Sollerman and Ashish A. Mahabal and Russ R. Laher and Reed Riddle and Ben Rusholme and Shrinivas R. Kulkarni}, year={2024}, eprint={2401.15167}, archivePrefix={arXiv}, primaryClass={astro-ph.IM} }

@ARTICLE{Rehemtulla2024BTWBot, author = {{Rehemtulla}, Nabeel and {Miller}, Adam A. and {Jegou Du Laz}, Theophile and {Coughlin}, Michael W. and {Fremling}, Christoffer and {Perley}, Daniel A. and {Qin}, Yu-Jing and {Sollerman}, Jesper and {Mahabal}, Ashish A. and {Laher}, Russ R. and {Riddle}, Reed and {Rusholme}, Ben and {Kulkarni}, Shrinivas R.}, title = "{The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning}", journal = {\apj}, keywords = {Time domain astronomy, Sky surveys, Supernovae, Convolutional neural networks, 2109, 1464, 1668, 1938, Astrophysics - Instrumentation and Methods for Astrophysics}, year = 2024, month = sep, volume = {972}, number = {1}, eid = {7}, pages = {7}, doi = {10.3847/1538-4357/ad5666}, archivePrefix = {arXiv}, eprint = {2401.15167}, primaryClass = {astro-ph.IM}, adsurl = {https://ui.adsabs.harvard.edu/abs/2024ApJ...972....7R}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} }

Downloads last month
6