Den4ikAI commited on
Commit
4690fe1
·
verified ·
1 Parent(s): 526b425

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-to-speech
5
+ - automatic-speech-recognition
6
+ language:
7
+ - ru
8
+ size_categories:
9
+ - 100K<n<1M
10
+ pretty_name: IGM YouTube Dataset
11
+ tags:
12
+ - audio
13
+ - text
14
+ ---
15
+
16
+ # IGM YouTube Audio Dataset
17
+
18
+ ## Dataset Description
19
+
20
+ This dataset contains 220 hours of processed audio segments extracted from the IGM YouTube channel with corresponding metadata. Each audio file represents a segment from IGM's educational videos and lectures, processed at 44.1kHz sample rate.
21
+
22
+ ### Dataset Summary
23
+
24
+ - **Language**: Russian
25
+ - **Task**: TTS, ASR, Quality Assessment
26
+ - **Audio format**: MP3, 44.1kHz sample rate
27
+ - **Structure**: Segmented audio files with JSON metadata
28
+ - **Source**: IGM YouTube channel content
29
+
30
+ ## Dataset Structure
31
+
32
+ ### Data Fields
33
+
34
+ #### Basic Information
35
+ - `audio`: Audio data (44.1kHz sample rate, MP3 format)
36
+ - `file_name`: Name of the audio segment file (format: `<original_name>_<idx>.mp3`)
37
+ - `segment_index`: Index of the audio segment within the original video
38
+ - `original_name`: Original name of the YouTube video recording
39
+
40
+ #### Transcription and Timing
41
+ - `text`: Transcribed text of the audio segment
42
+ - `start`: Start time of the segment in seconds
43
+ - `end`: End time of the segment in seconds
44
+ - `words`: Word-level timestamps and confidence scores
45
+
46
+ #### Speaker Information
47
+ - `speaker`: Speaker identifier (e.g., "SPEAKER_00")
48
+
49
+ #### Quality Metrics
50
+ - `emos_overall`: EMOS overall quality score
51
+ - `noise_confidence`: Noise detection confidence
52
+
53
+ ![design](https://huggingface.co/datasets/ESpeech/ESpeech-igm/resolve/main/mos.png)
54
+
55
+ #### Segment Structure
56
+ - `num_sentences`: Number of sentences (for merged segments)
57
+ - `original_segments`: Original subsegments data (for merged segments)
58
+
59
+ #### VAD (Voice Activity Detection)
60
+ - `vad_trimmed`: Whether VAD trimming was applied
61
+ - `vad_start`: VAD start time
62
+ - `trim_ratio`: Ratio of trimmed audio
63
+
64
+ ### Data Splits
65
+ - **Train**: All available YouTube video segments
66
+
67
+ ## Dataset Creation
68
+
69
+ ### Source Data
70
+ The dataset consists of audio content extracted from the IGM YouTube channel. IGM produces educational content, lectures, and discussions primarily in Russian. Each YouTube video has been processed and segmented into multiple audio clips, with each segment saved as a separate MP3 file along with its transcription and metadata.
71
+
72
+ ## Usage
73
+
74
+ ### Loading the Dataset
75
+ Load and extract the tar.aa and tar.ab archive files using:
76
+ ```bash
77
+ cat igm_archive.tar.aa igm_archive.tar.ab > igm_archive.tar && tar -xf igm_archive.tar
78
+ ```
79
+
80
+ ### Citation Information
81
+ ```bibtex
82
+ @dataset{igm_youtube_audio_dataset,
83
+ title={IGM YouTube Audio Dataset},
84
+ author={Denis Petrov},
85
+ year={2025},
86
+ url={https://huggingface.co/datasets/ESpeech/ESpeech-igm/}
87
+ }
88
+ ```