Dataset Viewer (First 5GB)
Auto-converted to Parquet
mp3
audioduration (s)
0.29
30.1
__key__
stringlengths
7
16
__url__
stringclasses
1 value
igm/408/408_519
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_16
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_152
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_508
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_115
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_281
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_433
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_22
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_410
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_4
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_6
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_165
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_432
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_41
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_240
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_153
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_121
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_329
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_118
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_112
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_363
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_114
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_202
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_119
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_124
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_75
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_290
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_481
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_184
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_365
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_11
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_52
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_224
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_82
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_217
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_64
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_97
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_333
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_483
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_143
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_81
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_251
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_425
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_332
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_302
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_272
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_297
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_171
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_241
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_158
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_292
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_455
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_366
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_233
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_210
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_237
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_385
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_320
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_149
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_499
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_15
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_287
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_28
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_383
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_434
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_167
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_263
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_259
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_39
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_311
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_29
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_199
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_45
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_360
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_466
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_182
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_435
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_42
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_162
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_393
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_134
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_518
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_313
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_502
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_461
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_58
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_31
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_249
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_140
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_437
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_9
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_56
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_298
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_89
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_345
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_431
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_351
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_228
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_487
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
igm/408/408_12
hf://datasets/ESpeech/ESpeech-igm@4f15c670f568d463e608d69e2f98a5f1b3c1c98b/igm_archive.tar.aa
End of preview. Expand in Data Studio

IGM YouTube Audio Dataset

Dataset Description

This dataset contains 220 hours of processed audio segments extracted from the IGM YouTube channel with corresponding metadata. Each audio file represents a segment from IGM's educational videos and lectures, processed at 44.1kHz sample rate.

Dataset Summary

  • Language: Russian
  • Task: TTS, ASR, Quality Assessment
  • Audio format: MP3, 44.1kHz sample rate
  • Structure: Segmented audio files with JSON metadata
  • Source: IGM YouTube channel content

Dataset Structure

Data Fields

Basic Information

  • audio: Audio data (44.1kHz sample rate, MP3 format)
  • file_name: Name of the audio segment file (format: <original_name>_<idx>.mp3)
  • segment_index: Index of the audio segment within the original video
  • original_name: Original name of the YouTube video recording

Transcription and Timing

  • text: Transcribed text of the audio segment
  • start: Start time of the segment in seconds
  • end: End time of the segment in seconds
  • words: Word-level timestamps and confidence scores

Speaker Information

  • speaker: Speaker identifier (e.g., "SPEAKER_00")

Quality Metrics

  • emos_overall: EMOS overall quality score
  • noise_confidence: Noise detection confidence

design

Segment Structure

  • num_sentences: Number of sentences (for merged segments)
  • original_segments: Original subsegments data (for merged segments)

VAD (Voice Activity Detection)

  • vad_trimmed: Whether VAD trimming was applied
  • vad_start: VAD start time
  • trim_ratio: Ratio of trimmed audio

Data Splits

  • Train: All available YouTube video segments

Dataset Creation

Source Data

The dataset consists of audio content extracted from the IGM YouTube channel. IGM produces educational content, lectures, and discussions primarily in Russian. Each YouTube video has been processed and segmented into multiple audio clips, with each segment saved as a separate MP3 file along with its transcription and metadata.

Usage

Loading the Dataset

Load and extract the tar.aa and tar.ab archive files using:

cat igm_archive.tar.aa igm_archive.tar.ab > igm_archive.tar && tar -xf igm_archive.tar

Citation Information

@dataset{igm_youtube_audio_dataset,
  title={IGM YouTube Audio Dataset},
  author={Denis Petrov},
  year={2025},
  url={https://huggingface.co/datasets/ESpeech/ESpeech-igm/}
}
Downloads last month
283