Dataset Viewer
Auto-converted to Parquet
content
stringlengths
0
181M
language
stringclasses
54 values
[package] name = "console" version = "0.1.0" authors = ["Alex McArther <[email protected]>"] [dependencies] itertools = "*" cgmath = "0.10" specs = "0.7.0" glutin = "0.6.1" lazy_static = "0.2.1" uuid = { version = "0.2.2", features = ["serde", "v4"] } [dependencies.client_state] path = "../../core/client_state" [dependencies.pause] path = "../../core/pause" [dependencies.pubsub] path = "../../../pubsub" [dependencies.common] path = "../../../common" [dependencies.automatic_system_installer] path = "../../infra/automatic_system_installer"
TOML
package com.cookbook.cbook.service; import com.cookbook.cbook.entity.Recipe; import org.springframework.stereotype.Repository; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import javax.transaction.Transactional; //@Repository //@Transactional public class RecipeDAOService { @PersistenceContext private EntityManager entityManager; public long insert(Recipe recipe){ entityManager.persist(recipe); return recipe.getId(); } }
Java
(* Auto-generated from "game_descr.atd" *) (** A position in the initial array. *) type tile_pos = Game_descr_t.tile_pos type tile = Game_descr_t.tile type rule_descr = Game_descr_t.rule_descr = { name: string; flags: string list option } (** Player 0 is east and so on. *) type round_player = Game_descr_t.round_player type round_event = Game_descr_t.round_event = Init of tile option Ag_util.ocaml_array | Wall_breaker_roll of int | Break_wall_roll of int | Deal | Draw of round_player | Discard of (round_player * tile_pos) | Mahjong of round_player | Concealed_kong of (round_player * tile_pos list) | Small_kong of (round_player * tile_pos) | Chow of (round_player * tile_pos list) | Pong of (round_player * tile_pos list) | Kong of (round_player * tile_pos list) | No_action of round_player type ai_conf = Game_descr_t.ai_conf = { name: string; force: int } type player_kind = Game_descr_t.player_kind = Human | AI of ai_conf type player_idx = Game_descr_t.player_idx type player_descr = Game_descr_t.player_descr = { name: string; kind: player_kind } type game_event = Game_descr_t.game_event = Set_rule of rule_descr | Player of player_descr | East_seat of player_idx | Init_score of float | Round_event of round_event | End_round | New_round | End_game type game = Game_descr_t.game = { game_events: game_event list; current_round: round_event list } val write_tile_pos : Bi_outbuf.t -> tile_pos -> unit (** Output a JSON value of type {!tile_pos}. *) val string_of_tile_pos : ?len:int -> tile_pos -> string (** Serialize a value of type {!tile_pos} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_tile_pos : Yojson.Safe.lexer_state -> Lexing.lexbuf -> tile_pos (** Input JSON data of type {!tile_pos}. *) val tile_pos_of_string : string -> tile_pos (** Deserialize JSON data of type {!tile_pos}. *) val write_tile : Bi_outbuf.t -> tile -> unit (** Output a JSON value of type {!tile}. *) val string_of_tile : ?len:int -> tile -> string (** Serialize a value of type {!tile} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_tile : Yojson.Safe.lexer_state -> Lexing.lexbuf -> tile (** Input JSON data of type {!tile}. *) val tile_of_string : string -> tile (** Deserialize JSON data of type {!tile}. *) val write_rule_descr : Bi_outbuf.t -> rule_descr -> unit (** Output a JSON value of type {!rule_descr}. *) val string_of_rule_descr : ?len:int -> rule_descr -> string (** Serialize a value of type {!rule_descr} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_rule_descr : Yojson.Safe.lexer_state -> Lexing.lexbuf -> rule_descr (** Input JSON data of type {!rule_descr}. *) val rule_descr_of_string : string -> rule_descr (** Deserialize JSON data of type {!rule_descr}. *) val write_round_player : Bi_outbuf.t -> round_player -> unit (** Output a JSON value of type {!round_player}. *) val string_of_round_player : ?len:int -> round_player -> string (** Serialize a value of type {!round_player} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_round_player : Yojson.Safe.lexer_state -> Lexing.lexbuf -> round_player (** Input JSON data of type {!round_player}. *) val round_player_of_string : string -> round_player (** Deserialize JSON data of type {!round_player}. *) val write_round_event : Bi_outbuf.t -> round_event -> unit (** Output a JSON value of type {!round_event}. *) val string_of_round_event : ?len:int -> round_event -> string (** Serialize a value of type {!round_event} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_round_event : Yojson.Safe.lexer_state -> Lexing.lexbuf -> round_event (** Input JSON data of type {!round_event}. *) val round_event_of_string : string -> round_event (** Deserialize JSON data of type {!round_event}. *) val write_ai_conf : Bi_outbuf.t -> ai_conf -> unit (** Output a JSON value of type {!ai_conf}. *) val string_of_ai_conf : ?len:int -> ai_conf -> string (** Serialize a value of type {!ai_conf} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_ai_conf : Yojson.Safe.lexer_state -> Lexing.lexbuf -> ai_conf (** Input JSON data of type {!ai_conf}. *) val ai_conf_of_string : string -> ai_conf (** Deserialize JSON data of type {!ai_conf}. *) val write_player_kind : Bi_outbuf.t -> player_kind -> unit (** Output a JSON value of type {!player_kind}. *) val string_of_player_kind : ?len:int -> player_kind -> string (** Serialize a value of type {!player_kind} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_player_kind : Yojson.Safe.lexer_state -> Lexing.lexbuf -> player_kind (** Input JSON data of type {!player_kind}. *) val player_kind_of_string : string -> player_kind (** Deserialize JSON data of type {!player_kind}. *) val write_player_idx : Bi_outbuf.t -> player_idx -> unit (** Output a JSON value of type {!player_idx}. *) val string_of_player_idx : ?len:int -> player_idx -> string (** Serialize a value of type {!player_idx} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_player_idx : Yojson.Safe.lexer_state -> Lexing.lexbuf -> player_idx (** Input JSON data of type {!player_idx}. *) val player_idx_of_string : string -> player_idx (** Deserialize JSON data of type {!player_idx}. *) val write_player_descr : Bi_outbuf.t -> player_descr -> unit (** Output a JSON value of type {!player_descr}. *) val string_of_player_descr : ?len:int -> player_descr -> string (** Serialize a value of type {!player_descr} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_player_descr : Yojson.Safe.lexer_state -> Lexing.lexbuf -> player_descr (** Input JSON data of type {!player_descr}. *) val player_descr_of_string : string -> player_descr (** Deserialize JSON data of type {!player_descr}. *) val write_game_event : Bi_outbuf.t -> game_event -> unit (** Output a JSON value of type {!game_event}. *) val string_of_game_event : ?len:int -> game_event -> string (** Serialize a value of type {!game_event} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_game_event : Yojson.Safe.lexer_state -> Lexing.lexbuf -> game_event (** Input JSON data of type {!game_event}. *) val game_event_of_string : string -> game_event (** Deserialize JSON data of type {!game_event}. *) val write_game : Bi_outbuf.t -> game -> unit (** Output a JSON value of type {!game}. *) val string_of_game : ?len:int -> game -> string (** Serialize a value of type {!game} into a JSON string. @param len specifies the initial length of the buffer used internally. Default: 1024. *) val read_game : Yojson.Safe.lexer_state -> Lexing.lexbuf -> game (** Input JSON data of type {!game}. *) val game_of_string : string -> game (** Deserialize JSON data of type {!game}. *)
OCaml
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" android:background="@drawable/background_learn" tools:context=".AddNewItemActivity" > <ImageButton android:id="@+id/add_item_btn_camera" android:layout_width="200dp" android:layout_height="200dp" android:layout_above="@+id/add_item_layout_description" android:layout_centerHorizontal="true" android:layout_marginBottom="@dimen/add_item_margin_bottom" android:background="@android:color/transparent" android:contentDescription="@string/description_camera_image_button" android:scaleType="fitCenter" android:src="@drawable/btn_take_picture" /> <LinearLayout android:id="@+id/add_item_layout_description" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_centerHorizontal="true" android:layout_centerInParent="true" > <EditText android:id="@+id/add_item_edt_description" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="@dimen/add_item_margin_bottom" android:background="@color/white_transparent" android:ems="20" android:hint="@string/add_item_hint" android:inputType="text" > </EditText> <Spinner android:id="@+id/add_item_spinner_list_subject" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginLeft="@dimen/add_item_screen_spinner_margin_left" android:gravity="center_horizontal" /> </LinearLayout> <LinearLayout android:id="@+id/add_item_layout_record_play" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_below="@+id/add_item_layout_description" android:layout_centerHorizontal="true" android:layout_marginTop="@dimen/add_item_btn_record_margin_top" android:paddingBottom="@dimen/add_item_margin_bottom" > <ImageButton android:id="@+id/add_item_btn_record" android:layout_width="60dp" android:layout_height="60dp" android:background="@android:color/transparent" android:contentDescription="@string/description_camera_image_button" android:src="@drawable/record" /> <ImageButton android:id="@+id/add_item_btn_recording" android:layout_width="60dp" android:layout_height="60dp" android:background="@android:color/transparent" android:contentDescription="@string/description_camera_image_button" android:src="@drawable/stop" android:visibility="gone" /> <ImageButton android:id="@+id/add_item_btn_play" android:layout_width="60dp" android:layout_height="60dp" android:background="@android:color/transparent" android:contentDescription="@string/description_save_item" android:paddingLeft="@dimen/add_item_btn_record_margin_left" android:src="@drawable/play" /> <ImageButton android:id="@+id/add_item_btn_playing" android:layout_width="wrap_content" android:layout_height="wrap_content" android:background="@android:color/transparent" android:contentDescription="@string/description_camera_image_button" android:paddingLeft="@dimen/add_item_btn_record_margin_left" android:src="@drawable/stop" android:visibility="gone" /> </LinearLayout> <ImageButton android:id="@+id/add_item_btn_save" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_below="@+id/add_item_layout_record_play" android:layout_centerHorizontal="true" android:background="@android:color/transparent" android:contentDescription="@string/description_save_item" android:src="@drawable/btn_save" /> </RelativeLayout>
XML
import java.math.BigInteger fun main(args: Array<String>) { val x = BigInteger.valueOf(5).pow(Math.pow(4.0, 3.0 * 3.0).toInt()) val y = x.toString() val len = y.length println("5^4^3^2 = ${y.substring(0, 20)}...${y.substring(len - 20)} and has $len digits") }
Kotlin
{ "hits": 0, "timeRestore": false, "description": "", "title": "Packetbeat Dashboard", "panelsJSON": "[{\"col\":1,\"id\":\"Web-transactions\",\"row\":5,\"size_x\":3,\"size_y\":2,\"type\":\"visualization\"},{\"col\":4,\"id\":\"DB-transactions\",\"row\":5,\"size_x\":3,\"size_y\":2,\"type\":\"visualization\"},{\"col\":7,\"id\":\"Cache-transactions\",\"row\":5,\"size_x\":3,\"size_y\":2,\"type\":\"visualization\"},{\"col\":10,\"id\":\"RPC-transactions\",\"row\":5,\"size_x\":3,\"size_y\":2,\"type\":\"visualization\"},{\"col\":1,\"id\":\"Response-times-percentiles\",\"row\":10,\"size_x\":6,\"size_y\":3,\"type\":\"visualization\"},{\"col\":1,\"id\":\"Errors-count-over-time\",\"row\":13,\"size_x\":6,\"size_y\":3,\"type\":\"visualization\"},{\"col\":7,\"id\":\"Errors-vs-successful-transactions\",\"row\":10,\"size_x\":6,\"size_y\":3,\"type\":\"visualization\"},{\"col\":7,\"id\":\"Latency-histogram\",\"row\":13,\"size_x\":6,\"size_y\":3,\"type\":\"visualization\"},{\"col\":4,\"id\":\"Client-locations\",\"row\":1,\"size_x\":9,\"size_y\":4,\"type\":\"visualization\"},{\"col\":1,\"id\":\"Response-times-repartition\",\"row\":7,\"size_x\":12,\"size_y\":3,\"type\":\"visualization\"},{\"id\":\"Navigation\",\"type\":\"visualization\",\"size_x\":3,\"size_y\":4,\"col\":1,\"row\":1}]", "version": 1, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"filter\":[{\"query\":{\"query_string\":{\"analyze_wildcard\":true,\"query\":\"*\"}}}]}" } }
JSON
package com.cagnosolutions.app.main.user import groovy.transform.CompileStatic import javax.persistence.Entity import javax.persistence.GeneratedValue import javax.persistence.Id import javax.persistence.Table /** * Created by Scott Cagno. * Copyright Cagno Solutions. All rights reserved. */ @CompileStatic @Entity @Table(name = "user") class User { @Id @GeneratedValue Long id String name, email, username, password, role = "ROLE_USER" Long creation, lastSeen short active = 1 }
Groovy
class Colors COLORS = { :red => 1, :green => 2, :yellow => 3, :blue => 4, :purple => 5, :sea => 6, :white => 7 } class << self def default_terminal_colors @default_terminal_colors ||= "\e[0m" end def process(data) begin _process(data) ensure STDOUT.flush reset! end end def reset! STDOUT.write("\e[0m") STDOUT.flush end def _process(data) # Backrounds if m = data.match(%r{<(.*?) bg=(.*?)>(.*?)<\/(.*?)>}m) COLORS.each do |k,v| t = data.match(%r{<(.*?) bg=#{k}>(.*?)<\/(.*?)>}m) data.gsub!(%r{<(.*?) bg=#{k}>(.*?)<\/(.*?)>}m, "\e[1m\e[4#{v}m<\\1>\\2</\\1>#{default_terminal_colors}") end end # Colored text COLORS.each do |k,v| data.gsub!(%r{<#{k}>(.*?)</#{k}>}m, "\e[1m\e[3#{v}m\\1#{default_terminal_colors}") end data.gsub!(%r{<b>(.*?)</b>}m, "\e[1m\\1#{default_terminal_colors}") data.gsub!(%r{<line>}m, "---------------------------------------") data.gsub!(%r{<banner>(.*?)</banner>}m, "\e[33m\e[44m\e[1m\\1#{default_terminal_colors}") return data end end end
Ruby
/* $Id$ *====================================================================== * * DISCLAIMER * * This material was prepared as an account of work sponsored by an * agency of the United States Government. Neither the United States * Government nor the United States Department of Energy, nor Battelle, * nor any of their employees, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR * ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, * COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, * SOFTWARE, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT * INFRINGE PRIVATELY OWNED RIGHTS. * * ACKNOWLEDGMENT * * This software and its documentation were produced with Government * support under Contract Number DE-AC06-76RLO-1830 awarded by the United * States Department of Energy. The Government retains a paid-up * non-exclusive, irrevocable worldwide license to reproduce, prepare * derivative works, perform publicly and display publicly by or for the * Government, including the right to distribute to other Government * contractors. * *====================================================================== * * -- PEIGS routine (version 2.1) -- * Pacific Northwest Laboratory * July 28, 1995 * *====================================================================== */ #include <stdio.h> #include <math.h> #include "globalp.c.h" #define max(a,b) ((a) > (b) ? (a) : (b)) void sonenrm ( n, colA, mapA, norm, iwork, work, info) Integer *n, *mapA, *iwork, *info; DoublePrecision **colA, *work, *norm; { /****************************************************** * * C subroutine sonenrm * * This routines computes the one norm of a column * distributed symmetric matrix in packed storage format * Arguments --------- In the following: INTEGER = "pointer to Integer" DOUBLE PRECISION = "pointer to DoublePrecision" me = this processor's id (= mxmynd_()) nprocs = number of allocated processors ( = mxnprc_()) nvecsA = number of entries in mapA equal to me (= count_list( me, mapA, n )) sDP = sizeof( DoublePrecision ) n....... (input) INTEGER size of the matrix A colA ... (input) array of pointers to DoublePrecision, length (nvecsA) The part of matrix A owned by this processer stored in packed format, i.e., colA[i] points to the diagonal element of the i-th column (or equivalently row) of A owned by this processor, i = 0 to nvecsA-1. mapA ... (input) INTEGER array, length (n) The i-th column (or equivalently row) of A is owned by processor mapA[i], i = 0 to n-1. norm ... (output) DOUBLE PRECISION The one-norm of A iwork... (workspace) INTEGER array, length( n+nvecsA ) work.... (workspace) DOUBLE PRECISION array, length( n + 1 + mxlbuf_() / sDP + 1 ) info.... (output) INTEGER = 0, not currently used */ static Integer IONE = 1; Integer ll, nprocs, i, me, nvecsA, *mapvecA; Integer *proclist, jj, k, ii; Integer *iscrat; DoublePrecision scl; DoublePrecision *normvec, *workMX; extern DoublePrecision dasum_ (); extern void gsum00(); extern void fil_dbl_list (); extern Integer mxmynd_(); extern Integer fil_mapvec_(); extern Integer reduce_list2(); extern void fil_dbl_lst(); me = mxmynd_ (); *info = 0; ll = *n; *norm = 0.e0; iscrat = iwork; mapvecA = iscrat; nvecsA = fil_mapvec_ ( &me, &ll, mapA, mapvecA); iscrat += nvecsA; if ( nvecsA == 0 ) return; proclist = iscrat; nprocs = reduce_list2( *n, mapA, proclist); iscrat += nprocs; normvec = work; workMX = work + *n + 1; fil_dbl_lst ( *n, normvec, 0.0e0); /* zero out normvec */ for ( i = 0; i < nvecsA; i++ ) { jj = mapvecA[i]; ii = ll - jj; scl = dasum_ ( &ii, colA[i], &IONE ); normvec[jj] = scl; } for ( i = 0; i < nvecsA; i++ ) { jj = mapvecA[i]; for ( k = 1; k < *n-jj; k++ ) normvec[jj+k] += fabs( colA[i][k] ); } gsum00( (char *) normvec, ll * sizeof(DoublePrecision), 5, 10, proclist[0], nprocs, proclist, workMX); scl = 0.0e0; for ( i = 0; i < ll; i++ ) scl = max( normvec[i], scl); *norm = scl; return; }
C
############################################################################# # # XFOIL # # Copyright (C) 2000 Mark Drela # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ############################################################################# cmake_minimum_required(VERSION 3.5) project(xfoil LANGUAGES C Fortran VERSION 6.97) if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES) set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build; options are Debug Release RelWithDebInfo MinSizeRel" FORCE) set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS Debug Release RelWithDebInfo MinSizeRel) endif() include(CTest) if(CMAKE_Fortran_COMPILER_ID STREQUAL GNU) set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -std=legacy") endif() option(DOUBLE_PRECISION "Make the real and complex types eight bytes long" OFF) if(DOUBLE_PRECISION) if(CMAKE_Fortran_COMPILER_ID STREQUAL Intel) if(WIN32) set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} /real-size:64") else() set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -real-size 64") endif() elseif(CMAKE_Fortran_COMPILER_ID STREQUAL GNU) set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -fdefault-real-8") endif() endif() include(GNUInstallDirs) set(ORRS_DIR "${CMAKE_SOURCE_DIR}/orrs") add_subdirectory(orrs) add_subdirectory(osrc) add_subdirectory(plotlib) add_subdirectory(src) set(XFOIL_DOCS version_notes.txt xfoil_doc.txt) install(FILES ${XFOIL_DOCS} DESTINATION ${CMAKE_INSTALL_DOCDIR}) include(CMakePackageConfigHelpers) configure_package_config_file(xfoil-config.cmake.in xfoil-config.cmake.in INSTALL_DESTINATION ${CMAKE_INSTALL_DATADIR}/${PROJECT_NAME} PATH_VARS CMAKE_INSTALL_BINDIR NO_SET_AND_CHECK_MACRO NO_CHECK_REQUIRED_COMPONENTS_MACRO) file(GENERATE OUTPUT xfoil-config.cmake INPUT "${CMAKE_CURRENT_BINARY_DIR}/xfoil-config.cmake.in") write_basic_package_version_file(xfoil-config-version.cmake COMPATIBILITY SameMajorVersion) install(FILES "${CMAKE_CURRENT_BINARY_DIR}/xfoil-config.cmake" "${CMAKE_CURRENT_BINARY_DIR}/xfoil-config-version.cmake" DESTINATION ${CMAKE_INSTALL_DATADIR}/${PROJECT_NAME}) include(CPack)
CMake
\relax \catcode`:\active \catcode`;\active \catcode`!\active \catcode`?\active \catcode`"\active \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \@input{FrontBackMatter/Titlepage.aux} \reset@newl@bel \select@language{french} \@writefile{toc}{\select@language{french}} \@writefile{lof}{\select@language{french}} \@writefile{lot}{\select@language{french}} \providecommand\mph@setcol[2]{} \@writefile{toc}{\vspace {-\cftbeforepartskip }} \@writefile{lof}{\deactivateaddvspace } \@writefile{lot}{\deactivateaddvspace } \@writefile{lol}{\deactivateaddvspace } \select@language{american} \@writefile{toc}{\select@language{american}} \@writefile{lof}{\select@language{american}} \@writefile{lot}{\select@language{american}} \@input{FrontBackMatter/Titleback.aux} \@input{FrontBackMatter/Dedication.aux} \mph@setcol{ii:iv}{\mph@nr} \@input{FrontBackMatter/Abstract.aux} \mph@setcol{ii:vi}{\mph@nr} \@input{FrontBackMatter/Publication.aux} \mph@setcol{ii:viii}{\mph@nr} \@input{FrontBackMatter/Acknowledgments.aux} \mph@setcol{ii:x}{\mph@nr} \@input{FrontBackMatter/Contents.aux} \@writefile{toc}{\contentsline {part}{i\hspace {1em}\spacedlowsmallcaps {Some Kind of Manual}}{1}{part.1}} \mph@setcol{ii:1}{\mph@nr} \mph@setcol{ii:2}{\mph@nr} \@input{Chapters/Chapter01.aux} \@writefile{toc}{\contentsline {part}{ii\hspace {1em}\spacedlowsmallcaps {The Showcase}}{9}{part.2}} \mph@setcol{ii:9}{\mph@nr} \mph@setcol{ii:10}{\mph@nr} \@input{Chapters/Chapter02.aux} \@input{Chapters/Chapter03.aux} \@writefile{toc}{\contentsline {part}{iii\hspace {1em}\spacedlowsmallcaps {Appendix}}{19}{part.3}} \mph@setcol{ii:19}{\mph@nr} \mph@setcol{ii:20}{\mph@nr} \@input{Chapters/Chapter0A.aux} \@input{FrontBackMatter/Bibliography.aux} \@input{FrontBackMatter/Colophon.aux} \mph@setcol{ii:24}{\mph@nr} \@input{FrontBackMatter/Declaration.aux} \gdef\mph@lastpage{26} \csname mph@do@warn\endcsname \global\@altsecnumformattrue
TeX
(ns leiningen.new.thing-babel (:require [leiningen.new.templates :as tpl] [leiningen.core.main :as main] [clojure.string :as str]) (:import [java.util Locale Calendar])) (def licenses {"asl" {:name "Apache Software License 2.0" :url "http://www.apache.org/licenses/LICENSE-2.0"} "epl" {:name "Eclipse Public License" :url "http://www.eclipse.org/legal/epl-v10.html"} "mit" {:name "MIT License" :url "http://opensource.org/licenses/MIT"}}) (def render (tpl/renderer "thing-babel")) (defn group-name "Replace hyphens with underscores." [^String s] (let [idx (.indexOf s "/")] (when (pos? idx) (subs s 0 idx)))) (defn opts-info [opts ks] (doseq [[k desc] (partition 2 ks)] (main/info (format "%-24s: %s" desc (str (opts k)))))) (defn thing-babel "Literal programming template for org-mode babel projects" [name & args] (let [opts (->> args (partition 2) (map #(vector (keyword (first %)) (second %))) (into {})) {:keys [author license target url] :or {author (System/getProperty "user.name") license "epl" target "babel" url "https://github.com/"}} opts tangle-target (if (and (seq target) (not= \/ (last target))) (str target \/) target) target (if (empty? target) "project root" target) group (group-name name) license (.toLowerCase license) opts (merge {:name (tpl/project-name name) :group group :fqname name :sanitized (tpl/name-to-path name) :author author :url url :desc "FIXME: write description" :license-name (get-in licenses [license :name]) :license-url (get-in licenses [license :url]) :ns-root (tpl/sanitize-ns name) :ns-root-path (tpl/name-to-path name) :tangle-target tangle-target :target target :tzone (-> (Locale/getDefault) (Calendar/getInstance) (.get Calendar/ZONE_OFFSET) (/ (* 1000 60 60)))} opts)] (main/info (str "Generating fresh literate programming project: " name)) (opts-info opts [:name "generated project dir" :group "artefact group ID" :url "project url" :author "project author" :author-url "author url" :email "author email" :tzone "author timezone" :license-name "license" :desc "description" :tangle-target "path for gen sources" :ns-root "project root namespace"]) (tpl/->files opts ["README.org" (render "readme-tpl.org" opts)] ["src/setup.org" (render "setup.org" opts)] ["src/core.org" (render "core.org" opts)] ["src/libraryofbabel.org" (render "libraryofbabel.org" opts)] ["test/core.org" (render "test.org" opts)] ["tangle.sh" (render "tangle.sh") :executable true] ["tangle-all.sh" (render "tangle-all.sh") :executable true])))
Clojure
-- Category: Database Engine Configuration SET NOCOUNT ON; SELECT CONVERT(nvarchar(128), SERVERPROPERTY('ServerName')) AS ServerName, [name] AS [EndpointName], COALESCE(SUSER_NAME(principal_id), '') AS [Owner], COALESCE([protocol_desc], '') AS [ProtocolDesc], COALESCE([type_desc], '') AS [PayloadType], COALESCE([state_desc], '') AS [StateDesc], [is_admin_endpoint] AS [Is AdminEndpoint] FROM sys.endpoints WHERE [endpoint_id] > 5;
PLSQL
package chap06 import com.cra.figaro.library.atomic.discrete.Geometric import com.cra.figaro.library.atomic.continuous.{Beta, Normal} import com.cra.figaro.library.collection.VariableSizeArray import com.cra.figaro.algorithm.sampling.Importance import com.cra.figaro.language.Universe import com.cra.figaro.language.Flip object NewProducts { def runExperiment(rNDLevel: Double) { Universe.createNew() val numNewProducts = Geometric(rNDLevel) val productQuality = VariableSizeArray(numNewProducts, i => Beta(1, i + 1)) val productSalesRaw = productQuality.chain(Normal(_, 0.5)) val productSales = productSalesRaw.map(_.max(0)) val totalSales = productSales.foldLeft(0.0)(_ + _) val algorithm = Importance(totalSales) algorithm.start() Thread.sleep(5000) algorithm.stop() println("With R&D at " + rNDLevel + ", expected sales will be " + algorithm.mean(totalSales)) algorithm.kill() } def main(args: Array[String]) { for { i <- 0.05 to 1.0 by 0.1 } { runExperiment(i) } } }
Scala
FROM elixir:1.17.1-otp-26 # Single RUN statement, otherwise intermediate images are created # https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run RUN apt-get update &&\ apt-get install -y libmagic-dev cmake libimage-exiftool-perl ffmpeg &&\ mix local.hex --force &&\ mix local.rebar --force
Dockerfile
# Random samples from determinantal point processes """ Computes a random sample from the determinantal point process defined by the spectral factorization object `L`. Inputs: `L`: `Eigen` factorization object of an N x N matrix Output: `Y`: A `Vector{Int}` with entries in [1:N]. References: Algorithm 18 of \\cite{HKPV05}, as described in Algorithm 1 of \\cite{KT12}. @article{HKPV05, author = {Hough, J Ben and Krishnapur, Manjunath and Peres, Yuval and Vir\'{a}g, B\'{a}lint}, doi = {10.1214/154957806000000078}, journal = {Probability Surveys}, pages = {206--229}, title = {Determinantal Processes and Independence}, volume = {3}, year = {2005} archivePrefix = {arXiv}, eprint = {0503110}, } @article{KT12, author = {Kulesza, Alex and Taskar, Ben}, doi = {10.1561/2200000044}, journal = {Foundations and Trends in Machine Learning}, number = {2-3}, pages = {123--286}, title = {Determinantal Point Processes for Machine Learning}, volume = {5}, year = {2012}, archivePrefix = {arXiv}, eprint = {1207.6083}, } TODO Check loss of orthogonality - a tip from Zelda Mariet """ function rand(L::LinearAlgebra.Eigen{S,T}) where {S<:Real,T} N = length(L.values) J = Int[] for n=1:N λ = L.values[n] rand() < λ/(λ+1) && push!(J, n) end V = L.vectors[:, J] Y = Int[] nV = size(V, 2) while true # Select i from 𝒴=[1:N] (ground set) with probabilities # Pr(i) = 1/|V| Σ_{v∈V} (v⋅eᵢ)² #Compute selection probabilities Pr = zeros(N) for i=1:N for j=1:nV #TODO this loop is a bottleneck - why? Pr[i] += (V[i,j])^2 #ith entry of jth eigenvector end Pr[i] /= nV end @assert abs(1-sum(Pr)) < N*eps() #Check normalization #Simple discrete sampler i, ρ = N, rand() for j=1:N if ρ < Pr[j] i = j break else ρ -= Pr[j] end end push!(Y, i) nV == 1 && break #Done #V = V⊥ #an orthonormal basis for the subspace of V ⊥ eᵢ V[i, :] = 0 #Project out eᵢ V = full(qrfact!(V)[:Q])[:, 1:nV-1] nV = size(V, 2) end return Y end
Julia
del *.log del *.syntax del *.av del oop\*.log del oop\*.syntax del oop\*.av "..\shell_project\ori.exe" -f "..\test\consts.php" -nologo "..\shell_project\ori.exe" -f "..\test\vars.php" -nologo "..\shell_project\ori.exe" -f "..\test\operators.php" -nologo "..\shell_project\ori.exe" -f "..\test\globals.php" -nologo "..\shell_project\ori.exe" -f "..\test\core.php" -nologo "..\shell_project\ori.exe" -f "..\test\math.php" -nologo "..\shell_project\ori.exe" -f "..\test\arrays.php" -nologo "..\shell_project\ori.exe" -f "..\test\cycles.php" -nologo "..\shell_project\ori.exe" -f "..\test\foreach.php" -nologo "..\shell_project\ori.exe" -f "..\test\core_string.php" -nologo "..\shell_project\ori.exe" -f "..\test\core_array.php" -nologo "..\shell_project\ori.exe" -f "..\test\evals.php" -nologo "..\shell_project\ori.exe" -f "..\test\functions.php" -nologo "..\shell_project\ori.exe" -f "..\test\typed.php" -nologo "..\shell_project\ori.exe" -f "..\test\leak.php" -nologo "..\shell_project\ori.exe" -f "..\test\complex1.php" -nologo "..\shell_project\ori.exe" -f "..\test\oop\constants.php" "..\shell_project\ori.exe" -f "..\test\oop\static_vars.php" pause
Batchfile
%Schools Out! subject(english). subject(gym). subject(history). subject(math). subject(science). state(california). state(florida). state(maine). state(oregon). state(virginia). activity(antiquing). activity(camping). activity(sightseeing). activity(spelunking). activity(water_skiing). name(appleton). name(gross). name(knight). name(mcEvoy). name(parnell). solve :- subject(Appleton_subject), subject(Gross_subject), subject(Knight_subject), subject(Mcevoy_subject), subject(Parnell_subject), all_different([Appleton_subject, Gross_subject, Knight_subject, Mcevoy_subject, Parnell_subject]), state(Appleton_state), state(Gross_state), state(Knight_state), state(Mcevoy_state), state(Parnell_state), all_different([Appleton_state, Gross_state, Knight_state, Mcevoy_state, Parnell_state]), activity(Appleton_activity), activity(Gross_activity), activity(Knight_activity), activity(Mcevoy_activity), activity(Parnell_activity), all_different([Appleton_activity, Gross_activity, Knight_activity, Mcevoy_activity, Parnell_activity]), Groupings = [ [appleton, Appleton_subject, Appleton_state, Appleton_activity], [gross, Gross_subject, Gross_state, Gross_activity], [knight, Knight_subject, Knight_state, Knight_activity], [mcevoy, Mcevoy_subject, Mcevoy_state, Mcevoy_activity], [parnell, Parnell_subject, Parnell_state, Parnell_activity] ], %Clue One %Gross_subject = math || Gross_subject = science %if Gross_activity = antiquing -> Gross_state = florida %else Gross_state = california %member(name, subject, state, activity) ( member([gross, math, _, _], Groupings) ; member([gross, science, _, _], Groupings) ), ( member([gross, _, florida, antiquing], Groupings) ; member([gross, _, california, _], Groupings) ), %Clue Two %person_subject = science && person_activity = water_skiing %person_state = florida || person_state = california %Mcevoy_subject = history && Mcevoy_state = maine || Mcevoy_state = oregon ( member([_, science, florida, water_skiing], Groupings) ; member([_, science, california, water_skiing], Groupings) ), ( member([mcevoy, history, maine, _], Groupings) ; member([mcevoy, history, oregon, _], Groupings) ), %Clue Three %(Appleton_state = virginia && Appleton_subject = english) || Parnell_state = virginia %Parnell_activity = spelunking ( member([appleton, english, virginia, _], Groupings) ; member([parnell, _, virginia, _], Groupings) ), member([parnell, _, _, spelunking], Groupings), %Clue Four %person_state = maine && person_subject != gym && person_activity != sightseeing \+ member([_, _, maine, sightseeing], Groupings), \+ member([_, gym, maine, _], Groupings), %Clue Five %Gross_activity != camping %woman_activity = antiquing %member([gross, _, _, _], Groupings), \+ member([_, _, _, camping], Groupings), \+ member([gross, _, _, camping], Groupings), ( member([gross, _, _, antiquing], Groupings) ; member([appleton, _, _, antiquing], Groupings) ; member([parnell, _, _, antiquing], groupings) ), tell(appleton, Appleton_subject, Appleton_state, Appleton_activity), tell(gross, Gross_subject, Gross_state, Gross_activity), tell(knight, Knight_subject, Knight_state, Knight_activity), tell(mcevoy, Mcevoy_subject, Mcevoy_state, Mcevoy_activity), tell(parnell, Parnell_subject, Parnell_state, Parnell_activity). all_different([H | T]) :- member(H,T), !, fail. all_different([_ | T]) :- all_different(T). all_different([_]). tell(N, SUB, ST, A) :- write(N), write(' who teaches '), write(SUB), write(' is vacationing to '), write(ST), write(' and their activity is '), write(A), nl.
Prolog
// // PopoverViewControllerTests // ApptivatorTests // import XCTest @testable import Apptivator class PopoverViewControllerTests: XCTestCase {}
Swift
defmodule Explorer.Repo.Migrations.ChangeBlockSizeToNullable do use Ecto.Migration def up do alter table(:blocks) do modify(:size, :integer, null: true) end end def down do alter table(:blocks) do modify(:size, :integer, null: false) end end end
Elixir
# # %CopyrightBegin% # # Copyright Ericsson AB 1998-2011. All Rights Reserved. # # The contents of this file are subject to the Erlang Public License, # Version 1.1, (the "License"); you may not use this file except in # compliance with the License. You should have received a copy of the # Erlang Public License along with this software. If not, it can be # retrieved online at http://www.erlang.org/. # # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See # the License for the specific language governing rights and limitations # under the License. # # %CopyrightEnd% # # include $(ERL_TOP)/make/target.mk include $(ERL_TOP)/make/$(TARGET)/otp.mk CC = @CC@ LIBS = @LIBS@ LIBDIR = ../priv/lib/$(TARGET) OBJDIR = ../priv/obj/$(TARGET) INCDIR = ../include ERL_INTERFACE_FLAGS = \ -I$(ERL_TOP)/lib/erl_interface/include \ -I$(ERL_TOP)/lib/erl_interface/src # ---------------------------------------------------- # Application version # ---------------------------------------------------- include ../vsn.mk VSN=$(IC_VSN) # ---------------------------------------------------- # Release directory specification # ---------------------------------------------------- RELSYSDIR = $(RELEASE_PATH)/lib/ic-$(VSN) # ---------------------------------------------------- # File Specs # ---------------------------------------------------- IDL_FILES = \ $(INCDIR)/erlang.idl ifeq ($(findstring win32,$(TARGET)),win32) USING_MINGW=@MIXED_CYGWIN_MINGW@ ifeq ($(USING_MINGW),yes) AR_OUT = rcv CC_FLAGS = LIBRARY = $(LIBDIR)/libic.a SKIP_BUILDING_BINARIES := false else LIBRARY = $(LIBDIR)/ic.lib AR_OUT = -out: CC_FLAGS = -MT endif ifeq ($(HOST_OS),) HOST_OS := $(shell $(ERL_TOP)/erts/autoconf/config.guess) endif ifeq ($(findstring solaris,$(HOST_OS)),solaris) SKIP_BUILDING_BINARIES := true endif else AR_OUT = rcv CC_FLAGS = @DED_CFLAGS@ LIBRARY = $(LIBDIR)/libic.a SKIP_BUILDING_BINARIES := false endif C_FILES = \ ic.c \ ic_tmo.c \ oe_ei_encode_version.c \ oe_ei_encode_long.c \ oe_ei_encode_ulong.c \ oe_ei_encode_double.c \ oe_ei_encode_char.c \ oe_ei_encode_string.c \ oe_ei_encode_atom.c \ oe_ei_encode_pid.c \ oe_ei_encode_port.c \ oe_ei_encode_ref.c \ oe_ei_encode_term.c \ oe_ei_encode_tuple_header.c \ oe_ei_encode_list_header.c \ oe_ei_encode_longlong.c \ oe_ei_encode_ulonglong.c \ oe_ei_encode_wchar.c \ oe_ei_encode_wstring.c \ oe_ei_decode_longlong.c \ oe_ei_decode_ulonglong.c \ oe_ei_decode_wchar.c \ oe_ei_decode_wstring.c \ oe_ei_code_erlang_binary.c H_FILES = $(INCDIR)/ic.h OBJ_FILES= $(C_FILES:%.c=$(OBJDIR)/%.o) ALL_CFLAGS = @CFLAGS@ @DEFS@ -I$(INCDIR) $(ERL_INTERFACE_FLAGS) $(CFLAGS) # ---------------------------------------------------- # Targets # ---------------------------------------------------- ifeq ($(SKIP_BUILDING_BINARIES), true) debug opt: else debug opt: $(LIBRARY) endif clean: rm -f $(LIBRARY) $(OBJ_FILES) rm -f core *~ docs: # ---------------------------------------------------- # Special Build Targets # ---------------------------------------------------- _create_dirs := $(shell mkdir -p $(OBJDIR) $(LIBDIR)) $(LIBRARY): $(OBJ_FILES) -$(AR) $(AR_OUT) $@ $(OBJ_FILES) -$(RANLIB) $@ $(OBJDIR)/%.o: %.c $(CC) $(CC_FLAGS) -c -o $@ $(ALL_CFLAGS) $< # ---------------------------------------------------- # Release Target # ---------------------------------------------------- include $(ERL_TOP)/make/otp_release_targets.mk release_spec: opt $(INSTALL_DIR) $(RELSYSDIR)/c_src $(INSTALL_DIR) $(RELSYSDIR)/include $(INSTALL_DIR) $(RELSYSDIR)/priv/lib $(INSTALL_DATA) ic.c ic_tmo.c $(RELSYSDIR)/c_src $(INSTALL_DATA) $(IDL_FILES) $(H_FILES) $(RELSYSDIR)/include $(INSTALL_DATA) $(LIBRARY) $(RELSYSDIR)/priv/lib release_docs_spec:
Makefile
(ns argumentica.db.file-transaction-log (:require (argumentica [transaction-log :as transaction-log]) [me.raynes.fs :as fs] [clojure.java.io :as io] [clojure.edn :as edn] [clojure.string :as string] [argumentica.util :as util]) (:import [java.nio.file Files Paths OpenOption LinkOption] [java.nio.file.attribute FileAttribute]) (:use clojure.test)) (defrecord FileTransactionLog [log-file-path state-atom] java.io.Closeable (close [this] (.close (:output-stream @state-atom)))) (defn log-to-string [log] (string/join "\n" (map pr-str log))) (defn reset-log-file! [log-file-path log] (let [temporary-log-file-path (str log-file-path ".new")] (spit temporary-log-file-path (log-to-string log)) (fs/rename temporary-log-file-path log-file-path))) (defn read-and-fix-log! [log-file-path] (with-open [reader (io/reader log-file-path)] (loop [lines (line-seq reader) log (sorted-map)] (if-let [line (first lines)] (if-let [[transaction-number statements] (try (edn/read-string line) (catch Exception exception (reset-log-file! log-file-path log) nil))] (recur (rest lines) (assoc log transaction-number statements)) log) log)))) (defn create [log-file-path] (->FileTransactionLog log-file-path (atom {:in-memory-log (if (fs/exists? log-file-path) (read-and-fix-log! log-file-path) (sorted-map)) :output-stream (io/output-stream log-file-path :append true)}))) (defn write-to-log-file! [output-stream transaction-number statements] (.write output-stream (.getBytes (prn-str [transaction-number statements]) "UTF-8")) (.flush output-stream)) (defn add-transaction! [state transaction-number statements] (when (not (:is-transient? state)) (write-to-log-file! (:output-stream state) transaction-number statements)) (update state :in-memory-log assoc transaction-number statements)) (deftest test-log-to-string (is (= "[1 [[1 :name :set \"Foo 1\"] [2 :name :set \"Foo 2\"]]]\n[2 [[1 :name :set \"Bar 1\"] [2 :name :set \"Bar 2\"]]]" (log-to-string (sorted-map 1 [[1 :name :set "Foo 1"] [2 :name :set "Foo 2"]] 2 [[1 :name :set "Bar 1"] [2 :name :set "Bar 2"]]))))) (defn truncate! [state log-file-path first-preserved-transaction-number] (let [truncated-log (util/filter-sorted-map-keys (:in-memory-log state) (fn [transaction-number] (<= first-preserved-transaction-number transaction-number)))] (when (not (:is-transient? state)) (.close (:output-stream state)) (reset-log-file! log-file-path truncated-log)) (-> state (assoc :in-memory-log truncated-log) (cond-> (:is-transient? state) (assoc :output-stream (io/output-stream log-file-path :append true)))))) (defn synchronously-apply-to-state! [file-transaction-log function & arguments] (locking (:state-atom file-transaction-log) (apply swap! (:state-atom file-transaction-log) function arguments)) file-transaction-log) (defmethod transaction-log/truncate! FileTransactionLog [this first-preserved-transaction-number] (synchronously-apply-to-state! this truncate! (:log-file-path this) first-preserved-transaction-number)) (defmethod transaction-log/last-transaction-number FileTransactionLog [this] (first (last (:in-memory-log @(:state-atom this))))) (defmethod transaction-log/add!-method FileTransactionLog [this transaction-number statements] (synchronously-apply-to-state! this add-transaction! transaction-number statements)) (defn transient? [file-transaction-log] (:is-transient? @(:state-atom file-transaction-log))) (defn close! [file-transaction-log] (if (not (transient? file-transaction-log)) (.close (:output-stream @(:state-atom file-transaction-log))))) (defmethod transaction-log/close! FileTransactionLog [this] (close! this)) (defmethod transaction-log/subseq FileTransactionLog [this first-transaction-number] (subseq (:in-memory-log @(:state-atom this)) >= first-transaction-number)) (defmethod transaction-log/make-transient! FileTransactionLog [file-transaction-log] (assert (not (transient? file-transaction-log))) (synchronously-apply-to-state! file-transaction-log (fn [state] (close! file-transaction-log) (fs/delete (:log-file-path file-transaction-log)) (assoc state :is-transient? true)))) (defmethod transaction-log/make-persistent! FileTransactionLog [file-transaction-log] (assert (transient? file-transaction-log)) (synchronously-apply-to-state! file-transaction-log (fn [state] (reset-log-file! (:log-file-path file-transaction-log) (:in-memory-log state)) (assoc state :is-transient? false :output-stream (io/output-stream (:log-file-path file-transaction-log) :append true))))) (comment (write-to-log-file! "data/temp/log" 3 [[1 :name :set "Foo 4"]]) (read-and-fix-log! "data/temp/log") (with-open [log (create "data/temp/log")] (doto log #_(transaction-log/make-transient!) (transaction-log/add! #{[1 :name :set "Bar 1"] [2 :name :set "Bar 2"]}) (transaction-log/add! #{[1 :name :set "Baz 1"]}) #_(transaction-log/truncate! 2) (transaction-log/add! #{[1 :name :set "Foo 2"]}) #_(transaction-log/make-persistent!)) #_(prn (transaction-log/subseq log 2)) #_(prn (transaction-log/last-transaction-number log))))
Clojure
package leafnodes import ( "github.com/botmetrics/go-botmetrics/Godeps/_workspace/src/github.com/onsi/ginkgo/internal/failer" "github.com/botmetrics/go-botmetrics/Godeps/_workspace/src/github.com/onsi/ginkgo/types" "time" ) type SuiteNode interface { Run(parallelNode int, parallelTotal int, syncHost string) bool Passed() bool Summary() *types.SetupSummary } type simpleSuiteNode struct { runner *runner outcome types.SpecState failure types.SpecFailure runTime time.Duration } func (node *simpleSuiteNode) Run(parallelNode int, parallelTotal int, syncHost string) bool { t := time.Now() node.outcome, node.failure = node.runner.run() node.runTime = time.Since(t) return node.outcome == types.SpecStatePassed } func (node *simpleSuiteNode) Passed() bool { return node.outcome == types.SpecStatePassed } func (node *simpleSuiteNode) Summary() *types.SetupSummary { return &types.SetupSummary{ ComponentType: node.runner.nodeType, CodeLocation: node.runner.codeLocation, State: node.outcome, RunTime: node.runTime, Failure: node.failure, } } func NewBeforeSuiteNode(body interface{}, codeLocation types.CodeLocation, timeout time.Duration, failer *failer.Failer) SuiteNode { return &simpleSuiteNode{ runner: newRunner(body, codeLocation, timeout, failer, types.SpecComponentTypeBeforeSuite, 0), } } func NewAfterSuiteNode(body interface{}, codeLocation types.CodeLocation, timeout time.Duration, failer *failer.Failer) SuiteNode { return &simpleSuiteNode{ runner: newRunner(body, codeLocation, timeout, failer, types.SpecComponentTypeAfterSuite, 0), } }
Go
help: ## Print documentation @grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' ghcid: ## Run ghcid with the cardano-sl-explorer package ghcid \ --command "stack ghci cardano-sl-explorer --ghci-options=-fno-code" ghcid-test: ## Have ghcid run the test suite on successful recompile ghcid \ --command "stack ghci cardano-sl-explorer:lib cardano-sl-explorer:test:cardano-explorer-test --ghci-options=-fobject-code" \ --test "Main.main" .PHONY: ghcid ghcid-test help
Makefile
# Copyright (c) 2016, Ruslan Baratov # All rights reserved. cmake_minimum_required(VERSION 3.0) # Emulate HunterGate: # * https://github.com/hunter-packages/gate include("../common.cmake") project(download-fixesproto) # download fixesproto hunter_add_package(fixesproto)
CMake
/****************************************************************************** * (C) Copyright 2011 KALRAY SA All Rights Reserved * * MODULE: mmu_proc_dcache_master_seq_lib.sv * DEVICE: MMU_PROC_DCACHE VIP * PROJECT: * AUTHOR: * DATE: * * ABSTRACT: * *******************************************************************************/ `ifndef MMU_PROC_DCACHE_MASTER_SEQ_LIB_SV `define MMU_PROC_DCACHE_MASTER_SEQ_LIB_SV //------------------------------------------------------------------------------ // // CLASS: mmu_proc_dcache_master_base_sequence // //------------------------------------------------------------------------------ class mmu_proc_dcache_master_base_sequence extends uvm_sequence #(mmu_proc_dcache_transfer); typedef mmu_proc_dcache_master_sequencer mmu_proc_dcache_master_sequencer_t; typedef mmu_proc_dcache_transfer mmu_proc_dcache_transfer_t; `uvm_object_param_utils(mmu_proc_dcache_master_base_sequence) string v_name; // new - constructor function new(string name="mmu_proc_dcache_master_base_sequence"); super.new(name); endfunction : new // Raise in pre_body so the objection is only raised for root sequences. // There is no need to raise for sub-sequences since the root sequence // will encapsulate the sub-sequence. virtual task pre_body(); m_sequencer.uvm_report_info(get_type_name(), $psprintf("%s pre_body() raising an uvm_test_done objection", get_sequence_path()), UVM_HIGH); uvm_test_done.raise_objection(this); endtask // Drop the objection in the post_body so the objection is removed when // the root sequence is complete. virtual task post_body(); m_sequencer.uvm_report_info(get_type_name(), $psprintf("%s post_body() dropping an uvm_test_done objection", get_sequence_path()), UVM_HIGH); uvm_test_done.drop_objection(this); endtask // post_body endclass : mmu_proc_dcache_master_base_sequence //------------------------------------------------------------------------------ // // CLASS: mmu_proc_dcache_standby_seq // //------------------------------------------------------------------------------ class mmu_proc_dcache_standby_seq extends mmu_proc_dcache_master_base_sequence; `uvm_object_param_utils(mmu_proc_dcache_standby_seq) // new - constructor function new(string name="mmu_proc_dcache_standby_seq"); super.new(name); endfunction : new // Implment behavior sequence virtual task body(); endtask // body endclass : mmu_proc_dcache_standby_seq //------------------------------------------------------------------------------ // Example sequence // CLASS: mmu_proc_dcache_trial_seq // //------------------------------------------------------------------------------ class proc_dcache_seq extends mmu_proc_dcache_master_base_sequence; `uvm_object_param_utils(proc_dcache_seq) // Add sequence parameters int unsigned lreq_lat; logic [40:0] le1_dcache_virt_addr_i; e1_dcache_opc_t le1_dcache_opc_i; logic le1_glob_acc_i; logic [3:0] le1_dcache_size_i; logic le1_non_trapping_i; // new - constructor function new(string name="mmu_proc_dcache_trial_seq"); super.new(name); endfunction : new mmu_proc_dcache_transfer_t mmu_proc_dcache_trans; // Implment behavior sequence virtual task body(); `uvm_info(get_type_name(), $psprintf("Start sequence mmu_proc_dcache_trial_seq"), UVM_LOW) $cast(mmu_proc_dcache_trans, create_item(mmu_proc_dcache_transfer_t::type_id::get(), m_sequencer, "mmu_proc_dcache_trans")); start_item(mmu_proc_dcache_trans); mmu_proc_dcache_trans.v_name = v_name; if (!(mmu_proc_dcache_trans.randomize() with { // Transmit sequence paramaters mmu_proc_dcache_trans.req_lat ==lreq_lat; mmu_proc_dcache_trans.e1_dcache_virt_addr_i == le1_dcache_virt_addr_i; // mmu_proc_dcache_trans.e1_glob_acc_i == le1_glob_acc_i; mmu_proc_dcache_trans.e1_dcache_size_i == le1_dcache_size_i; mmu_proc_dcache_trans.e1_non_trapping_i == le1_non_trapping_i; mmu_proc_dcache_trans.e1_dcache_opc == le1_dcache_opc_i; })) `uvm_fatal(get_type_name(), $psprintf("mmu_proc_dcache_trial_seq: randomization error")) finish_item(mmu_proc_dcache_trans); `uvm_info(get_type_name(), "End sequence mmu_proc_dcache_trial_seq", UVM_LOW) endtask // body endclass : proc_dcache_seq `endif
Coq
<# .SYNOPSIS Function to retrieve the size of a directory and the number of files and directories inside of it. .DESCRIPTION Function to retrieve the size of a directory and the number of files and directories inside of it. .PARAMETER Path In the parameter Path you can specify the directory you want to query. This can be both a local or remote (UNC) path. .PARAMETER OutputFormat In the parameter OutputFormat you can specify the format in which the directory size should be outputted. Possible formats are KB, MB and GB. The default is GB. .PARAMETER NoRecurse When using the switch NoRecurse the function will only query the directory specified in the Path parameter and will not query child directories and files. .EXAMPLE PS C:\>Get-FSDirectorySize -Path C:\Windows This command will retrieve the size (in GB) of the directory C:\Windows and the number of files and directories insides of it. .NOTES Author : Ingvald Belmans Website : http://www.supersysadmin.com Version : 1.0 Changelog: - 1.0 (2015-12-31) Initial version. .LINK http://www.supersysadmin.com #> function Get-FSDirectorySize { [CmdletBinding()] Param ( [Parameter( Mandatory=$true, ValueFromPipeline=$true, ValueFromPipelineByPropertyName=$true ) ] [String] $Path, [validateset('KB','MB','GB')] [string] $OutputFormat = "GB", [switch] $NoRecurse ) Begin { } Process { Write-Verbose -Message "Testing if path '$Path' exists." if (Test-Path -Path $Path) { Write-Verbose -Message "Path '$Path' exists." $DirectorySize = @() $DirectorySizeObject = New-Object -TypeName System.Object if ($NoRecurse) { Write-Verbose -Message "Performing a non-recursive search on path '$Path'." $QueryDirectory = Get-ChildItem -Path $Path -ErrorVariable QueryDirectoryErrors -ErrorAction SilentlyContinue } else { Write-Verbose -Message "Performing a recursive search on path '$Path'." $QueryDirectory = Get-ChildItem -Path $Path -Recurse -ErrorVariable QueryDirectoryErrors -ErrorAction SilentlyContinue } foreach ($QueryDirectoryError in $QueryDirectoryErrors) { Write-Warning -Message $QueryDirectoryError } $DirectorySizeObject | Add-Member -MemberType NoteProperty -Name "Directory" -Value $Path Write-Verbose -Message "Calculating size of path '$Path'." $QueryDirectorySize = $QueryDirectory | Measure-Object -Property Length -Sum if ($OutputFormat -eq "KB") { Write-Verbose -Message "Setting OutputFormat to KB." $QueryDirectorySizeFormattedHeader = "Size(KB)" $QueryDirectorySizeFormatted = "{0:N2}" -f ($QueryDirectorySize.Sum / 1KB) } elseif ($OutputFormat -eq "MB") { Write-Verbose -Message "Setting OutputFormat to MB." $QueryDirectorySizeFormattedHeader = "Size(MB)" $QueryDirectorySizeFormatted = "{0:N2}" -f ($QueryDirectorySize.Sum / 1MB) } elseif ($OutputFormat -eq "GB") { Write-Verbose -Message "Setting OutputFormat to GB." $QueryDirectorySizeFormattedHeader = "Size(GB)" $QueryDirectorySizeFormatted = "{0:N2}" -f ($QueryDirectorySize.Sum / 1GB) } $DirectorySizeObject | Add-Member -MemberType NoteProperty -Name $QueryDirectorySizeFormattedHeader -Value $QueryDirectorySizeFormatted Write-Verbose -Message "Calculating amount of directories in path '$Path'." $QueryDirectoryDirectories = $QueryDirectory | Where-Object -FilterScript {$_.PSIsContainer -eq $true} $DirectorySizeObject | Add-Member -MemberType NoteProperty -Name "Directories" -Value $QueryDirectoryDirectories.Count Write-Verbose -Message "Calculating amount of files in path '$Path'." $QueryDirectoryFiles = $QueryDirectory | Where-Object -FilterScript {$_.PSIsContainer -eq $false} $DirectorySizeObject | Add-Member -MemberType NoteProperty -Name "Files" -Value $QueryDirectoryFiles.Count $DirectorySize += $DirectorySizeObject Write-Output -InputObject $DirectorySize } else { Write-Warning -Message "Path '$path' does not exist." break } } End { } }
PowerShell
\hypertarget{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration}{}\section{Image\+App.\+migrations.0003\+\_\+auto\+\_\+20180818\+\_\+1425.Migration Class Reference} \label{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration}\index{Image\+App.\+migrations.\+0003\+\_\+auto\+\_\+20180818\+\_\+1425.\+Migration@{Image\+App.\+migrations.\+0003\+\_\+auto\+\_\+20180818\+\_\+1425.\+Migration}} Inheritance diagram for Image\+App.\+migrations.0003\+\_\+auto\+\_\+20180818\+\_\+1425.Migration\+:\begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=2.000000cm]{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration} \end{center} \end{figure} \subsection*{Static Public Attributes} \begin{DoxyCompactItemize} \item list \mbox{\hyperlink{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_a33c13fdbeb1e5e28d03d1a1fc391dad3}{dependencies}} \item list \mbox{\hyperlink{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_aae609b480f1a2542bd52396572fc1574}{operations}} \end{DoxyCompactItemize} \subsection{Member Data Documentation} \mbox{\Hypertarget{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_a33c13fdbeb1e5e28d03d1a1fc391dad3}\label{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_a33c13fdbeb1e5e28d03d1a1fc391dad3}} \index{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration@{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration}!dependencies@{dependencies}} \index{dependencies@{dependencies}!Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration@{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration}} \subsubsection{\texorpdfstring{dependencies}{dependencies}} {\footnotesize\ttfamily list Image\+App.\+migrations.\+0003\+\_\+auto\+\_\+20180818\+\_\+1425.\+Migration.\+dependencies\hspace{0.3cm}{\ttfamily [static]}} {\bfseries Initial value\+:} \begin{DoxyCode} = [ (\textcolor{stringliteral}{'ImageApp'}, \textcolor{stringliteral}{'0002\_image\_imagefile'}), ] \end{DoxyCode} \mbox{\Hypertarget{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_aae609b480f1a2542bd52396572fc1574}\label{class_image_app_1_1migrations_1_10003__auto__20180818__1425_1_1_migration_aae609b480f1a2542bd52396572fc1574}} \index{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration@{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration}!operations@{operations}} \index{operations@{operations}!Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration@{Image\+App\+::migrations\+::0003\+\_\+auto\+\_\+20180818\+\_\+1425\+::\+Migration}} \subsubsection{\texorpdfstring{operations}{operations}} {\footnotesize\ttfamily list Image\+App.\+migrations.\+0003\+\_\+auto\+\_\+20180818\+\_\+1425.\+Migration.\+operations\hspace{0.3cm}{\ttfamily [static]}} {\bfseries Initial value\+:} \begin{DoxyCode} = [ migrations.RenameField( model\_name=\textcolor{stringliteral}{'image'}, old\_name=\textcolor{stringliteral}{'imageFile'}, new\_name=\textcolor{stringliteral}{'imageField'}, ), ] \end{DoxyCode} The documentation for this class was generated from the following file\+:\begin{DoxyCompactItemize} \item Web\+Project/\+Cell\+Segmentation/\+Image\+App/migrations/\mbox{\hyperlink{0003__auto__20180818__1425_8py}{0003\+\_\+auto\+\_\+20180818\+\_\+1425.\+py}}\end{DoxyCompactItemize}
TeX
#!/usr/bin/env python # -*- coding: utf-8 -*- # no more "zero" integer division bugs!:P # import argparse import os import sys import numpy as np # array import time import emcee # import h5py # import random # import constants as cst # local constants module # from scipy.stats import norm as scipy_norm from . import ancillary as anc import matplotlib as mpl import matplotlib.pyplot as plt anc.set_rcParams() def compute_convergence( chains, fit_names, log_folder, plots_folder, n_cv=10, n_thin=1, figsize=(5, 5) ): os.makedirs(log_folder, exist_ok=True) log_file = os.path.join(log_folder, "log_convergence.txt") with open(log_file, "w") as olog: anc.print_both("", output=olog) anc.print_both(" ======================== ", output=olog) anc.print_both(" CONVERGENCE PLOTS", output=olog) anc.print_both(" ======================== ", output=olog) anc.print_both("", output=olog) n_steps, n_walkers, n_fit = np.shape(chains) if n_cv < 1: n_cv = 10 step = int((n_steps - 10) / n_cv) steps = np.rint(np.linspace(step, n_steps, endpoint=True, num=n_cv)).astype(int) expected_acf = np.zeros((n_fit)).astype(int) expected_steps = np.zeros((n_fit)).astype(int) for ifit, iname in enumerate(fit_names): anc.print_both("\nParameter {}".format(iname), output=olog) fig, axs = plt.subplots(nrows=3, ncols=1, sharex=False, figsize=figsize) fig.suptitle(iname) ax = axs[0] # anc.print_both("Gelman-Rubin", output=olog) gr = np.zeros((n_cv)) + 100 for istep in range(n_cv): gr[istep] = anc.GelmanRubin(chains[: steps[istep], :, ifit]) ax.plot( steps, gr, color="black", marker="o", ms=4, mec="white", mew=0.3, ls="-", lw=0.7, zorder=5, ) ax.axhline(1.01, color="gray", ls="--", lw=0.7, zorder=4) ax.set_ylim(0.95, 1.2) ax.set_ylabel("G-R ($\^{R}$)") ax.set_xlabel("steps $\\times {}$".format(n_thin)) ax = axs[1] # anc.print_both("Geweke", output=olog) lower_interval, z_score = anc.geweke_test( chains[:, :, ifit], start_frac=0.01, n_sel_steps=n_cv ) for i_c in range(0, n_walkers): ax.plot( lower_interval, z_score[:, i_c], marker="o", ms=2, mec="None", ls="-", lw=0.4, label="walker {:d}".format(i_c + 1), alpha=0.6, ) # ax.legend(loc='best', fontsize=3) ax.axhline( +2.0, color="lightgray", ls="-", lw=0.7, ) ax.axhline( -2.0, color="lightgray", ls="-", lw=0.7, ) ax.set_ylabel("Geweke") ax.set_xlabel("steps $\\times {}$".format(n_thin)) ax.set_ylim(-3, +3) ax = axs[2] # anc.print_both("ACF", output=olog) tolerance = 50 integrated_ACF = emcee.autocorr.integrated_time( chains[:, :, ifit], tol=tolerance, quiet=True ) acf_len = int(np.nanmax(integrated_ACF)) n_expected = acf_len * tolerance anc.print_both( "ACF {}x{} expected chain long as n = {}x{} (current {} steps)".format( acf_len, n_thin, n_expected, n_thin, n_steps ), output=olog, ) expected_steps[ifit] = n_expected expected_acf[ifit] = acf_len n_acf = acf_len * tolerance n_acf = 10 acf_steps = np.rint( np.linspace(acf_len // 2, n_steps, endpoint=True, num=n_acf) ).astype(int) tau_est = np.zeros((n_acf)) for i_acf, n_s in enumerate(acf_steps): acf_mean = np.zeros((n_s)) for iw in range(0, n_walkers): acf = emcee.autocorr.function_1d(chains[:n_s, iw, ifit]) acf_mean += acf acf_mean /= n_walkers c = 5 taus = 2.0 * np.cumsum(acf_mean) - 1.0 window = emcee.autocorr.auto_window(taus, c) tau_est[i_acf] = taus[window] ax.plot( acf_steps, tau_est, color="C0", marker="o", ms=2, mec="None", ls="-", lw=0.5, label="$\\tau$", zorder=6, ) ax.axhline( acf_len, color="black", ls="-", lw=0.7, label="ACF = ${}\\times{}$".format(acf_len, n_thin), zorder=5, ) ax.plot( acf_steps, acf_steps / tolerance, color="gray", marker="None", ls="--", lw=0.5, label="$\\tau = N/({}\\times{})$".format(tolerance, n_thin), zorder=4, ) ax.legend(loc="best", fontsize=4) ax.set_ylabel("ACF") ax.set_xlabel("steps $\\times {}$".format(n_thin)) plt.tight_layout() fig.align_ylabels(axs) out_file = os.path.join( plots_folder, "{:03d}_{}_convergence.png".format(ifit, iname) ) fig.savefig(out_file, dpi=300, bbox_inches="tight") plt.close(fig) anc.print_both("", output=olog) anc.print_both( "All expected steps for each parameter needed to reach full convergence:\n{}".format( expected_steps ), output=olog, ) anc.print_both( "All expected ACF len for each parameter needed to reach full convergence:\n{}".format( expected_acf ), output=olog, ) imax_acf = np.argmax(expected_acf) anc.print_both( "MAX ACF = {} ==> needed chains of {} steps\n".format( expected_acf[imax_acf], expected_steps[imax_acf] ), output=olog, ) # close olog return def full_statistics( chains, # post, flat_post, names, pars, lnp_post, output_folder, olog=None, ilast=0, n_burn=0, n_thin=1, show_plot=False, figsize=(8, 8), ): # 68.27% (15.87th-84.13th) ==> alpha = 1. - 0.6827 = 0.3173 # 95.44% ( 2.28th-97.72th) ==> alpha = 1. - 0.9544 = 0.0456 # 99.74% ( 0.13th-99.87th) ==> alpha = 1. - 0.9974 = 0.0026 cred1 = 0.6827 scred1 = "{:.2f}".format(100 * cred1) cred2 = 0.9544 scred2 = "{:.2f}".format(100 * cred2) cred3 = 0.9974 scred3 = "{:.2f}".format(100 * cred3) lsize = 10 tsize = lsize - 3 n_steps, n_walkers, n_par = np.shape(chains) print("### n_steps, n_walkers, n_par = {}, {}, {}".format(n_steps, n_walkers, n_par)) n_gr = 10 if n_steps <= n_gr: n_gr = n_steps step = 1 else: step = int((n_steps - 10) / n_gr) steps = np.rint(np.linspace(step, n_steps, endpoint=True, num=n_gr)).astype(int) expected_acf = np.zeros((n_par)).astype(int) expected_steps = np.zeros((n_par)).astype(int) for ipar, pname in enumerate(names): p = pars[ipar] anc.print_both("Parameter {}".format(pname), output=olog) if ( pname[0] == "w" or pname[0:2] == "mA" or pname[0:2] == "lN" or "lambda" in pname ): pmod = p%360.0 patg = anc.get_arctan_angle(pmod) pmin, pmax = flat_post[:, ipar].min(), flat_post[:, ipar].max() if np.logical_and(patg >= pmin, patg <= pmax): p = patg else: p = pmod hdi1 = anc.hpd(flat_post[:, ipar], cred=cred1) hdi2 = anc.hpd(flat_post[:, ipar], cred=cred2) hdi3 = anc.hpd(flat_post[:, ipar], cred=cred3) err = np.array(hdi1) - p med = np.median(flat_post[:, ipar]) warn = "" if err[0] > 0 or err[1] < 0: warn = "!!WARNING MAP OUT OF HDI{}%!!".format(cred1) fig = plt.figure(figsize=figsize, layout="constrained") spec = fig.add_gridspec(3, 3) axs = [] # TOP-LEFT ==== Gelman-Rubin topl = fig.add_subplot(spec[0, 0]) topl.tick_params(axis="x", labelrotation=0, labelsize=tsize) topl.tick_params(axis="y", labelrotation=45, labelsize=tsize) gr = np.zeros((n_gr)) + 100 for istep, vstep in enumerate(steps): # gr[istep] = anc.GelmanRubin(chains[:vstep, :, ipar]) gr[istep] = anc.GelmanRubin_PyORBIT(chains[:vstep, :, ipar]) topl.plot( steps, gr, color="black", marker="o", ms=4, mec="white", mew=0.3, ls="-", lw=0.7, zorder=5, ) topl.axhline(1.01, color="gray", ls="--", lw=0.7, zorder=4) ylim0 = topl.get_ylim() topl.set_ylim(max(0.95, ylim0[0]), min(1.2, ylim0[1])) # topl.set_ylabel("G-R ($\^{R}$)", fontsize=lsize) topl.set_xlabel("steps $\\times {}$".format(n_thin), fontsize=lsize) axs.append(topl) # TOP-CENTRE ==== Geweke topc = fig.add_subplot(spec[0, 1]) topc.tick_params(axis="x", labelrotation=0, labelsize=tsize) topc.tick_params(axis="y", labelrotation=45, labelsize=tsize) lower_interval, z_score = anc.geweke_test( chains[:, :, ipar], start_frac=0.01, n_sel_steps=n_gr ) for i_c in range(0, n_walkers): topc.plot( lower_interval, z_score[:, i_c], marker="o", ms=2, mec="None", ls="-", lw=0.4, # label="walker {:d}".format(i_c + 1), alpha=0.6, ) topc.axhline( +2.0, color="lightgray", ls="-", lw=0.7, ) topc.axhline( -2.0, color="lightgray", ls="-", lw=0.7, ) topc.set_ylim(-3, +3) # topc.set_ylabel("Geweke", fontsize=lsize) topc.set_xlabel("steps $\\times {}$".format(n_thin), fontsize=lsize) axs.append(topc) # TOP-RIGHT ==== ACF topr = fig.add_subplot(spec[0, 2]) topr.tick_params(axis="x", labelrotation=0, labelsize=tsize) topr.tick_params(axis="y", labelrotation=45, labelsize=tsize) tolerance = 50 integrated_ACF = emcee.autocorr.integrated_time( chains[:, :, ipar], tol=tolerance, quiet=True ) print("integrated_ACF ",integrated_ACF) acf_len = np.rint(np.nanmax(integrated_ACF)).astype(int) print("acf_len ",acf_len) n_expected = acf_len * tolerance print("n_expected ",n_expected) anc.print_both( "ACF {}x{} expected chain long as n = {}x{} (current {} steps)".format( acf_len, n_thin, n_expected, n_thin, n_steps ), output=olog, ) expected_steps[ipar] = n_expected print("expected_steps[ipar] ",expected_steps[ipar]) expected_acf[ipar] = acf_len print("expected_acf[ipar] ",expected_acf[ipar]) n_acf = 10 acf_start = acf_len // 2 if acf_start < 1: acf_start = 1 acf_steps = np.rint( np.linspace(acf_start, n_steps, endpoint=True, num=n_acf) ).astype(int) print("acf_steps ",acf_steps) tau_est = np.zeros((n_acf)) for i_acf, n_s in enumerate(acf_steps): acf_mean = np.zeros((n_s)) for iw in range(0, n_walkers): acf = emcee.autocorr.function_1d(chains[:n_s, iw, ipar]) acf_mean += acf acf_mean /= n_walkers c = 5 taus = 2.0 * np.cumsum(acf_mean) - 1.0 window = emcee.autocorr.auto_window(taus, c) tau_est[i_acf] = taus[window] topr.plot( acf_steps, tau_est, color="C0", marker="o", ms=2, mec="None", ls="-", lw=0.5, label="$\\tau$", zorder=6, ) topr.axhline( acf_len, color="black", ls="-", lw=0.7, label="ACF = ${}\\times{}$".format(acf_len, n_thin), zorder=5, ) topr.plot( acf_steps, acf_steps / tolerance, color="gray", marker="None", ls="--", lw=0.5, label="$\\tau = N/({}\\times{})$".format(tolerance, n_thin), zorder=4, ) topr.legend(loc="best", fontsize=tsize - 2) # topr.set_ylabel("ACF", fontsize=lsize) topr.set_xlabel("steps $\\times {}$".format(n_thin), fontsize=lsize) axs.append(topr) # MIDLEFT ==== trace full chains midl = fig.add_subplot(spec[1, 0]) midl.tick_params(axis="x", labelrotation=0, labelsize=tsize) midl.tick_params(axis="y", labelrotation=45, labelsize=tsize) midl.plot(chains[:, :, ipar], ls="-", lw=0.2, alpha=0.3) midl.axvline(n_burn, color="gray", ls="-", lw=1.3, alpha=0.7) midl.axhline(p, color="C1", ls="-", lw=1.4, alpha=0.7) # midl.set_ylabel("{} (full)".format(pname), fontsize=lsize) midl.set_xlabel("steps $\\times {}$".format(n_thin), fontsize=lsize) axs.append(midl) # MIDCENTRE ==== trace posterior chains midc = fig.add_subplot(spec[1, 1]) midc.tick_params(axis="x", labelrotation=0, labelsize=tsize) midc.tick_params(axis="y", labelrotation=45, labelsize=tsize) midc.plot(chains[:, :, ipar], ls="-", lw=0.2, alpha=0.3) midc.axvspan( 0, n_burn, facecolor="gray", edgecolor="None", ls="-", lw=1.3, alpha=0.5 ) midc.axvline(n_burn, color="gray", ls="-", lw=1.3, alpha=0.7) midc.axhline(p, color="C1", ls="-", lw=1.4, alpha=0.7) y = flat_post[:, ipar] dy = np.ptp(y) midc.set_ylim([y.min() - 0.03 * dy, y.max() + 0.03 * dy]) midc.set_xlabel("steps $\\times {}$".format(n_thin), fontsize=lsize) axs.append(midc) # MIDRIGHT ==== posterior distribution midr = fig.add_subplot(spec[1, 2]) midr.tick_params(axis="x", labelbottom=False) midr.tick_params(axis="y", labelleft=False) midr.hist( flat_post[:, ipar], bins=33, color="black", density=False, orientation="horizontal", zorder=3, ) midr.axhline( p, color="C1", ls="-", lw=1.3, alpha=1.0, label="MAP", zorder=5 ) midr.axhline( hdi1[0], color="C2", ls="--", lw=0.95, alpha=1.0, label="HDI{}%".format(scred1), zorder=4, ) midr.axhline(hdi1[1], color="C2", ls="--", lw=0.95, alpha=1.0, zorder=4) midr.axhline( hdi2[0], color="C3", ls="--", lw=0.50, alpha=1.0, label="HDI{}%".format(scred2), zorder=4, ) midr.axhline(hdi2[1], color="C3", ls="--", lw=0.50, alpha=1.0, zorder=5) midr.axhline( hdi3[0], color="C4", ls="--", lw=0.50, alpha=1.0, label="HDI{}%".format(scred3), zorder=4, ) midr.axhline(hdi3[1], color="C4", ls="--", lw=0.50, alpha=1.0, zorder=6) midr.axhline( med, color="C0", ls="--", lw=1.0, alpha=1.0, label="MEDIAN", zorder=6 ) # midr.legend(loc='best', fontsize=tsize-3) axs.append(midr) # BOTTOM ==== lnP = f(par) bot = fig.add_subplot(spec[2, :]) bot.tick_params(axis="x", labelrotation=0, labelsize=tsize) bot.tick_params(axis="y", labelrotation=45, labelsize=tsize) # bot.set_title(pname, fontsize=lsize+1) bot.plot( flat_post[:, ipar], lnp_post, color="black", marker="o", ms=1, mec="None", ls="", alpha=0.33, zorder=2, ) bot.axvline( p, color="C1", ls="-", lw=1.3, alpha=1.0, label="MAP", zorder=5 ) bot.axvline( hdi1[0], color="C2", ls="--", lw=0.95, alpha=1.0, label="HDI{}%".format(scred1), zorder=4, ) bot.axvline(hdi1[1], color="C2", ls="--", lw=0.95, alpha=1.0, zorder=4) bot.axvline( hdi2[0], color="C3", ls="--", lw=0.50, alpha=1.0, label="HDI{}%".format(scred2), zorder=4, ) bot.axvline(hdi2[1], color="C3", ls="--", lw=0.50, alpha=1.0, zorder=5) bot.axvline( hdi3[0], color="C4", ls="--", lw=0.50, alpha=1.0, label="HDI{}%".format(scred3), zorder=4, ) bot.axvline(hdi3[1], color="C4", ls="--", lw=0.50, alpha=1.0, zorder=6) bot.axvline( med, color="C0", ls="--", lw=1.0, alpha=1.0, label="MEDIAN", zorder=6 ) bot.legend( # loc='center left', # bbox_to_anchor=(1.01, 0.5), loc="best", fontsize=tsize - 3, ) bot.set_ylabel("$\ln\mathcal{P}$", fontsize=lsize) bot.set_xlabel("{} (posterior)".format(pname), fontsize=lsize) axs.append(bot) plt.tight_layout() # fig.align_ylabels(axs) # save figure output_file = os.path.join( output_folder, "{:03d}_{}.png".format(ipar + ilast, pname) ) anc.print_both("Saving {}".format(output_file), output=olog) fig.savefig(output_file, dpi=300, bbox_inches="tight") if show_plot: plt.show() plt.close(fig) return expected_acf, expected_steps def log_probability_trace( log_prob, lnprob_posterior, plot_folder, n_burn=0, n_thin=1, show_plot=False, figsize=(8, 8), olog=None ): lsize = 10 tsize = lsize - 3 map_lnprob = np.max(lnprob_posterior) fig = plt.figure(figsize=figsize, layout="constrained") spec = fig.add_gridspec(3, 1) axs = [] top = fig.add_subplot(spec[0, 0]) top.tick_params(axis="x", labelrotation=45, labelsize=tsize, labelbottom=False) top.tick_params(axis="y", labelrotation=45, labelsize=tsize) top.plot(log_prob, ls="-", lw=0.2, alpha=0.3) top.axvline(n_burn, color="gray", ls="-", lw=1.3, alpha=0.7) top.axhline(map_lnprob, color="C1", ls="-", lw=1.2, alpha=0.7) top.set_ylabel("$\ln\mathcal{P}$ (full)") axs.append(top) mid = fig.add_subplot(spec[1, 0]) mid.tick_params(axis="x", labelrotation=45, labelsize=tsize) mid.tick_params(axis="y", labelrotation=45, labelsize=tsize) mid.plot(log_prob, ls="-", lw=0.2, alpha=0.3) mid.axvline(n_burn, color="gray", ls="-", lw=1.3, alpha=0.7) mid.axhline(map_lnprob, color="C1", ls="-", lw=1.2, alpha=0.7) mid.set_ylabel("$\ln\mathcal{P}$ (post.)") mid.set_xlabel("steps $\\times {}$".format(n_thin)) dlnP = np.ptp(lnprob_posterior) mid.set_ylim( [lnprob_posterior.min() - 0.03 * dlnP, lnprob_posterior.max() + 0.03 * dlnP] ) axs.append(mid) bot = fig.add_subplot(spec[2, 0]) bot.tick_params(axis="x", labelrotation=45, labelsize=tsize) bot.tick_params(axis="y", labelrotation=45, labelsize=tsize, labelleft=False) bot.hist( lnprob_posterior, bins=33, color="black", density=False, orientation="vertical", zorder=3, ) bot.axvline(map_lnprob, color="C1", ls="-", lw=1.2, alpha=0.7) bot.set_xlabel("$\ln\mathcal{P}$ (post.)") axs.append(bot) plt.tight_layout() fig.align_ylabels(axs) output_file = os.path.join(plot_folder, "lnprob_trace.png") anc.print_both("\nSaving {}".format(output_file), output=olog) fig.savefig(output_file, dpi=300, bbox_inches="tight") if show_plot: plt.show() plt.close(fig) return
Python
CREATE PROCEDURE UpdateCreditLimitWrapper AS BEGIN DECLARE @Retries INT = 1 ; WHILE @Retries <= 10 BEGIN BEGIN TRY EXEC dbo.UpdateCreditLimit ; END TRY BEGIN CATCH WAITFOR DELAY '00:00:01' ; SET @Retries = @Retries + 1 ; END CATCH END END
PLSQL
// Code generated by private/model/cli/gen-api/main.go. DO NOT EDIT. // Package iam provides the client and types for making API // requests to AWS Identity and Access Management. // // AWS Identity and Access Management (IAM) is a web service that you can use // to manage users and user permissions under your AWS account. This guide provides // descriptions of IAM actions that you can call programmatically. For general // information about IAM, see AWS Identity and Access Management (IAM) (http://aws.amazon.com/iam/). // For the user guide for IAM, see Using IAM (http://docs.aws.amazon.com/IAM/latest/UserGuide/). // // AWS provides SDKs that consist of libraries and sample code for various programming // languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs // provide a convenient way to create programmatic access to IAM and AWS. For // example, the SDKs take care of tasks such as cryptographically signing requests // (see below), managing errors, and retrying requests automatically. For information // about the AWS SDKs, including how to download and install them, see the Tools // for Amazon Web Services (http://aws.amazon.com/tools/) page. // // We recommend that you use the AWS SDKs to make programmatic API calls to // IAM. However, you can also use the IAM Query API to make direct calls to // the IAM web service. To learn more about the IAM Query API, see Making Query // Requests (http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html) // in the Using IAM guide. IAM supports GET and POST requests for all actions. // That is, the API does not require you to use GET for some actions and POST // for others. However, GET requests are subject to the limitation size of a // URL. Therefore, for operations that require larger sizes, use a POST request. // // Signing Requests // // Requests must be signed using an access key ID and a secret access key. We // strongly recommend that you do not use your AWS account access key ID and // secret access key for everyday work with IAM. You can use the access key // ID and secret access key for an IAM user or you can use the AWS Security // Token Service to generate temporary security credentials and use those to // sign requests. // // To sign requests, we recommend that you use Signature Version 4 (http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html). // If you have an existing application that uses Signature Version 2, you do // not have to update it to use Signature Version 4. However, some operations // now require Signature Version 4. The documentation for operations that require // version 4 indicate this requirement. // // Additional Resources // // For more information, see the following: // // * AWS Security Credentials (http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html). // This topic provides general information about the types of credentials // used for accessing AWS. // // * IAM Best Practices (http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html). // This topic presents a list of suggestions for using the IAM service to // help secure your AWS resources. // // * Signing AWS API Requests (http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html). // This set of topics walk you through the process of signing a request using // an access key ID and secret access key. // // See https://docs.aws.amazon.com/goto/WebAPI/iam-2010-05-08 for more information on this service. // // See iam package documentation for more information. // https://docs.aws.amazon.com/sdk-for-go/api/service/iam/ // // Using the Client // // To contact AWS Identity and Access Management with the SDK use the New function to create // a new service client. With that client you can make API requests to the service. // These clients are safe to use concurrently. // // See the SDK's documentation for more information on how to use the SDK. // https://docs.aws.amazon.com/sdk-for-go/api/ // // See aws.Config documentation for more information on configuring SDK clients. // https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config // // See the AWS Identity and Access Management client IAM for more // information on creating client for this service. // https://docs.aws.amazon.com/sdk-for-go/api/service/iam/#New package iam
Go
part of serverManager; class MessageProcessor { Logger _log = new Logger('MessageProcessor'); Manager _manager; List<MessageProcessorInterface> _processors = []; MessageProcessor(Manager this._manager); void registerProcessor(MessageProcessorInterface mp) { mp.manager = _manager; _processors.add(mp); } void process(Message message, String idClient) { for (var processor in _processors) { if (processor.canProcess(message, idClient)) { processor.process(message, idClient); } } } }
Dart
--[[ WoTD License - This software is provided as free and open source by the team of The WoTD Team. This script was written and is protected by the GPL v2. Please give credit where credit is due, if modifying, redistributing and/or using this software. Thank you. Thank: WoTD Team; for the Script ~~End of License... Please Stand By... -- WoTD Team, Janurary 19, 2010. ]] function ScryerCavalier_OnEnterCombat(Unit,Event) Unit:CastSpell(30931) Unit:registerEvent("ScryerCavalier_Spellbreaker", 24000, 0) end function ScryerCavalier_Spellbreaker(Unit,Event) Unit:FullCastSpellOnTarget(35871, Unit:GetClosestPlayer()) end function ScryerCavalier_OnLeaveCombat(Unit,Event) Unit:RemoveEvents() end function ScryerCavalier_OnDied(Unit,Event) Unit:RemoveEvents() end RegisterUnitEvent(22967, 1, "ScryerCavalier_OnEnterCombat") RegisterUnitEvent(22967, 2, "ScryerCavalier_OnLeaveCombat") RegisterUnitEvent(22967, 4, "ScryerCavalier_OnDied")
Lua
FROM busybox ADD index.html /www/index.html EXPOSE 8000 CMD httpd -p 8000 -h /www; tail -f /dev/null
Dockerfile
Sub.pair <- function(z, t, Mat, i, j){ alpha=0.05 n1 <- Sub.n(z, t, Mat, i) n2 <- Sub.n(z, t, Mat, j) m2 <- sum(z[which(Mat[,i] == 1 & Mat[,j] == 1)]) M <- sum(z) M12 <- M - sum(z[which(Mat[,i] == 0 & Mat[,j] == 0)]) PetN <- n1 * n2 / m2 ChpN <- (n1 + 1) * (n2 + 1) / (m2 +1) - 1 VarN <- (n1 + 1) * (n2 + 1) * (n1 - m2) * (n2 - m2) / ((m2 + 1)^2 * (m2 + 2)) SEN <- sqrt(VarN) C <- exp(qnorm(1 - alpha / 2) * sqrt(log(1 + VarN / (ChpN - M12)^2))) ChpN.L <- M12 + (ChpN - M12) / C ChpN.U <- M12 + (ChpN - M12) * C Nij <- cbind(PetN, ChpN, SEN , ChpN.L, ChpN.U) colnames(Nij) <- c("Petersen","Chapman","se","cil","ciu") rownames(Nij) <- paste("pa", i, j, sep="") return(Nij) }
R
{ "_args": [ [ { "raw": "is-unc-path@^0.1.1", "scope": null, "escapedName": "is-unc-path", "name": "is-unc-path", "rawSpec": "^0.1.1", "spec": ">=0.1.1 <0.2.0", "type": "range" }, "/home/lfernandes/ng2/code/first_app/angular2-reddit-base/node_modules/is-relative" ] ], "_from": "is-unc-path@>=0.1.1 <0.2.0", "_id": "[email protected]", "_inCache": true, "_installable": true, "_location": "/is-unc-path", "_nodeVersion": "0.12.4", "_npmUser": { "name": "jonschlinkert", "email": "[email protected]" }, "_npmVersion": "2.10.1", "_phantomChildren": {}, "_requested": { "raw": "is-unc-path@^0.1.1", "scope": null, "escapedName": "is-unc-path", "name": "is-unc-path", "rawSpec": "^0.1.1", "spec": ">=0.1.1 <0.2.0", "type": "range" }, "_requiredBy": [ "/is-relative" ], "_resolved": "https://registry.npmjs.org/is-unc-path/-/is-unc-path-0.1.1.tgz", "_shasum": "ab2533d77ad733561124c3dc0f5cd8b90054c86b", "_shrinkwrap": null, "_spec": "is-unc-path@^0.1.1", "_where": "/home/lfernandes/ng2/code/first_app/angular2-reddit-base/node_modules/is-relative", "author": { "name": "Jon Schlinkert", "url": "https://github.com/jonschlinkert" }, "bugs": { "url": "https://github.com/jonschlinkert/is-unc-path/issues" }, "dependencies": { "unc-path-regex": "^0.1.0" }, "description": "Returns true if a filepath is a windows UNC file path.", "devDependencies": { "mocha": "*", "should": "*" }, "directories": {}, "dist": { "shasum": "ab2533d77ad733561124c3dc0f5cd8b90054c86b", "tarball": "https://registry.npmjs.org/is-unc-path/-/is-unc-path-0.1.1.tgz" }, "engines": { "node": ">=0.10.0" }, "files": [ "index.js" ], "homepage": "https://github.com/jonschlinkert/is-unc-path", "keywords": [ "absolute", "expression", "file", "filepath", "match", "matching", "path", "regex", "regexp", "regular", "unc", "win", "windows" ], "license": "MIT", "main": "index.js", "maintainers": [ { "name": "jonschlinkert", "email": "[email protected]" } ], "name": "is-unc-path", "optionalDependencies": {}, "readme": "ERROR: No README data found!", "repository": { "type": "git", "url": "git+https://github.com/jonschlinkert/is-unc-path.git" }, "scripts": { "test": "mocha" }, "version": "0.1.1" }
JSON
###################################################### ##### Purge all existing firewall rules (if any) ##### ###################################################### resources { 'firewall': purge => true, } ##################################################### ##### Default rules defined before custom rules ##### ##################################################### class pre { Firewall { require => undef, } # Default firewall rules firewall { '000 accept all icmp': proto => 'icmp', action => 'accept', }-> firewall { '001 accept all to lo interface': proto => 'all', iniface => 'lo', action => 'accept', }-> firewall { '002 reject local traffic not on loopback interface': iniface => '! lo', proto => 'all', destination => '127.0.0.1/8', action => 'reject', }-> firewall { '003 accept related established rules': proto => 'all', state => ['RELATED', 'ESTABLISHED'], action => 'accept', } } ###################################################### ##### Custom rules defined between default rules ##### ###################################################### # firewall { '004 custom rule example': # proto => 'all', # state => ['RELATED', 'ESTABLISHED'], # action => 'accept', # } # # firewall { '005 custom rule example': # proto => 'all', # state => ['RELATED', 'ESTABLISHED'], # action => 'accept', # } # # firewall { '006 custom rule example': # proto => 'all', # state => ['RELATED', 'ESTABLISHED'], # action => 'drop', # } #################################################### ##### Default rules defined after custom rules ##### #################################################### class post { firewall { '999 drop all': proto => 'all', action => 'drop', before => undef, } } Firewall { before => Class['post'], require => Class['pre'], } class { ['pre', 'post']: } class { 'firewall': }
Pascal
# make sure we have vala find_package (Vala REQUIRED) # make sure we use vala include (ValaVersion) # make sure it's the desired version of vala ensure_vala_version ("0.16" MINIMUM) configure_file (${CMAKE_SOURCE_DIR}/config.vala.cmake ${CMAKE_BINARY_DIR}/config.vala) # files we want to compile include (ValaPrecompile) vala_precompile (VALA_C ${EXEC_NAME} ${CMAKE_BINARY_DIR}/config.vala Const.vala GameView.vala InGameGUI.vala MainWindow.vala Map.vala Tile.vala Building/Building.vala Building/Fountain.vala Building/House.vala Building/Road.vala Building/Farm.vala Building/Prefecture.vala Building/Engineer.vala Building/Market.vala PACKAGES gtk+-3.0 OPTIONS --target-glib=2.32 --thread ) # tell cmake what to call the executable we just made add_executable (${EXEC_NAME} ${VALA_C}) # install the binaries we just made install (TARGETS ${EXEC_NAME} RUNTIME DESTINATION bin)
CMake
#!/usr/bin/env python """ This script generates the index-pattern for Kibana from the fields.yml file. """ import yaml import argparse import string import re import json import os import errno import sys unique_fields = [] def fields_to_json(section, path, output): if not section["fields"]: return for field in section["fields"]: if path == "": newpath = field["name"] else: newpath = path + "." + field["name"] if "type" in field and field["type"] == "group": fields_to_json(field, newpath, output) else: field_to_json(field, newpath, output) def field_to_json(desc, path, output, indexed=True, analyzed=False, doc_values=True, searchable=True, aggregatable=True): global unique_fields if path in unique_fields: print("ERROR: Field {} is duplicated. Please delete it and try again. Fields already are {}".format( path, ", ".join(unique_fields))) sys.exit(1) else: unique_fields.append(path) field = { "name": path, "count": 0, "scripted": False, "indexed": indexed, "analyzed": analyzed, "doc_values": doc_values, "searchable": searchable, "aggregatable": aggregatable, } # find the kibana types based on the field type if "type" in desc: if desc["type"] in ["half_float", "scaled_float", "float", "integer", "long", "short", "byte"]: field["type"] = "number" elif desc["type"] in ["text", "keyword"]: field["type"] = "string" if desc["type"] == "text": field["aggregatable"] = False elif desc["type"] == "date": field["type"] = "date" elif desc["type"] == "geo_point": field["type"] = "geo_point" else: field["type"] = "string" output["fields"].append(field) if "format" in desc: output["fieldFormatMap"][path] = { "id": desc["format"], } def fields_to_index_pattern(args, input): docs = yaml.load(input) if docs is None: print("fields.yml is empty. Cannot generate index-pattern") return output = { "fields": [], "fieldFormatMap": {}, "timeFieldName": "@timestamp", "title": args.index, } for k, section in enumerate(docs["fields"]): fields_to_json(section, "", output) # add meta fields field_to_json({"name": "_id", "type": "keyword"}, "_id", output, indexed=False, analyzed=False, doc_values=False, searchable=False, aggregatable=False) field_to_json({"name": "_type", "type": "keyword"}, "_type", output, indexed=False, analyzed=False, doc_values=False, searchable=True, aggregatable=True) field_to_json({"name": "_index", "type": "keyword"}, "_index", output, indexed=False, analyzed=False, doc_values=False, searchable=False, aggregatable=False) field_to_json({"name": "_score", "type": "integer"}, "_score", output, indexed=False, analyzed=False, doc_values=False, searchable=False, aggregatable=False) output["fields"] = json.dumps(output["fields"]) output["fieldFormatMap"] = json.dumps(output["fieldFormatMap"]) return output def get_index_pattern_name(index): allow = string.ascii_letters + string.digits + "_" return re.sub('[^%s]' % allow, '', index) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generates the index-pattern for a Beat.") parser.add_argument("--index", help="The name of the index-pattern") parser.add_argument("--beat", help="Local Beat directory") parser.add_argument("--libbeat", help="Libbeat local directory") args = parser.parse_args() fields_yml = args.beat + "/_meta/fields.generated.yml" # Not all beats have a fields.generated.yml. Fall back to fields.yml if not os.path.isfile(fields_yml): fields_yml = args.beat + "/_meta/fields.yml" # generate the index-pattern content with open(fields_yml, 'r') as f: fields = f.read() # Prepend beat fields from libbeat with open(args.libbeat + "/_meta/fields.generated.yml") as f: fields = f.read() + fields # with open(target, 'w') as output: output = fields_to_index_pattern(args, fields) # dump output to a json file fileName = get_index_pattern_name(args.index) target_dir = os.path.join(args.beat, "_meta", "kibana", "index-pattern") target_file = os.path.join(target_dir, fileName + ".json") try: os.makedirs(target_dir) except OSError as exception: if exception.errno != errno.EEXIST: raise output = json.dumps(output, indent=2) with open(target_file, 'w') as f: f.write(output) print("The index pattern was created under {}".format(target_file))
Python
# This file is responsible for configuring your application # and its dependencies with the aid of the Mix.Config module. # # This configuration file is loaded before any dependency and # is restricted to this project. use Mix.Config # Configures the endpoint config :connectdemo, Connectdemo.Endpoint, url: [host: "localhost"], root: Path.dirname(__DIR__), secret_key_base: "K5eic+a0gdMLFa0fC63CUzYDMuqMSos8KfujAuSZkIcMEQG7rrng6klOcpvfVzlx", render_errors: [accepts: ~w(html json)], pubsub: [name: Connectdemo.PubSub, adapter: Phoenix.PubSub.PG2] # Configures Elixir's Logger config :logger, :console, format: "$time $metadata[$level] $message\n", metadata: [:request_id] # Import environment specific config. This must remain at the bottom # of this file so it overrides the configuration defined above. import_config "#{Mix.env}.exs" # Configure phoenix generators config :phoenix, :generators, migration: true, binary_id: false
Elixir
# This file is a part of Julia. License is MIT: https://julialang.org/license # Tests for /base/stacktraces.jl using Serialization, Base.StackTraces let @noinline child() = stacktrace() @noinline parent() = child() @noinline grandparent() = parent() line_numbers = @__LINE__() .- [3, 2, 1] stack = grandparent() # Basic tests. @assert length(stack) >= 3 "Compiler has unexpectedly inlined functions" @test [:child, :parent, :grandparent] == [f.func for f in stack[1:3]] for (line, frame) in zip(line_numbers, stack[1:3]) @test [Symbol(@__FILE__), line] == [frame.file, frame.line] end @test [false, false, false] == [f.from_c for f in stack[1:3]] # Test remove_frames! stack = StackTraces.remove_frames!(grandparent(), :parent) @test stack[1] == StackFrame(:grandparent, @__FILE__, line_numbers[3]) stack = StackTraces.remove_frames!(grandparent(), [:child, :something_nonexistent]) @test stack[1:2] == [ StackFrame(:parent, @__FILE__, line_numbers[2]), StackFrame(:grandparent, @__FILE__, line_numbers[3]) ] b = PipeBuffer() frame = stack[1] serialize(b, frame) frame2 = deserialize(b) @test frame !== frame2 @test frame == frame2 @test frame.linfo !== nothing @test frame2.linfo === nothing end # Test from_c let (default, with_c, without_c) = (stacktrace(), stacktrace(true), stacktrace(false)) @test default == without_c @test length(with_c) > length(without_c) @test !isempty(filter(frame -> frame.from_c, with_c)) @test isempty(filter(frame -> frame.from_c, without_c)) end @test StackTraces.lookup(C_NULL) == [StackTraces.UNKNOWN] == StackTraces.lookup(C_NULL + 1) == StackTraces.lookup(C_NULL - 1) let ct = current_task() # After a task switch, there should be nothing in catch_backtrace yieldto(@task yieldto(ct)) @test catch_backtrace() == StackFrame[] @noinline bad_function() = throw(UndefVarError(:nonexistent)) @noinline function try_stacktrace() try bad_function() catch return stacktrace() end end @noinline function try_catch() try bad_function() catch return stacktrace(catch_backtrace()) end end line_numbers = @__LINE__() .- [15, 10, 5] # Test try...catch with stacktrace @test try_stacktrace()[1] == StackFrame(:try_stacktrace, @__FILE__, line_numbers[2]) # Test try...catch with catch_backtrace @test try_catch()[1:2] == [ StackFrame(:bad_function, @__FILE__, line_numbers[1]), StackFrame(:try_catch, @__FILE__, line_numbers[3]) ] end module inlined_test using Test @inline g(x) = (x == 3 && throw("a"); x) @inline h(x) = (x == 3 && g(x); x) f(x) = (y = h(x); y) trace = (try; f(3); catch; stacktrace(catch_backtrace()); end)[1:3] can_inline = Bool(Base.JLOptions().can_inline) for (frame, func, inlined) in zip(trace, [g,h,f], (can_inline, can_inline, false)) @test frame.func === typeof(func).name.mt.name # broken until #50082 can be addressed mi = isa(frame.linfo, Core.CodeInstance) ? frame.linfo.def : frame.linfo @test mi.def.module === which(func, (Any,)).module broken=inlined @test mi.def === which(func, (Any,)) broken=inlined @test mi.specTypes === Tuple{typeof(func), Int} broken=inlined # line @test frame.file === Symbol(@__FILE__) @test !frame.from_c @test frame.inlined === inlined end end let src = Meta.lower(Main, quote let x = 1 end end).args[1]::Core.CodeInfo li = ccall(:jl_method_instance_for_thunk, Ref{Core.MethodInstance}, (Any, Any), src, @__MODULE__) sf = StackFrame(:a, :b, 3, li, false, false, 0) repr = string(sf) @test repr == "Toplevel MethodInstance thunk at b:3" end let li = typeof(fieldtype).name.mt.cache.func::Core.MethodInstance, sf = StackFrame(:a, :b, 3, li, false, false, 0), repr = string(sf) @test repr == "fieldtype(...) at b:3" end let ctestptr = cglobal((:ctest, "libccalltest")), ctest = StackTraces.lookup(ctestptr) @test length(ctest) == 1 @test ctest[1].func === :ctest @test ctest[1].linfo === nothing @test ctest[1].from_c @test ctest[1].pointer === UInt64(ctestptr) end # issue #19655 let st = stacktrace(empty!(backtrace())) # not in a `catch`, so should return an empty StackTrace @test isempty(st) @test isa(st, StackTrace) end module StackTracesTestMod unfiltered_stacktrace() = stacktrace() filtered_stacktrace() = StackTraces.remove_frames!(stacktrace(), StackTracesTestMod) end # Test that `removes_frames!` can correctly remove frames from within the module trace = StackTracesTestMod.unfiltered_stacktrace() @test occursin("unfiltered_stacktrace", string(trace)) trace = StackTracesTestMod.filtered_stacktrace() @test !occursin("filtered_stacktrace", string(trace)) let bt, topline = @__LINE__ try let x = 1 y = 2x z = 2z-1 end catch bt = stacktrace(catch_backtrace()) end @test bt[1].line == topline+4 end # Accidental incorrect phi block computation in interpreter global global_false_bool = false let bt, topline = @__LINE__ try let global read_write_global_bt_test, global_false_bool if global_false_bool end (read_write_global_bt_test, (read_write_global_bt_test=2;)) end catch bt = stacktrace(catch_backtrace()) end @test bt[1].line == topline+6 end # issue #28990 let bt try eval(Expr(:toplevel, LineNumberNode(42, :foo), :(error("blah")))) catch bt = stacktrace(catch_backtrace()) end @test bt[2].line == 42 @test bt[2].file === :foo end @noinline f33065(x; b=1.0, a="") = error() @noinline f33065(x, y; b=1.0, a="", c...) = error() let bt try f33065(0.0f0) catch bt = stacktrace(catch_backtrace()) end @test any(s->startswith(string(s), "f33065(x::Float32; b::Float64, a::String)"), bt) try f33065(0.0f0, b=:x) catch bt = stacktrace(catch_backtrace()) end @test any(s->startswith(string(s), "f33065(x::Float32; b::Symbol, a::String)"), bt) try f33065(0.0f0, 0.0f0, z=0) catch bt = stacktrace(catch_backtrace()) end @test any(s->startswith(string(s), "f33065(x::Float32, y::Float32; b::Float64, a::String, c::"), bt) end struct F49231{a,b,c,d,e,f,g} end (::F49231)(a,b,c) = error("oops") @testset "type_depth_limit" begin tdl = Base.type_depth_limit str = repr(typeof(view([1, 2, 3], 1:2))) @test tdl(str, 0, maxdepth = 1) == "SubArray{…}" @test tdl(str, 0, maxdepth = 2) == "SubArray{$Int, 1, Vector{…}, Tuple{…}, true}" @test tdl(str, 0, maxdepth = 3) == "SubArray{$Int, 1, Vector{$Int}, Tuple{UnitRange{…}}, true}" @test tdl(str, 0, maxdepth = 4) == "SubArray{$Int, 1, Vector{$Int}, Tuple{UnitRange{$Int}}, true}" @test tdl(str, 3) == "SubArray{…}" @test tdl(str, 44) == "SubArray{…}" @test tdl(str, 45) == "SubArray{$Int, 1, Vector{…}, Tuple{…}, true}" @test tdl(str, 59) == "SubArray{$Int, 1, Vector{…}, Tuple{…}, true}" @test tdl(str, 60) == "SubArray{$Int, 1, Vector{$Int}, Tuple{UnitRange{…}}, true}" @test tdl(str, 100) == "SubArray{$Int, 1, Vector{$Int}, Tuple{UnitRange{$Int}}, true}" str = repr(Vector{V} where V<:AbstractVector{T} where T<:Real) @test tdl(str, 0, maxdepth = 1) == "Vector{…} where {…}" @test tdl(str, 0, maxdepth = 2) == "Vector{V} where {T<:Real, V<:AbstractVector{…}}" @test tdl(str, 0, maxdepth = 3) == "Vector{V} where {T<:Real, V<:AbstractVector{T}}" @test tdl(str, 20) == "Vector{…} where {…}" @test tdl(str, 46) == "Vector{…} where {…}" @test tdl(str, 47) == "Vector{V} where {T<:Real, V<:AbstractVector{T}}" str = "F49231{Vector,Val{('}','}')},Vector{Vector{Vector{Vector}}},Tuple{Int,Int,Int,Int,Int,Int,Int},Int,Int,Int}" @test tdl(str, 105) == "F49231{Vector,Val{('}','}')},Vector{Vector{Vector{…}}},Tuple{Int,Int,Int,Int,Int,Int,Int},Int,Int,Int}" @test tdl(str, 85) == "F49231{Vector,Val{…},Vector{…},Tuple{…},Int,Int,Int}" # Stacktrace a = UInt8(81):UInt8(160) b = view(a, 1:64) c = reshape(b, (8, 8)) d = reinterpret(reshape, Float64, c) sqrteach(a) = [sqrt(x) for x in a] st = try sqrteach(d) catch e stacktrace(catch_backtrace()) end str = sprint(Base.show_backtrace, st, context = (:limit=>true, :stacktrace_types_limited => Ref(false), :color=>true, :displaysize=>(50,105))) @test contains(str, "[5] \e[0m\e[1mcollect_to!\e[22m\e[0m\e[1m(\e[22m\e[90mdest\e[39m::\e[0mVector\e[90m{…}\e[39m, \e[90mitr\e[39m::\e[0mBase.Generator\e[90m{…}\e[39m, \e[90moffs\e[39m::\e[0m$Int, \e[90mst\e[39m::\e[0mTuple\e[90m{…}\e[39m\e[0m\e[1m)\e[22m\n\e[90m") st = try F49231{Vector,Val{'}'},Vector{Vector{Vector{Vector}}},Tuple{Int,Int,Int,Int,Int,Int,Int},Int,Int,Int}()(1,2,3) catch e stacktrace(catch_backtrace()) end str = sprint(Base.show_backtrace, st, context = (:limit=>true, :stacktrace_types_limited => Ref(false), :color=>true, :displaysize=>(50,132))) @test contains(str, "[2] \e[0m\e[1m(::$F49231{Vector, Val{…}, Vector{…}, NTuple{…}, $Int, $Int, $Int})\e[22m\e[0m\e[1m(\e[22m\e[90ma\e[39m::\e[0m$Int, \e[90mb\e[39m::\e[0m$Int, \e[90mc\e[39m::\e[0m$Int\e[0m\e[1m)\e[22m\n\e[90m") end @testset "Base.StackTraces docstrings" begin @test isempty(Docs.undocumented_names(StackTraces)) end
Julia
#include "TTree.h" #include "TFile.h" #include "TH1.h" #include "TCanvas.h" #include "TMath.h" #include "TRandom3.h" #include <iostream> #include <sstream> /* * THINGS TO CHECK BEFORE YOU RUN * 1. Energy * 2. Position * 3. Binning * 4. Title */ double ENERGY = 1000.; //energy in MeV (if known) double XPOS = 13.; double YPOS = -0.4999; double CRYStoMM = 50.; vector<vector<pair<int, double> > >::iterator vv_iter; vector<pair<int, double> >::iterator v_iter; // Changes x and y coordinates in crystal units to the crystal ID int CoordtoID(int x, int y) { return(y+17)*35+(x+17); } // Gets x position from crystalID int IDtoX(int crystalID) { return crystalID%35-17; } //Gets y position from crystalID int IDtoY(int crystalID) { return crystalID/35-17; } // Returns distance between two crystals as defined by minimal path int dist(int crysFID, int crysSID) { return TMath::Max(TMath::Abs(IDtoX(crysFID)-IDtoX(crysSID)), TMath::Abs(IDtoY(crysFID)-IDtoY(crysSID))); } int crystalNumOptimized(vector<pair<int, double> > *shower) { double energySum(0.); double next(0.); int n(0); vector<pair<int, double> >::iterator a; for (a=shower->begin(); a!=shower->end(); ++a) { if (n<1) {n++; energySum+= a->second;} else { next=a->second; if (next/(energySum) < .5/a->second) {return n;} else {energySum+= next; n++; } } } return n; } // Returns the total energy in all crystals of a shower double clusterDep(vector<pair<int, double> > *shower) { double totEnergy(0.); for (v_iter=shower->begin(); v_iter!=shower->end(); v_iter++) {totEnergy+=v_iter->second;} return totEnergy; } //checks if a shower is already in the cluster // ROOT really hates this method. bool findVector (vector<vector<pair<int, double> > > *detector, vector<pair<int, double> > shower) { // Look through detector vector<vector<pair<int, double> > >::iterator a; for (a=detector->begin(); a!=detector->end(); ++a) { // remember that crystal ID's are ordered, and touching clusters have // the same crystalIDs if ((a->front()).first==(shower.front()).first) return true; } return false; } bool findPair (vector<vector<pair<int, double> > > *detector) { vector<vector<pair<int, double> > >::iterator a; vector<vector<pair<int, double> > >::iterator b; vector<pair<int, double> >::iterator c; vector<pair<int, double> >::iterator d; for (a=detector->begin(); a!=detector->end()-1; a++) { for (b=a+1; b!=detector->end(); b++) { for (c=a->begin(); c!=a->end(); c++) {for (d=b->begin(); d!=b->end(); d++) if (c->first==d->first) {return true;} } } } return false; } pair<double, pair<double, double> > reconstruct(vector<pair<int, double> > shower) { double energy(0.), xPos(0.), yPos(0.); //looks at crystals in the shower for (v_iter=shower.begin(); v_iter!=shower.end(); ++v_iter) { energy+= v_iter->second; xPos+=IDtoX(v_iter->first)*v_iter->second; yPos+=IDtoY(v_iter->first)*v_iter->second; } //takes weighted average xPos/=energy; yPos/=energy; pair<double, double> position(xPos, yPos); pair<double, pair<double, double> > photon(energy, position); return photon; } vector<pair<int, double> > generateBumpMap(double bumpEnergy, double address[], vector<pair<int, double> > shower) { vector<pair<int, double> > hitMap; int ID(0.); for (v_iter=shower.begin(); v_iter!=shower.end(); v_iter++) { if (v_iter->second > bumpEnergy) { int counter(0); ID = v_iter->first; for (int x=-1; x<2; x++) { for (int y=-1; y<2; y++) { int ngbrID = CoordtoID(IDtoX(ID)+x, IDtoY(ID)+y); if (address[ID] > address[ngbrID]) { counter++;} else {} } } if (counter ==8) {hitMap.push_back(*v_iter);} } } return hitMap; } pair<int, double> reconstructID (vector<pair<int, double> > shower) { pair<double, pair<double, double> > photon = reconstruct(shower); int xVal = (int) photon.second.first+.5; int yVal = (int) photon.second.second+.5; pair<int, double> reconstructed(CoordtoID(xVal, yVal), photon.first); return reconstructed; } //Sorts energies from largest to smallest vector<pair<int, double> > energySort(vector<pair<int, double> > shower) { vector<pair<double, int> > energy; for (v_iter=shower.begin(); v_iter!=shower.end(); v_iter++) { pair<double, int> flipped(v_iter->second, v_iter->first); energy.push_back(flipped); } std::map<double, int> myMap(energy.begin(), energy.end()+1); map<double, int>::iterator m; vector<pair<int, double> > sorted; for (m=myMap.end(); m!=myMap.begin(); --m) { pair<int, double> orderHit(m->second, m->first); sorted.push_back(orderHit); } sorted.erase(sorted.begin(), sorted.begin()+1); return sorted; } vector<pair<int,double> > * DFS(pair<int, double> start, double energyThreshLo, vector<pair<int, double> > * shower, double address[]) { shower->push_back(start); for (int x=-1; x<2; x++) { for (int y=-1; y<2; y++) { int ngbrID = CoordtoID(IDtoX(start.first)+x, IDtoY(start.first)+y); double ngbrEn = address[ngbrID]; pair<int, double> ngbr(ngbrID, ngbrEn); if (ngbrEn>energyThreshLo) { vector<int> showerID; //no method for searching pairs for (int f=0; f<shower->size(); f++) {showerID.push_back(((*shower)[f]).first);} if (std::find(showerID.begin(), showerID.end(), ngbrID)!=showerID.end()) {continue;} // if it has enough energy and has not been counted else { shower = DFS(ngbr, energyThreshLo, shower,address);} } } } //put crystals in correct order to make other methods simpler std::sort(shower->begin(), shower->end()); return shower; } void resolutionPlots() { cout << "Starting plots..." << endl; TRandom3* randomGen = new TRandom3(12191982); TFile* file = new TFile("complete.root"); TTree* tree = (TTree *)file->Get("Signal"); int nEvents = tree->GetEntries(); double addresses[1225] = {}; for (int k=0; k<1225; k++){ std::stringstream ss2; ss2 << k; string str = "Crystal_"+ss2.str(); const char* charstr = str.c_str(); tree->SetBranchAddress(charstr, &addresses[k]); } double b1, b2; double energyThreshHi = 5.; double energyThreshLo = 0.; TH1D* energyReso = new TH1D("energyReso", "Energy_resolution", 400, -200, 199); TH1D* posResoX = new TH1D("posResoX", "XPosition_resolution", 80, -40, 39); TH1D* posResoY = new TH1D("posResoY", "YPosition_resolution", 80, -40, 39); //iterate through all events for (int i = 0; i < nEvents; i++) { tree->GetEntry(i); vector<pair<int, double> > geant; //stores all geant data vector<pair<int, double> > hitMap; //stores all hits above threshold for(int w = 0; w < 1225; w++) { pair<int, double> hit(w, addresses[w]); geant.push_back(hit); if (addresses[w] > energyThreshHi) { hitMap.push_back(hit);} } vector<vector<pair<int, double> > > clusters; for (v_iter=hitMap.begin(); v_iter!=hitMap.end(); v_iter++) { vector<pair<int, double> > shower; clusters.push_back(*DFS(*v_iter, energyThreshLo, &shower, addresses)); } vector<vector<pair<int, double> > > detector; for (vv_iter=clusters.begin(); vv_iter!=clusters.end(); ++vv_iter) { if (vv_iter==clusters.begin()) {detector.push_back(*vv_iter);} else { if (!findVector(&detector, *vv_iter)) {detector.push_back(*vv_iter);} } } //unclustering vector<vector<pair<int, double> > > detector2; for (vv_iter=detector.begin(); vv_iter!=detector.end(); vv_iter++) { vector<pair<int, double> > localMax; localMax = generateBumpMap(energyThreshHi, addresses, *vv_iter); if (localMax.size()==0) {continue; } //First Case: only one bump, treat as one photon. if (localMax.size() ==1) {detector2.push_back(*vv_iter); continue;} pair<int, double> coe = reconstructID(*vv_iter); localMax = energySort(localMax); //Second Case: many bumps, but centered logically, treat as one photon. if (false) {detector2.push_back(*vv_iter); continue;} //Hopefully optimized for a two pronged event else { for (int q=0; q<2; q++) { vector<pair<int, double> > newShower; int ind = (q+1)%2; b1 = localMax[q].second; b2 = localMax[ind].second; vector<pair<int, double> >::iterator a; for (a=vv_iter->begin(); a!=vv_iter->end(); ++a) { double energy(0.); int d1 = dist(localMax[q].first, a->first); int d2 = dist(localMax[ind].first, a->first); energy = a->second*b1*pow(.1, d1-1)/(b1*pow(.1, d1-1)+b2*pow(.1, d2-1)); pair<int, double> newHit(a->first, energy); newShower.push_back(newHit); } } } } vector<vector<pair<int, double> > > ordered; int num(0); for (vv_iter=detector2.begin(); vv_iter!=detector2.end(); ++vv_iter) { vector<pair<int, double> > shower = energySort(*vv_iter); num = crystalNumOptimized(&shower); if (shower.size()>num) {shower.erase(shower.begin()+num, shower.end());} ordered.push_back(shower); } pair<double, pair<double, double> > photon; for (vv_iter=ordered.begin(); vv_iter!=ordered.end(); ++vv_iter) { photon = reconstruct(*vv_iter); energyReso->Fill(photon.first-ENERGY); posResoX->Fill((photon.second.first-XPOS)*CRYStoMM); posResoY->Fill((photon.second.second-YPOS)*CRYStoMM); } } energyReso->GetXaxis()->SetTitle("Energy Resolution:= (measrued-expected) in MeV"); posResoX->GetXaxis()->SetTitle("Position Resolution:=(measured-expected) in mm"); posResoY->GetXaxis()->SetTitle("Position Resolution:=(measured-expected) in mm"); if (XPOS-.2<0) { energyReso->SetTitle("Energy Resolution (Center)"); posResoX->SetTitle("X Position Resolution (Center)"); posResoY->SetTitle("Y Position Resolution (Center)"); } else if (YPOS>13.4) { energyReso->SetTitle("Energy Resolution (Corner)"); posResoX->SetTitle("X Position Resolution (Corner)"); posResoY->SetTitle("Y Position Resolution (Corner)"); } else { energyReso->SetTitle("Energy Resolution (Side)"); posResoX->SetTitle("X Position Resolution (Side)"); posResoY->SetTitle("Y Position Resolution (Side)"); } TCanvas* canvas = new TCanvas("canvas", "canvas", 1000, 500); canvas->Divide(3,1); canvas->cd(1); energyReso->Draw(); canvas->cd(2); posResoX->Draw(); canvas->cd(3); posResoY->Draw(); }
C
private let table: [UInt16] = [ 0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241, 0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440, 0xcc01, 0x0cc0, 0x0d80, 0xcd41, 0x0f00, 0xcfc1, 0xce81, 0x0e40, 0x0a00, 0xcac1, 0xcb81, 0x0b40, 0xc901, 0x09c0, 0x0880, 0xc841, 0xd801, 0x18c0, 0x1980, 0xd941, 0x1b00, 0xdbc1, 0xda81, 0x1a40, 0x1e00, 0xdec1, 0xdf81, 0x1f40, 0xdd01, 0x1dc0, 0x1c80, 0xdc41, 0x1400, 0xd4c1, 0xd581, 0x1540, 0xd701, 0x17c0, 0x1680, 0xd641, 0xd201, 0x12c0, 0x1380, 0xd341, 0x1100, 0xd1c1, 0xd081, 0x1040, 0xf001, 0x30c0, 0x3180, 0xf141, 0x3300, 0xf3c1, 0xf281, 0x3240, 0x3600, 0xf6c1, 0xf781, 0x3740, 0xf501, 0x35c0, 0x3480, 0xf441, 0x3c00, 0xfcc1, 0xfd81, 0x3d40, 0xff01, 0x3fc0, 0x3e80, 0xfe41, 0xfa01, 0x3ac0, 0x3b80, 0xfb41, 0x3900, 0xf9c1, 0xf881, 0x3840, 0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41, 0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40, 0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640, 0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041, 0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240, 0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441, 0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41, 0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840, 0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41, 0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40, 0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640, 0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041, 0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241, 0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440, 0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40, 0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841, 0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40, 0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41, 0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641, 0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040, ] func crc16(input: UInt8, crc: UInt16) -> UInt16 { let index = Int(UInt16(crc & 0xff) ^ UInt16(input)) let t1 = UInt16(crc >> 8) let t2: UInt16 = table[index] return t1 ^ t2 } func crc16(input: [UInt8]) -> UInt16 { var crc: UInt16 = 0 for byte in input { crc = crc16(input: byte, crc: crc) } return crc }
Swift
[Version] Major=7 Minor=0 [Main] Type=temporal CalculateFlow=yes CalculateScalar=no Equations=incompressible TermAdvection=convective TermViscous=explicit TermDiffusion=explicit SpaceOrder2=CompactDirect6 TimeOrder=RungeKuttaExplicit4 TimeStep=-0.016000 TimeCFL=1.20000 [Iteration] Start=0 End=10 Restart=10 Statistics=5 IteraLog=1 ObsLog=Ekman [Control] FlowLimit=no ScalLimit=yes [Parameters] Reynolds=25000 Schmidt=1.0 Rossby=1.0 Froude=0.01 [ViscChange] Time=0.01 [Grid] Imax=128 Imax(*)=64 Jmax=96 Jmax(*)=96 Kmax=128 Kmax(*)=64 XUniform=yes YUniform=no ZUniform=yes XPeriodic=yes YPeriodic=no ZPeriodic=yes [Flow] VelocityX=0.0 VelocityY=0.0 VelocityZ=0.0 Density=1.0 ProfileVelocityX=Ekman YMeanRelativeVelocityX=0.0 ThickVelocityX=0.004 DeltaVelocityX=1.0 [Scalar] ProfileScalar1=Erf ThickScalar1=0.0006 DeltaScalar1=2.0 YMeanRelativeScalar1=0.0 MeanScalar1=1.0 [Gravity] Type=Linear Parameters=0.0 Vector=0.0,0.0,0.0 [Rotation] Type=normalized [BoundaryConditions] VelocityJmin=noslip VelocityJmax=freeslip Scalar1Jmin=dirichlet Scalar1Jmax=neumann [BufferZone] Type=none LoadBuffer=no PointsUJmax=20 PointsSJmax=20 ParametersU=1.57,2.0 ParametersS=1.57,2.0 [Statistics] Averages=yes Spectrums=no Correlations=no Pdfs=no Intermittency=no [IniFields] Velocity=PotentialBroadband Scalar=None ForceDilatation=no ProfileIniK=GaussianSurface YMeanIniK=0.0 ThickIniK=0.004 NormalizeK=0.00015 [Broadband] f0=19.89 Sigma=3.32 Spectrum=gaussian Distribution=gaussian [IniGridOx] periodic=yes segments=1 points_1=129 scales_1=0.135 opts_1=uniform [IniGridOy] periodic=no segments=1 points_1=96 scales_1=0.201972656 opts_1=tanh vals_1=0.21,6.0,0.0168, 0,-0.75,-0.06 [IniGridOz] periodic=yes segments=1 points_1=129 scales_1=0.135 opts_1=uniform #[PostProcessing] Files=0 ParamVisuals=0,1,2,3,9,11,14 ParamSpectra=2 ParamTransform=3 ParamFFormat=1 ParamPdfs=1 Subdomain=1,2048,1,192,1,2048 Partition=0 Format=ensight
INI
@echo off wcl386 -zq -l=stub32x lfb.asm sc -bs -q lfb del *.obj
Batchfile
TOP=../../ include $(TOP)/mk/boilerplate.mk include $(TOP)/mk/test.mk
Makefile
#' One stage joint meta function #' #' Function to allow a one stage joint model (data from all studies analysed in #' one model) to be fitted to data from multiple studies. The function allows #' one longitudinal and one time-to-event outcome, and can accommodate baseline #' hazard stratified or not stratified by study, as well as random effects at #' the individual level and the study level. Currently only zero mean random #' effects only proportional association supported - see Wulfsohn and Tsiatis #' 1997 #' #' @param data an object of class jointdata containing the variables named in #' the model formulae #' @param long.formula a formula object with the response varaible, and the #' covariates to include in the longitudinal sub-model #' @param long.rand.ind a vector of character strings to indicate what variables #' to assign individual level random effects to. A maximum of three #' individual level random effects can be assigned. To assign a random #' intercept include 'int' in the vector. To not include an individual level #' random intercept include 'noint' in the vector. For example to fit a model #' with individual level random intercept and random slope set #' \code{long.rand.ind = c('int', 'time')}, where \code{'time'} is the #' longitudinal time variable in the \code{data}. #' @param long.rand.stud a vector of character strings to indicate what #' variables to assign study level random effects to. If no study level #' random effects then this either not specified in function call or set to #' \code{NULL}. If a study level random intercept is required, include the #' name of the study membership variable for example \code{long.rand.stud = #' 'study'}. #' @param sharingstrct currently must be set to \code{'randprop'}. This gives a #' model that shares the zero mean random effects (at both individual and #' study level if specified) between the sub-models. Separate association #' parameters are calculated for the linear combination of random effects at #' each level. There are plans to expand to more sharing structures in the #' future. #' @param surv.formula a formula object with the survival time, censoring #' indicator and the covariates to include in the survival sub-model. The #' response must be a survival object as returned by the #' \code{\link[survival]{Surv}} function. #' @param gpt the number of quadrature points across which the integration with #' respect to the random effects will be performed. If random effects are #' specified at both the individual and the study level, the same number of #' quadrature points is used in both cases. Defaults to \code{gpt = 5}. #' @param lgpt the number of quadrature points which the log-likelihood is #' evaluated over following a model fit. This defaults to \code{lgpt = 7}. #' @param max.it the maximum number of iterations of the EM algorithm that the #' function will perform. Defaults to \code{max.it = 350} although more #' iterations could be required for large complex datasets. #' @param tol the tolerance level used to determine convergence in the EM #' algorithm. Defaults to \code{tol = 0.001}. #' @param study.name a character string denoting the name of the variable in the #' baseline dataset in \code{data} holding study membership, for example #' \code{study.name = 'study'}. #' @param strat logical value: if \code{TRUE} then the survival sub-model is #' calculated with a baseline stratified by study. Otherwise baseline is #' unstratified #' @param longsep logical value: if \code{TRUE} then parameter estimates, model #' fit and the log-likelihood from a separate linear mixed model analysis of #' the longitudinal data are returned (see the \code{\link[lme4]{lmer}} #' function). The separate longitudinal model fit has the same specification #' as the longitudinal sub-model of the joint model. #' @param survsep logical value: if \code{TRUE} then parameter estimates, model #' fit and log-likelihood from a separate analysis of the survival data using #' the Cox Proportional Hazards model are returned (see #' \code{\link[survival]{coxph}} function for more details). This survival #' fit has the same specification (apart from the association structure) as #' the survival sub-model in the joint model. #' @param bootrun logical value: if \code{TRUE} then the log-likelihood for the #' model is not calculated. This option is available so that when #' bootstrapping to obtain standard errors, as the log-likelihood is not #' needed, it is not calculated, thus speeding up the bootstrapping process. #' @param print.detail logical value: if \code{TRUE} then details of the #' parameter estimates at each iteration of the EM algorithm are printed to #' the console. #' #' @section Details: The \code{jointmeta1} function fits a one stage joint model #' to survival and longitudinal data from multiple studies. This model is an #' extension of the model proposed by Wulfsohn and Tsiatis (1997). The model #' must contain at least one individual level random effect (specified using #' the \code{long.rand.ind} argument). The model can also contain study level #' random effects (specified using the \code{long.rand.stud} argument), which #' can differ from the individual level random effects. The maximum number of #' random effects that can be specified at each level is three. Note that the #' fitting and bootstrapping time increases as the number of included random #' effects increases. The model can also include a baseline hazard stratified #' by study, or can utilise a common baseline across the studies in the #' dataset. Interaction terms can be specified in either the longitudinal or #' the survival sub-model. #' #' The longitudinal sub-model is a mixed effects model. If both individual #' level and study level random effects are included in the function call, #' then the sub-model has the following format: #' #' \deqn{Y_{kij} = X_{1kij}\beta_{1} + Z^{(2)}_{1kij}b^{(2)}_{ki} + #' Z^{(3)}_{1kij}b^{(3)}_{k} + \epsilon_{kij}} #' #' Otherwise, if only individual level random effects are included in the #' function call, then the longitudinal sub-model has the following format: #' #' \deqn{Y_{kij} = X_{1kij}\beta_{1} + Z^{(2)}_{1kij}b^{(2)}_{ki} + #' \epsilon_{kij}} #' #' In the above equation, \eqn{Y} represents the longitudinal outcome and #' \eqn{X_1} represents the design matrix for the longitudinal fixed effects. #' The subscript 1 is used to distinguish between items from the longitudinal #' sub-model and items from the survival sub-model (which contain a subscript #' 2). The design matrices for random effects are represented using \eqn{Z}, #' fixed effect coefficients are represented by \eqn{\beta}, random effects by #' \eqn{b} and the measurement error by \eqn{\epsilon}. Study membership is #' represented by the subscript \eqn{k} whilst individuals are identified by #' \eqn{i} and time points at which they are measured by \eqn{j}. The #' longitudinal outcome is assumed continuous. #' #' Currently this function only supports one linking structure between the #' sub-models, namely a random effects only proportional sharing structure. In #' this structure, the zero mean random effects from the longitudinal #' sub-model are inserted into the survival sub-model, with a common #' association parameter for each level of random effects. Therefore the #' survival sub-model (for a case without baseline stratified by study) takes #' the following format: #' #' \deqn{\lambda_{ki}(t) = \lambda_{0}(t)exp(X_{2ki}\beta_{2} + #' \alpha^{(2)}(Z^{(2)}_{1ki}b^{(2)}_{ki}) + #' \alpha^{(3)}(Z^{(3)}_{1ki}b^{(3)}_{k})) } #' #' Otherwise, if only individual level random effects are included in the #' function call, this reduces to: #' #' \deqn{\lambda_{ki}(t) = \lambda_{0}(t)exp(X_{2ki}\beta_{2} + #' \alpha^{(2)}(Z^{(2)}_{1ki}b^{(2)}_{ki}) } #' #' In the above equation, \eqn{\lambda_{ki}(t)} represents the survival time #' of the individual \eqn{i} in study \eqn{k}, and \eqn{\lambda_{0}(t)} #' represents the baseline hazard. If a stratified baseline hazard were #' specified this would be replaced by \eqn{\lambda_{0k}(t)}. The design #' matrix for the fixed effects in the survival sub-model is represented by #' \eqn{X_{2ki}}, with fixed effect coefficients represented by #' \eqn{\beta_{2}}. Association parameters quantifying the link between the #' sub-models are represented by \eqn{\alpha} terms. #' #' The model is fitted using an EM algorithm, starting values for which are #' extracted from initial separate longitudinal and survival fits. Pseudo #' adaptive Gauss - Hermite quadrature is used to evaluate functions of the #' random effects in the EM algorithm, see Rizopoulos 2012. #' #' #' @return An object of class jointmeta1 See \code{\link{jointmeta1.object}} #' #' @export #' #' @import survival stats #' #' @references Wulfsohn, M.S. and A.A. Tsiatis, A Joint Model for Survival and #' Longitudinal Data Measured with Error. 1997, International Biometric #' Society. p. 330 #' #' Rizopoulos, D. (2012) Fast fitting of joint models for longitudinal and #' event time data using a pseudo-adaptive Gaussian quadrature rule. #' Computational Statistics & Data Analysis 56 (3) p.491-501 #' #' #' #' #' @examples #' #change example data to jointdata object #' jointdat2<-tojointdata(longitudinal = simdat2$longitudinal, #' survival = simdat2$survival, id = 'id',longoutcome = 'Y', #' timevarying = c('time','ltime'), #' survtime = 'survtime', cens = 'cens',time = 'time') #' #' #set variables to factors #' jointdat2$baseline$study <- as.factor(jointdat2$baseline$study) #' jointdat2$baseline$treat <- as.factor(jointdat2$baseline$treat) #' #' #fit multi-study joint model #' #note: for demonstration purposes only - max.it restricted to 5 #' #model would need more iterations to truely converge #' onestagefit<-jointmeta1(data = jointdat2, long.formula = Y ~ 1 + time + #' + treat + study, long.rand.ind = c('int', 'time'), #' long.rand.stud = c('treat'), #' sharingstrct = 'randprop', #' surv.formula = Surv(survtime, cens) ~ treat, #' study.name = 'study', strat = TRUE, max.it=5) #' jointmeta1 <- function(data, long.formula, long.rand.ind, long.rand.stud = NULL, sharingstrct = c("randprop", "randsep", "value", "slope", "valandslope"), surv.formula, gpt, lgpt, max.it, tol, study.name, strat = F, longsep = F, survsep = F, bootrun = F, print.detail = F) { if (class(data) != "jointdata") { stop("Data should be supplied in jointdata format - run tojointdata function if not in jointfdataformat") } if (sharingstrct != "randprop") { stop("Currently only randprop sharing structure supported") } Call <- match.call() id.name <- data$subj.col time.long <- data$time.col long.formula <- as.formula(long.formula) long.formula.orig <- long.formula surv.formula <- as.formula(surv.formula) if (missing(gpt)) { gpt <- 5 } if (missing(lgpt)) { lgpt <- 7 } if (missing(max.it)) { max.it <- 350 } if (missing(tol)) { tol <- 0.001 } if (missing(bootrun)) { bootrun <- FALSE } if (missing(sharingstrct)) { stop("No sharing structure specified") } if ((sharingstrct %in% c("randprop", "randsep", "value", "slope", "valandslope")) == FALSE) { stop("Invalid sharing structure specified") } if (sharingstrct != "randprop") { stop("Currently jointmeta only supports randprop sharing structures") } if (missing(long.rand.ind) == TRUE) { stop("Please specify at least one random effect at the individual level in long.rand.ind") } if (length(long.rand.ind) == 0) { stop("Please specify at least one random effect at the individual level in long.rand.ind") } if (length(which(("noint" == long.rand.ind) == F)) == 0) { stop("Please specify at least one random effect at the individual level in long.rand.ind") } if (("int" %in% long.rand.ind) == TRUE) { if (("noint" %in% long.rand.ind) == TRUE) { stop("Both the option for no random intercept (noint) and random intercept (int) specified in long.rand.ind") } } if (("int" %in% long.rand.ind) == TRUE) { long.rand.ind[which((long.rand.ind %in% "int") == TRUE)] <- "(Intercept)" if (which(long.rand.ind %in% "(Intercept)") != 1) { long.rand.ind <- long.rand.ind[-which(long.rand.ind %in% "(Intercept)")] long.rand.ind <- c("(Intercept)", long.rand.ind) } } if (missing(study.name)) { stop("Please supply name of study indicator variable to \"study.name\" in the function call") } if (is.null(long.rand.stud) == F) { if (study.name %in% long.rand.stud) { if (which(long.rand.stud %in% study.name) != 1) { long.rand.stud <- long.rand.stud[-which(long.rand.stud %in% study.name)] long.rand.stud <- c(study.name, long.rand.stud) } } } studies <- as.character(unique(data$baseline[[study.name]])) numstudies <- length(studies) if (any(sapply(data$baseline, "class") == "factor")) { data$baseline <- droplevels(data$baseline) } longdat2 <- merge(data$longitudinal, data$baseline, by = id.name, sort = FALSE) long.frame <- model.frame(long.formula, data = longdat2, na.action = na.pass) long.cov <- model.matrix(long.formula, long.frame) long.terms <- terms(long.formula, data = longdat2) long.names <- colnames(long.cov) rll <- !is.na(data$longitudinal[[names(long.frame[1])]]) for (i in 1:length(rll)) { if (length(which(is.na(long.cov[i, ]))) > 0) { rll[i] <- FALSE } } q <- 0 for (count in 1:length(long.rand.ind)) { if (long.rand.ind[count] != "noint") { q <- q + 1 if (length(which(grepl(long.rand.ind[count], colnames(long.cov)) == TRUE)) == 0) { if (grepl(".", long.rand.ind[count])) { temp <- unlist(strsplit(long.rand.ind[count], ".")) combs <- expand.grid(1:length(temp), 1:length(temp)) present <- FALSE for (i in 1:nrow(combs)) { if (!(combs[i, 1] == combs[i, 2])) { if (length(which(grepl(paste(temp[combs[i, 1]], temp[combs[i, 2]], sep = "."), colnames(long.cov))) == TRUE) > 0) { present <- TRUE long.rand.ind[count] <- paste(temp[combs[i, 1]], temp[combs[i, 2]], sep = ".") } } } } if (!present) { stop("Individual level random effects included in model with no corresponding fixed effect") } } } } if (q > 3) { stop("Model only supports maximum of three individual level random effects") } if (is.null(long.rand.stud) == FALSE) { r <- 0 for (count in 1:length(long.rand.stud)) { if (long.rand.stud[count] != study.name) { r <- r + 1 if (length(which(grepl(long.rand.stud[count], colnames(long.cov)) == TRUE)) == 0) { if (grepl(".", long.rand.stud[count])) { temp <- unlist(strsplit(long.rand.stud[count], ".")) combs <- expand.grid(1:length(temp), 1:length(temp)) present <- FALSE for (i in 1:nrow(combs)) { if (!(combs[i, 1] == combs[i, 2])) { if (length(which(grepl(paste(temp[combs[i, 1]], temp[combs[i, 2]], sep = "."), colnames(long.cov))) == TRUE) > 0) { present <- TRUE long.rand.stud[count] <- paste(temp[combs[i, 1]], temp[combs[i, 2]], sep = ".") } } } } if (!present) { stop("Study level random effects included in model with no corresponding fixed effect") } } } else { r <- r + 1 } } if (r > 3) { stop("Model only supports maximum of three study level random effects") } } else { r <- NULL } longdat <- cbind(data$longitudinal[[id.name]][rll], long.frame[, 1][rll], data$longitudinal[[time.long]][rll], longdat2[[study.name]][rll], long.cov[rll, ]) longdat <- as.data.frame(longdat) missingids <- unique(data$longitudinal[[id.name]][!rll]) names(longdat) <- c(id.name, names(long.frame)[1], time.long, study.name, long.names) long.formula <- as.formula(paste(as.character(long.formula)[2], "~", paste(names(longdat)[5:ncol(longdat)], collapse = " + "), sep = "")) p1 <- length(5:ncol(longdat)) notinteractionterms <- names(longdat[, 5:ncol(longdat)])[!(grepl(":", names(longdat[, 5:ncol(longdat)])))] for (count in 1:length(long.rand.ind)) { if (length(grep(paste("^", long.rand.ind[count], "$", sep = ""), notinteractionterms)) > 0) { long.rand.ind[count] <- notinteractionterms[grep(paste("^", long.rand.ind[count], "$", sep = ""), notinteractionterms)] } else if (length(grep(paste("^", long.rand.ind[count], "$", sep = ""), notinteractionterms)) == 0) { if (long.rand.ind[count] %in% colnames(data$baseline)) { if (class(data$baseline[, which(colnames(data$baseline) == long.rand.ind[count])]) == "factor") { formtemp <- as.formula(paste("~", colnames(data$baseline)[which(colnames(data$baseline) == long.rand.ind[count])])) matrixtemp <- model.matrix(formtemp, data$baseline) long.rand.ind[count] <- colnames(matrixtemp)[2:ncol(matrixtemp)] } } else if (long.rand.ind[count] %in% colnames(data$longitudinal)) { if (class(data$longitudinal[, which(colnames(data$longitudinal) == long.rand.ind[count])]) == "factor") { formtemp <- as.formula(paste("~", colnames(data$longitudinal)[which(colnames(data$longitudinal) == long.rand.ind[count])])) matrixtemp <- model.matrix(formtemp, data$longitudinal) long.rand.ind[count] <- colnames(matrixtemp)[2:ncol(matrixtemp)] } } } } q <- length(long.rand.ind) if (q > 3) { stop("Model only supports maximum of three individual level random effects") } if (is.null(long.rand.stud) == FALSE) { for (count in 1:length(long.rand.stud)) { if (long.rand.stud[count] != study.name) { if (length(grep(paste("^", long.rand.stud[count], "$", sep = ""), notinteractionterms)) > 0) { long.rand.stud[count] <- notinteractionterms[grep(paste("^", long.rand.stud[count], "$", sep = ""), notinteractionterms)] } else if (length(grep(paste("^", long.rand.stud[count], "$", sep = ""), notinteractionterms)) == 0) { if (long.rand.stud[count] %in% colnames(data$baseline)) { if (class(data$baseline[, which(colnames(data$baseline) == long.rand.stud[count])]) == "factor") { formtemp <- as.formula(paste("~", colnames(data$baseline)[which(colnames(data$baseline) == long.rand.stud[count])])) matrixtemp <- model.matrix(formtemp, data$baseline) long.rand.stud[count] <- colnames(matrixtemp)[2:ncol(matrixtemp)] } } else if (long.rand.stud[count] %in% colnames(data$longitudinal)) { if (class(data$longitudinal[, which(colnames(data$longitudinal) == long.rand.stud[count])]) == "factor") { formtemp <- as.formula(paste("~", colnames(data$longitudinal)[which(colnames(data$longitudinal) == long.rand.stud[count])])) matrixtemp <- model.matrix(formtemp, data$longitudinal) long.rand.stud[count] <- colnames(matrixtemp)[2:ncol(matrixtemp)] } } } } } r <- length(long.rand.stud) if (r > 3) { stop("Model only supports maximum of three study level random effects") } } surv.frame <- model.frame(surv.formula, data = cbind(data$survival, data$baseline)) srv <- model.extract(surv.frame, "response") surv.terms <- terms(surv.formula, data = cbind(data$survival, data$baseline)) attr(surv.terms, "intercept") <- 1 surv.cov <- model.matrix(surv.terms, data = cbind(data$survival, data$baseline)) namestemp <- colnames(surv.cov) surv.cov <- as.matrix(surv.cov[, -1]) colnames(surv.cov) <- namestemp[-1] rss <- as.integer(row.names(surv.cov)) survdat <- cbind(data$survival[[id.name]][rss], srv[rss, 1], srv[rss, 2], data$baseline[[study.name]][rss], surv.cov) survdat <- as.data.frame(survdat) names(survdat) <- c(id.name, surv.formula[2][[1]][[2]], surv.formula[2][[1]][[3]], study.name, colnames(surv.cov)) if (dim(survdat)[2] > 4) { survdat[, 5:dim(survdat)[2]] <- scale(survdat[, 5:dim(survdat)[2]], scale = FALSE) } survdat2 <- data.frame(data$survival[[id.name]][rss], srv[rss, 1], srv[rss, 2], data$baseline[[study.name]][rss], surv.frame[, -1]) if (ncol(survdat) > 4) { surv.formula <- as.formula(paste(as.character(surv.formula)[2], "~", paste(names(survdat)[5:ncol(survdat)], collapse = " + "), sep = "")) names(survdat2) <- c(id.name, surv.formula[2][[1]][[2]], surv.formula[2][[1]][[3]], study.name, colnames(surv.frame)[2:ncol(surv.frame)]) } else { surv.formula <- as.formula(paste(as.character(surv.formula)[2], "~ 1", sep = "")) names(survdat2) <- c(id.name, surv.formula[2][[1]][[2]], surv.formula[2][[1]][[3]], study.name, colnames(surv.cov)) } survdat[, 4] <- survdat2[, 4] if (ncol(survdat) > 4) { p2 <- length(5:ncol(survdat)) } else { p2 <- 0 } rll2 <- rep(TRUE, nrow(survdat2)) for (i in 1:length(rll2)) { if (length(which(is.na(survdat2[i, ]))) > 0) { rll2[i] <- FALSE } } if (length(which(rll2 == FALSE)) > 0) { missingids <- c(missingids, survdat2[!rll2, 1]) } if (length(missingids) > 0) { survdat <- survdat[!(survdat[, 1] %in% missingids), ] survdat2 <- survdat2[!(survdat[, 1] %in% missingids), ] longdat2 <- longdat2[!(longdat2[, 1] %in% missingids), ] } sorted <- sortDat(longdat, survdat, longdat2, survdat2) longdat <- as.data.frame(sorted$long.s) survdat <- as.data.frame(sorted$surv.s) longdat2 <- as.data.frame(sorted$long.s2) survdat2 <- as.data.frame(sorted$surv.s2) if (is.null(long.rand.stud)) { ldaests <- longst(longdat = longdat, long.formula.orig = long.formula, long.rand.ind = long.rand.ind, longdat2 = longdat2, id.name = id.name, study.name = study.name, studies = studies) } else { ldaests <- longst(longdat = longdat, long.formula.orig = long.formula, long.rand.ind = long.rand.ind, long.rand.stud = long.rand.stud, longdat2 = longdat2, id.name = id.name, study.name = study.name, studies = studies) } if (strat) { survests <- survst(survdat = survdat, surv.formula = surv.formula, survdat2 = survdat2, strat = strat, study.name = study.name) } else { survests <- survst(survdat = survdat, surv.formula = surv.formula, survdat2 = survdat2, strat = strat, study.name = study.name) } sep.ll <- ldaests$log.like + survests$log.like[2] sep.loglik <- list(seplhood = sep.ll, sepy = ldaests$log.like, sepn = survests$log.like[2]) paraests <- c(ldaests, survests) if (sharingstrct == "randprop") { if (bootrun == FALSE) { message("Running EM algorithm...") } jointfit <- EMalgRandprop(data = data, longdat = longdat, survdat = survdat, long.rand.ind = long.rand.ind, long.rand.stud = long.rand.stud, id.name = id.name, study.name = study.name, gpt = gpt, max.it = max.it, tol = tol, time.long = time.long, surv.formula = surv.formula, long.formula = long.formula, long.formula.orig = long.formula.orig, paraests = paraests, studies = studies, p1 = p1, p2 = p2, strat = strat, print.detail = print.detail, bootrun = bootrun, q = q, r = r) likeests <- c(jointfit, list(rs = survests$rs, sf = survests$sf)) beta1 <- jointfit$beta1 rownames(beta1) <- rownames(paraests$beta1) if (p2 > 0) { beta2 <- jointfit$beta2[1:p2, ] names(beta2) <- names(paraests$beta2) } else { beta2 <- NULL } fixed <- list(longitudinal = beta1, survival = beta2) D <- jointfit$D random_ind <- jointfit$random2 ids.bystudy <- lapply(1:numstudies, function(u) { survdat[which(survdat[, 4] == studies[u]), 1] }) random_ind <- lapply(1:numstudies, function(u) { randtemp <- random_ind[[u]] colnames(randtemp) <- paste("b2_", 0:(ncol(randtemp) - 1), sep = "") rownames(randtemp) <- ids.bystudy[[u]] randtemp }) random <- list(random_ind = random_ind) if ("(Intercept)" %in% long.rand.ind) { long.rand.ind2 <- long.rand.ind long.rand.ind2[which(long.rand.ind2 == "(Intercept)")] <- "1" long.rand.ind.form <- paste(long.rand.ind2, collapse = " + ") } if ("noint" %in% long.rand.ind) { long.rand.ind2 <- long.rand.ind[-which(long.rand.ind == "noint")] long.rand.ind.form <- paste("-1", long.rand.ind2, sep = " + ") } n.bystudy <- jointfit$n.bystudy if (is.null(long.rand.stud) == FALSE) { A <- jointfit$A latent <- jointfit$beta2[(p2 + 1):(p2 + 2), ] names(latent) <- c(paste("gamma_ind_", 0, sep = ""), paste("gamma_stud_", 0, sep = "")) random_stud <- jointfit$random3 colnames(random_stud) <- paste("b3_", 0:(ncol(random_stud) - 1), sep = "") rownames(random_stud) <- studies random$random_stud <- random_stud randstart.stud.l <- paraests$randstart.stud randstart.stud.cov.l <- paraests$randstart.stud.cov if (study.name %in% long.rand.stud) { long.rand.stud2 <- long.rand.stud long.rand.stud2[which(long.rand.stud2 == study.name)] <- "1" long.rand.stud.form <- paste(long.rand.stud2, collapse = " + ") } else { long.rand.stud.form <- paste("-1", paste(long.rand.stud, collapse = " + "), sep = " + ") } } else { latent <- jointfit$beta2[(p2 + 1), ] names(latent) <- paste("gamma_ind_", 0, sep = "") randstart.stud.l <- NULL randstart.stud.cov.l <- NULL } coefficients <- list(fixed = fixed, random = random, latent = latent) if (bootrun == FALSE) { message("Calculating log-likelihood...") jointll <- jlike(data = data, longdat = longdat, survdat = survdat, q = q, likeests = likeests, lgpt = lgpt, studies = studies, p1 = p1, p2 = p2, long.rand.ind = long.rand.ind, randstart.ind = paraests$randstart.ind, randstart.ind.cov = paraests$randstart.ind.cov, r = r, long.rand.stud = long.rand.stud, randstart.stud = randstart.stud.l, randstart.stud.cov = randstart.stud.cov.l, strat = strat, study.name = study.name, id.name = id.name) numpara <- p1 + p2 + (q^2) + 2 if (!is.null(long.rand.stud)) { numpara <- numpara + (r^2) + 1 } AIC <- (2 * numpara) - (2 * jointll$log.like) loglik <- list(jointlhood = jointll$log.like, jointy = jointll$longlog.like, jointn = jointll$survlog.like) } else { loglik <- "Not Calculated" AIC <- "Not Calculated" } sepests <- list(longests = sep(ldaests, longsep), survests = sep(survests, survsep)) formulae <- list(lformula = long.formula, sformula = surv.formula, rand_ind_formula = as.formula(paste("~", long.rand.ind.form, sep = ""))) rand_cov <- list(D = jointfit$D) if (is.null(long.rand.stud) == FALSE) { formulae$rand_stud_formula <- as.formula(paste("~", long.rand.stud.form, sep = "")) rand_cov$A <- jointfit$A } nobs <- table(longdat[[study.name]]) names(nobs) <- studies results <- list(coefficients = coefficients, sigma.e = jointfit$sigma.e, rand_cov = rand_cov, hazard = jointfit$haz, loglik = loglik, numIter = jointfit$iters, convergence = jointfit$conv, sharingstrct = sharingstrct, sepests = sepests, sep.loglik = sep.loglik, data = data, Call = Call, numstudies = numstudies, n.bystudy = n.bystudy, missingids = missingids, nobs = nobs, AIC = AIC) class(results) <- "jointmeta1" results } }
R
# Be sure to restart your server when you modify this file. Mrug::Application.config.session_store :cookie_store, key: '_mrug_session'
Ruby
`timescale 1ns / 1ps //////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 16:09:39 02/15/2016 // Design Name: rca // Module Name: E:/FPGA/Assignment8feb/rca_tester.v // Project Name: Assignment8feb // Target Device: // Tool versions: // Description: // // Verilog Test Fixture created by ISE for module: rca // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // //////////////////////////////////////////////////////////////////////////////// module rca_tester; // Inputs reg [7:0] a; reg [7:0] b; reg cin; integer i; // Outputs wire [7:0] sum; wire cout; // Instantiate the Unit Under Test (UUT) rca uut ( .a(a), .b(b), .cin(cin), .sum(sum), .cout(cout) ); always@(a or b) begin $monitor("a = %b, b = %b, cin = %b,cout = %b , sum = %b", a, b, cin, cout, sum); end initial begin // Initialize Inputs a = 0; b = 0; cin = 0; end initial begin $monitor("a = %b, b = %b, cin = %b,cout = %b , sum = %b", a, b, cin, cout, sum); end always@(a or b) begin for(i = 0;i<256*256;i=i+1) #1{a,b} = i; #10 $stop; end /*#10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; #10 a = $random;b = $random; */ // Wait 100 ns for global reset to finish // Add stimulus here endmodule
Coq
FROM balenalib/aarch64-ubuntu:jammy-run LABEL io.balena.device-type="forecr-dsb-ornx-orin-nano-8gb" RUN echo "deb https://repo.download.nvidia.com/jetson/common r36.3 main" >> /etc/apt/sources.list.d/nvidia.list \ && echo "deb https://repo.download.nvidia.com/jetson/t234 r36.3 main" >> /etc/apt/sources.list.d/nvidia.list \ && apt-key adv --fetch-key http://repo.download.nvidia.com/jetson/jetson-ota-public.asc \ && mkdir -p /opt/nvidia/l4t-packages/ && touch /opt/nvidia/l4t-packages/.nv-l4t-disable-boot-fw-update-in-preinstall RUN apt-get update && apt-get install -y --no-install-recommends \ less \ kmod \ nano \ net-tools \ ifupdown \ iputils-ping \ i2c-tools \ usbutils \ && rm -rf /var/lib/apt/lists/* RUN [ ! -d /.balena/messages ] && mkdir -p /.balena/messages; echo 'Here are a few details about this Docker image (For more information please visit https://www.balena.io/docs/reference/base-images/base-images/): \nArchitecture: ARM v8 \nOS: Ubuntu jammy \nVariant: run variant \nDefault variable(s): UDEV=off \nExtra features: \n- Easy way to install packages with `install_packages <package-name>` command \n- Run anywhere with cross-build feature (for ARM only) \n- Keep the container idling with `balena-idle` command \n- Show base image details with `balena-info` command' > /.balena/messages/image-info
Dockerfile
function Start-Icinga() { Start-IcingaService -Service 'icinga2'; Start-IcingaForWindows; }
PowerShell
TruncateHtml.configure do |config| end
Ruby
/** * Copyright 2011-2013 Zuse Institute Berlin * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package de.zib.scalaris.examples.wikipedia.plugin; import javax.servlet.ServletConfig; import de.zib.scalaris.examples.wikipedia.WikiServletContext; /** * Simple plug-in interface for plug-ins in the {@link de.zib.scalaris.examples.wikipedia.bliki.WikiServlet} class. * * Note: this API is not stable and will probably change in future. * * @author Nico Kruber, [email protected] */ public interface WikiPlugin { /** * Initialises the plugin. * * @param servlet * the servlet using the plugin * @param config * servlet config object */ public void init(WikiServletContext servlet, ServletConfig config); }
Java
# encoding: UTF-8 # This file is auto-generated from the current state of the database. Instead # of editing this file, please use the migrations feature of Active Record to # incrementally modify your database, and then regenerate this schema definition. # # Note that this schema.rb definition is the authoritative source for your # database schema. If you need to create the application database on another # system, you should be using db:schema:load, not running all the migrations # from scratch. The latter is a flawed and unsustainable approach (the more migrations # you'll amass, the slower it'll run and the greater likelihood for issues). # # It's strongly recommended that you check this file into your version control system. ActiveRecord::Schema.define(version: 20170416024256) do # These are extensions that must be enabled in order to support this database enable_extension "plpgsql" create_table "connected_apps", force: :cascade do |t| t.string "name" t.string "token" t.string "token_secret" t.datetime "created_at", null: false t.datetime "updated_at", null: false end create_table "tweets", force: :cascade do |t| t.datetime "created_at", null: false t.datetime "updated_at", null: false t.string "text" t.float "location", default: [], array: true t.string "keywords", default: [], array: true t.string "hashtags", default: [], array: true t.string "sentiment_type" t.float "sentiment_value" end end
Ruby
/* * To change this template, choose Tools | Templates * and open the template in the editor. */ package org.ngsutils.fuzzy import org.ngsutils.ontology.GOManager import org.ngsutils.ontology.OntologyAnnotation import org.ngsutils.ontology.FMBGOntologyWrap /** * * @author victor */ class FMBSimilarity { IFMBOntologyWrap ontology def logObjectList /** * */ def setOntologyWrap(ontObj) { if( ontObj instanceof GOManager ) { ontology = new FMBGOntologyWrap(goManager:ontObj) } } /** * Fuzzy Based Measure of Similarity (FMS) * * @param a1 : an OntologyAnnotation * @param a2 : an OntologyAnnotation */ double fms(OntologyAnnotation a1, OntologyAnnotation a2) { // build densities map for each set def gdens = [a1,a2].collect{ a-> def map = [:] a.terms.each{ t-> map[t] = ontology.getDensity(a.product,t) } map } // intersection set def inters = gdens[0].intersect(gdens[1]) // calculate sugeno measures def suglm = gdens.collect{ new SugenoLambdaMeasure(it.values()) } return sugenoSum(inters.values() as List, suglm[0], suglm[1]) } /** * Augmented Fuzzy Based Measure of Similarity (AFMS) * * @param a1 : an OntologyAnnotation * @param a2 : an OntologyAnnotation */ double afms(OntologyAnnotation a1, OntologyAnnotation a2) { // 1 - get the map of nearest common ancestors (NCA) of every pair def nca = [:] a1.terms.each{ t1-> double ev1 = ontology.getEvidence(a1.product,t1) a2.terms.each{ t2-> def res = ontology.getNCAncestor(t1,t2) if(res) { double ev2 = ontology.getEvidence(a2.product,t2) double dens = ontology.getDensity(res)*Math.min(ev1,ev2) if( dens>0.0 ){ nca[res] = dens } } } } // remove redundant ancestors def ncaTerms = nca.keySet() def ncaRedundant = ncaTerms.findAll{ontology.isAncestor(it, ncaTerms)} ncaRedundant.each{nca.remove(it)} // 2 - build augmented sets def gdens = [a1,a2].collect{ a-> def map = [:] a.terms.each{ t-> map[t] = ontology.getDensity(a.product,t) } map } def annotations = gdens.collect{it.clone()} // clone annotations // intersection set def inters = gdens[0].intersect(gdens[1]) inters += nca // 3 - calculate sugeno measures (0..1).each{ gdens[it]+=nca } def suglm = gdens.collect{ new SugenoLambdaMeasure(it.values()) } double similarity = sugenoSum(inters.values() as List, suglm[0], suglm[1]) appendToLog(a1.id, a2.id, annotations, nca, similarity) return similarity } /** * */ protected double sugenoSum(intDens, suglm1, suglm2) { if( !intDens ){ return 0.0 } if( intDens.size()==1 ){ return intDens[0] } return (Math.min(suglm1.value(intDens),1.0) + Math.min(suglm2.value(intDens),1.0)) * 0.5 } /** * */ protected void appendToLog(feat1, feat2, annotations, nca, similarity) { if( logObjectList==null ) { return } def makeFeat = { name, terms -> ['name': name, 'annotations': terms.keySet().collect{['id': it, 'ic': terms[it]]}] } def inters = annotations[0].intersect(annotations[1]) def simObject = [ 'product1': makeFeat(feat1, annotations[0]), 'product2': makeFeat(feat2, annotations[1]), 'nearestCommonAncestors': nca.keySet().collect{['id': it, 'ic': nca[it]]}, 'intersection': inters.keySet().collect{['id': it, 'ic': inters[it]]}, 'similarity': similarity ] logObjectList << simObject } /** * append a zero similarity object to log */ public void appendZeroToLog(OntologyAnnotation a1, OntologyAnnotation a2) { if( logObjectList==null ) { return } def simObject = [ 'product1': ['name': a1.id], 'product2': ['name': a2.id], 'nearestCommonAncestors': [], 'intersection': [], 'similarity': 0.0d ] logObjectList << simObject } }
Groovy
WIKIMETATEMPLATE=admin/templates/BeanConfigMetaTemplate TITLE=Global GWiki Settings NOINDEX=true
INI
(cl:in-package dasl_mocap-msg) (cl:export '(LINEAR-VAL LINEAR ANGULAR-VAL ANGULAR ))
Common Lisp
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> <meta http-equiv="X-UA-Compatible" content="IE=9"/> <meta name="generator" content="Doxygen 1.8.8"/> <title>NonAdMD: src/harmonicbath.f90 File Reference</title> <link href="tabs.css" rel="stylesheet" type="text/css"/> <script type="text/javascript" src="jquery.js"></script> <script type="text/javascript" src="dynsections.js"></script> <link href="navtree.css" rel="stylesheet" type="text/css"/> <script type="text/javascript" src="resize.js"></script> <script type="text/javascript" src="navtree.js"></script> <script type="text/javascript"> $(document).ready(initResizable); $(window).load(resizeHeight); </script> <link href="search/search.css" rel="stylesheet" type="text/css"/> <script type="text/javascript" src="search/search.js"></script> <script type="text/javascript"> $(document).ready(function() { searchBox.OnSelectItem(0); }); </script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ extensions: ["tex2jax.js"], jax: ["input/TeX","output/HTML-CSS"], }); </script><script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script> <link href="doxygen.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="top"><!-- do not remove this div, it is closed by doxygen! --> <div id="titlearea"> <table cellspacing="0" cellpadding="0"> <tbody> <tr style="height: 56px;"> <td id="projectlogo"><img alt="Logo" src="Logo.gif"/></td> <td style="padding-left: 0.5em;"> <div id="projectname">NonAdMD &#160;<span id="projectnumber">0.1.44</span> </div> <div id="projectbrief">alpha-stable</div> </td> </tr> </tbody> </table> </div> <!-- end header part --> <!-- Generated by Doxygen 1.8.8 --> <script type="text/javascript"> var searchBox = new SearchBox("searchBox", "search",false,'Search'); </script> <div id="navrow1" class="tabs"> <ul class="tablist"> <li><a href="index.html"><span>Welcome</span></a></li> <li><a href="annotated.html"><span>Data&#160;Types&#160;List</span></a></li> <li class="current"><a href="files.html"><span>Files</span></a></li> <li><a href="http://www.ucd.ie/physics"><span>UCD&#160;Physics</span></a></li> <li> <div id="MSearchBox" class="MSearchBoxInactive"> <span class="left"> <img id="MSearchSelect" src="search/mag_sel.png" onmouseover="return searchBox.OnSearchSelectShow()" onmouseout="return searchBox.OnSearchSelectHide()" alt=""/> <input type="text" id="MSearchField" value="Search" accesskey="S" onfocus="searchBox.OnSearchFieldFocus(true)" onblur="searchBox.OnSearchFieldFocus(false)" onkeyup="searchBox.OnSearchFieldChange(event)"/> </span><span class="right"> <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a> </span> </div> </li> </ul> </div> <div id="navrow2" class="tabs2"> <ul class="tablist"> <li><a href="files.html"><span>File&#160;List</span></a></li> <li><a href="globals.html"><span>File&#160;Members</span></a></li> </ul> </div> </div><!-- top --> <div id="side-nav" class="ui-resizable side-nav-resizable"> <div id="nav-tree"> <div id="nav-tree-contents"> <div id="nav-sync" class="sync"></div> </div> </div> <div id="splitbar" style="-moz-user-select:none;" class="ui-resizable-handle"> </div> </div> <script type="text/javascript"> $(document).ready(function(){initNavTree('harmonicbath_8f90.html','');}); </script> <div id="doc-content"> <!-- window showing the filter options --> <div id="MSearchSelectWindow" onmouseover="return searchBox.OnSearchSelectShow()" onmouseout="return searchBox.OnSearchSelectHide()" onkeydown="return searchBox.OnSearchSelectKey(event)"> <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Pages</a></div> <!-- iframe showing the search results (closed by default) --> <div id="MSearchResultsWindow"> <iframe src="javascript:void(0)" frameborder="0" name="MSearchResults" id="MSearchResults"> </iframe> </div> <div class="header"> <div class="summary"> <a href="#nested-classes">Data Types</a> </div> <div class="headertitle"> <div class="title">harmonicbath.f90 File Reference</div> </div> </div><!--header--> <div class="contents"> <table class="memberdecls"> <tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="nested-classes"></a> Data Types</h2></td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">module &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classharmonicbath__class.html">harmonicbath_class</a></td></tr> <tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Harmonic bath(s) of classical non-interacting particles. <a href="classharmonicbath__class.html#details">More...</a><br /></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">type &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="structharmonicbath__class_1_1harmonicbath.html">harmonicbath_class::harmonicbath</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1new.html">harmonicbath_class::new</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1kill.html">harmonicbath_class::kill</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1display.html">harmonicbath_class::display</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1save.html">harmonicbath_class::save</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1update.html">harmonicbath_class::update</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1resample.html">harmonicbath_class::resample</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> <tr class="memitem:"><td class="memItemLeft" align="right" valign="top">interface &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="interfaceharmonicbath__class_1_1check.html">harmonicbath_class::check</a></td></tr> <tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr> </table> </div><!-- contents --> </div><!-- doc-content --> <!-- start footer part --> <div id="nav-path" class="navpath"><!-- id is needed for treeview function! --> <ul> <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.html">src</a></li><li class="navelem"><a class="el" href="harmonicbath_8f90.html">harmonicbath.f90</a></li> <li class="footer">Generated on Thu Apr 20 2017 11:23:08 for NonAdMD by <a href="http://www.doxygen.org/index.html"> <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.8 </li> </ul> </div> </body> </html>
HTML
/** <module> Common utilities for the task-parallel scheduler @author Dylan Meysmans <[email protected]> @license MIT @version 0.1.0 */ :- module(utilities, [cores/1, tasks/1, depends_on/2, schedule_for_task_core/3, augmented_less/2]). %! cores(+Cs:list) is semidet. %! cores(-Cs:list) is det. % % Succeeds if Cs is the list of cores that the system can schedule tasks on. % You need not instantiate Cs, if you do not, it is instantiated to the list of cores. cores(Cs) :- findall(C, user:core(C), Cs). %! tasks(+Ts:list) is semidet. %! tasks(-Ts:list) is det. % % Succeeds if Ts is the list of tasks that the system needs schedule. % You need not instantiate Ts, if you do not, it is instantiated to the list of tasks. tasks(Ts) :- findall(T, user:task(T), Ts). %! depends_on(+T, +D) is semidet. % % Succeeds if T directly or indirectly depends on D. % Represents the reflexive and transitive closure of the dependency relation. depends_on(T, T). depends_on(T, D) :- T \== D, user:depends_on(T, D, _). depends_on(T, D) :- T \== D, not(user:depends_on(T, D, _)), user:depends_on(T, V, _), depends_on(V, D). %! schedule_for_task_core(+T, +Ss:list, -S:schedule) is semidet. % % Instantiates S to the schedule for the core on which T is scheduled in Ss. schedule_for_task_core(T, Ss, schedule(C,Ts)) :- member(schedule(C,Ts), Ss), memberchk(T, Ts). %! augmented_less(+M, +N) is semidet. % % Succeeds if </2 succeeds for M and N, unless M is the atom infinity. augmented_less(infinity, _) :- fail. augmented_less(M, infinity) :- M \== infinity. augmented_less(M, N) :- M \== infinity, N \== infinity, M < N.
Prolog
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
15,284