dstc3 / README.md
voorhs's picture
Update README.md
3eca468 verified
metadata
dataset_info:
  - config_name: default
    features:
      - name: utterance
        dtype: string
      - name: label
        sequence: int64
    splits:
      - name: train
        num_bytes: 1074443.008463079
        num_examples: 12384
      - name: test
        num_bytes: 268523.991536921
        num_examples: 3095
    download_size: 300800
    dataset_size: 1342967
  - config_name: intents
    features:
      - name: id
        dtype: int64
      - name: name
        dtype: string
      - name: tags
        sequence: 'null'
      - name: regex_full_match
        sequence: 'null'
      - name: regex_partial_match
        sequence: 'null'
      - name: description
        dtype: 'null'
    splits:
      - name: intents
        num_bytes: 207
        num_examples: 7
    download_size: 2996
    dataset_size: 207
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
  - config_name: intents
    data_files:
      - split: intents
        path: intents/intents-*
task_categories:
  - text-classification
language:
  - en

dstc3

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.

Usage

It is intended to be used with our AutoIntent Library:

from autointent import Dataset

dstc3 = Dataset.from_hub("AutoIntent/dstc3")

Source

This dataset is taken from marcel-gohsen/dstc3 and formatted with our AutoIntent Library:

import datasets
from autointent import Dataset
from autointent.context.data_handler import split_dataset


def extract_intent_info(ds: datasets.Dataset) -> list[str]:
    ds = ds.filter(lambda example: example["transcript"] != "")
    intent_names = sorted(
        set(name for intents in ds["intent"] for name in intents)
    )
    intent_names.remove("reqmore")
    ds.filter(lambda example: "reqmore" in example["intent"])
    return intent_names

def parse(ds: datasets.Dataset, intent_names: list[str]):
    def transform(example: dict):
        return {
            "utterance": example["transcript"],
            "label": [int(name in example["intent"]) for name in intent_names],
        }
    return ds.map(
        transform, remove_columns=ds.features.keys()
    )

def calc_fractions(ds: datasets.Dataset, intent_names: list[str]) -> list[float]:
    res = [0] * len(intent_names)
    for sample in ds:
        for i, indicator in enumerate(sample["label"]):
            res[i] += indicator
    for i in range(len(intent_names)):
        res[i] /= len(ds)
    return res

def remove_low_resource_classes(ds: datasets.Dataset, intent_names: list[str], fraction_thresh: float = 0.01) -> tuple[list[dict], list[str]]:
    remove_or_not = [(frac < fraction_thresh) for frac in calc_fractions(ds, intent_names)]
    intent_names = [name for i, name in enumerate(intent_names) if not remove_or_not[i]]
    res = []
    for sample in ds:
        if sum(sample["label"]) == 1 and remove_or_not[sample["label"].index(1)]:
            continue
        sample["label"] = [
            indicator for indicator, low_resource in
            zip(sample["label"], remove_or_not, strict=True) if not low_resource
        ]
        res.append(sample)
    return res, intent_names

def remove_oos(ds: datasets.Dataset):
    return ds.filter(lambda sample: sum(sample["label"]) != 0)


if __name__ == "__main__":
    dstc3 = datasets.load_dataset("marcel-gohsen/dstc3")
    
    intent_names = extract_intent_info(dstc3["test"])
    parsed = parse(dstc3["test"], intent_names)
    filtered, intent_names = remove_low_resource_classes(remove_oos(parsed), intent_names)
    intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
    dstc_final = Dataset.from_dict({"intents": intents, "train": filtered})
    dstc_final["train"], dstc_final["test"] = split_dataset(
        dstc_final, split="train", test_size=0.2, random_seed=42
    )