|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: utterance |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 857605 |
|
num_examples: 15200 |
|
- name: validation |
|
num_bytes: 160686 |
|
num_examples: 3100 |
|
- name: test |
|
num_bytes: 287654 |
|
num_examples: 5500 |
|
download_size: 542584 |
|
dataset_size: 1305945 |
|
- config_name: intents |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regexp_full_match |
|
sequence: 'null' |
|
- name: regexp_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: 'null' |
|
splits: |
|
- name: intents |
|
num_bytes: 5368 |
|
num_examples: 150 |
|
download_size: 5519 |
|
dataset_size: 5368 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
- config_name: intents |
|
data_files: |
|
- split: intents |
|
path: intents/intents-* |
|
--- |
|
|
|
# clinc150 |
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
## Usage |
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from autointent import Dataset |
|
banking77 = Dataset.from_hub("AutoIntent/clinc150") |
|
``` |
|
|
|
## Source |
|
|
|
This dataset is taken from `cmaldona/All-Generalization-OOD-CLINC150` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
# define util |
|
"""Convert clincq50 dataset to autointent internal format and scheme.""" |
|
|
|
from datasets import Dataset as HFDataset |
|
from datasets import load_dataset |
|
|
|
from autointent import Dataset |
|
from autointent.schemas import Intent, Sample |
|
|
|
|
|
def extract_intents_data( |
|
clinc150_split: HFDataset, oos_intent_name: str = "ood" |
|
) -> tuple[list[Intent], dict[str, int]]: |
|
"""Extract intent names and assign ids to them.""" |
|
intent_names = sorted(clinc150_split.unique("labels")) |
|
oos_intent_id = intent_names.index(oos_intent_name) |
|
intent_names.pop(oos_intent_id) |
|
|
|
n_classes = len(intent_names) |
|
assert n_classes == 150 # noqa: PLR2004, S101 |
|
|
|
name_to_id = dict(zip(intent_names, range(n_classes), strict=False)) |
|
intents_data = [Intent(id=i, name=name) for name, i in name_to_id.items()] |
|
return intents_data, name_to_id |
|
|
|
|
|
def convert_clinc150( |
|
clinc150_split: HFDataset, |
|
name_to_id: dict[str, int], |
|
shots_per_intent: int | None = None, |
|
oos_intent_name: str = "ood", |
|
) -> list[Sample]: |
|
"""Convert one split into desired format.""" |
|
oos_samples = [] |
|
classwise_samples = [[] for _ in range(len(name_to_id))] |
|
n_unrecognized_labels = 0 |
|
|
|
for batch in clinc150_split.iter(batch_size=16, drop_last_batch=False): |
|
for txt, name in zip(batch["data"], batch["labels"], strict=False): |
|
if name == oos_intent_name: |
|
oos_samples.append(Sample(utterance=txt)) |
|
continue |
|
intent_id = name_to_id.get(name, None) |
|
if intent_id is None: |
|
n_unrecognized_labels += 1 |
|
continue |
|
target_list = classwise_samples[intent_id] |
|
if shots_per_intent is not None and len(target_list) >= shots_per_intent: |
|
continue |
|
target_list.append(Sample(utterance=txt, label=intent_id)) |
|
|
|
in_domain_samples = [sample for samples_from_single_class in classwise_samples for sample in samples_from_single_class] |
|
|
|
print(f"{len(in_domain_samples)=}") |
|
print(f"{len(oos_samples)=}") |
|
print(f"{n_unrecognized_labels=}\n") |
|
|
|
return in_domain_samples + oos_samples |
|
|
|
|
|
if __name__ == "__main__": |
|
clinc150 = load_dataset("cmaldona/All-Generalization-OOD-CLINC150") |
|
|
|
intents_data, name_to_id = extract_intents_data(clinc150["train"]) |
|
|
|
train_samples = convert_clinc150(clinc150["train"], name_to_id) |
|
validation_samples = convert_clinc150(clinc150["validation"], name_to_id) |
|
test_samples = convert_clinc150(clinc150["test"], name_to_id) |
|
|
|
clinc150_converted = Dataset.from_dict( |
|
{"train": train_samples, "validation": validation_samples, "test": test_samples, "intents": intents_data} |
|
) |
|
``` |