File size: 2,445 Bytes
e7f4212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: image
dtype: image
- name: slide_name
dtype: string
- name: x
dtype: int64
- name: y
dtype: int64
- name: level
dtype: int64
- name: patch_size
sequence: int64
- name: resize
sequence: int64
- name: embedding_vector
sequence:
sequence: float32
splits:
- name: train
num_bytes: 7855046412.21
num_examples: 85283
download_size: 7915527673
dataset_size: 7855046412.21
---
# Dataset Card for Histopathology Dataset
## Dataset Summary
This dataset contains 224x224, 512x512 and 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model.

## Thumbnail of Main Slide

## Usage
```python
from datasets import load_dataset
dataset = load_dataset("Cilem/histopathology")
display(dataset['train'][0]["image"])
```
## Supported Tasks
Machine learning applications that can be performed using this dataset:
* Classification
* Segmentation
* Image generation
## Languages
* English
## Dataset Structure
### Data Fields
- `image`: Image of the patch.
- `slide_name`: Main slide name of the patch.
- `x`: X coordinate of the patch.
- `y`: Y coordinate of the patch.
- `level`: Level of the main slide.
- `patch_size`: Size of the patch.
- `resize`: Image size used to obtain embedding vector with Path foundation model.
- `embedding_vector`: Embedding vector of the patch extracted using Path foundation model.
## Dataset Creation
### Source Data
- **Original Sources**
- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
* `test_001.tif`
* `test_002.tif`
* `test_003.tif`
* `test_004.tif`
* `test_005.tif`
* `test_006.tif`
* `test_007.tif`
* `test_008.tif`
* `test_009.tif`
- [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model.
## Considerations for Using the Data
### Social Impact and Bias
Attention should be paid to the Path Foundation model licenses provided by Google.
|