Cilem commited on
Commit
e7f4212
·
verified ·
1 Parent(s): a563e33

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -84
README.md CHANGED
@@ -1,84 +1,93 @@
1
- ---
2
- license: mit
3
- configs:
4
- - config_name: default
5
- data_files:
6
- - split: train
7
- path: data/train-*
8
- dataset_info:
9
- features:
10
- - name: image
11
- dtype: image
12
- - name: slide_name
13
- dtype: string
14
- - name: x
15
- dtype: int64
16
- - name: y
17
- dtype: int64
18
- - name: level
19
- dtype: int64
20
- - name: patch_size
21
- sequence: int64
22
- - name: resize
23
- sequence: int64
24
- - name: embedding_vector
25
- sequence:
26
- sequence: float32
27
- splits:
28
- - name: train
29
- num_bytes: 7855046412.21
30
- num_examples: 85283
31
- download_size: 7915527673
32
- dataset_size: 7855046412.21
33
- ---
34
-
35
- # Dataset Card for Histopathology Dataset
36
-
37
- ## Dataset Summary
38
- This dataset contains 224x224, 512x512 and 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model.
39
-
40
- ![Data Processing](data_processing.png)
41
-
42
- ## Thumbnail of Main Slide
43
-
44
- ![Main Slide Thumbnail](test_001.png)
45
-
46
-
47
- ## Supported Tasks
48
- Machine learning applications that can be performed using this dataset:
49
- * Classification
50
- * Segmentation
51
- * Image generation
52
-
53
- ## Languages
54
- * English
55
-
56
- ## Dataset Structure
57
- ### Data Fields
58
- - `image`: Image of the patch.
59
- - `slide_name`: Main slide name of the patch.
60
- - `x`: X coordinate of the patch.
61
- - `y`: Y coordinate of the patch.
62
- - `level`: Level of the main slide.
63
- - `patch_size`: Size of the patch.
64
- - `resize`: Image size used to obtain embedding vector with Path foundation model.
65
- - `embedding_vector`: Embedding vector of the patch extracted using Path foundation model.
66
-
67
- ## Dataset Creation
68
- ### Source Data
69
- - **Original Sources**
70
- - [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
71
- * `test_001.tif`
72
- * `test_002.tif`
73
- * `test_003.tif`
74
- * `test_004.tif`
75
- * `test_005.tif`
76
- * `test_006.tif`
77
- * `test_007.tif`
78
- * `test_008.tif`
79
- * `test_009.tif`
80
- - [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model.
81
-
82
- ## Considerations for Using the Data
83
- ### Social Impact and Bias
84
- Attention should be paid to the Path Foundation model licenses provided by Google.
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ configs:
4
+ - config_name: default
5
+ data_files:
6
+ - split: train
7
+ path: data/train-*
8
+ dataset_info:
9
+ features:
10
+ - name: image
11
+ dtype: image
12
+ - name: slide_name
13
+ dtype: string
14
+ - name: x
15
+ dtype: int64
16
+ - name: y
17
+ dtype: int64
18
+ - name: level
19
+ dtype: int64
20
+ - name: patch_size
21
+ sequence: int64
22
+ - name: resize
23
+ sequence: int64
24
+ - name: embedding_vector
25
+ sequence:
26
+ sequence: float32
27
+ splits:
28
+ - name: train
29
+ num_bytes: 7855046412.21
30
+ num_examples: 85283
31
+ download_size: 7915527673
32
+ dataset_size: 7855046412.21
33
+ ---
34
+
35
+ # Dataset Card for Histopathology Dataset
36
+
37
+ ## Dataset Summary
38
+ This dataset contains 224x224, 512x512 and 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model.
39
+
40
+ ![Data Processing](data_processing.png)
41
+
42
+ ## Thumbnail of Main Slide
43
+
44
+ ![Main Slide Thumbnail](test_001.png)
45
+
46
+ ## Usage
47
+
48
+ ```python
49
+ from datasets import load_dataset
50
+
51
+ dataset = load_dataset("Cilem/histopathology")
52
+ display(dataset['train'][0]["image"])
53
+ ```
54
+
55
+
56
+ ## Supported Tasks
57
+ Machine learning applications that can be performed using this dataset:
58
+ * Classification
59
+ * Segmentation
60
+ * Image generation
61
+
62
+ ## Languages
63
+ * English
64
+
65
+ ## Dataset Structure
66
+ ### Data Fields
67
+ - `image`: Image of the patch.
68
+ - `slide_name`: Main slide name of the patch.
69
+ - `x`: X coordinate of the patch.
70
+ - `y`: Y coordinate of the patch.
71
+ - `level`: Level of the main slide.
72
+ - `patch_size`: Size of the patch.
73
+ - `resize`: Image size used to obtain embedding vector with Path foundation model.
74
+ - `embedding_vector`: Embedding vector of the patch extracted using Path foundation model.
75
+
76
+ ## Dataset Creation
77
+ ### Source Data
78
+ - **Original Sources**
79
+ - [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
80
+ * `test_001.tif`
81
+ * `test_002.tif`
82
+ * `test_003.tif`
83
+ * `test_004.tif`
84
+ * `test_005.tif`
85
+ * `test_006.tif`
86
+ * `test_007.tif`
87
+ * `test_008.tif`
88
+ * `test_009.tif`
89
+ - [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model.
90
+
91
+ ## Considerations for Using the Data
92
+ ### Social Impact and Bias
93
+ Attention should be paid to the Path Foundation model licenses provided by Google.