Datasets:
audio
audioduration (s) 1.24
4.92
| source
stringclasses 3
values | text
stringlengths 6
67
|
|---|---|---|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Mune muka ƙwanƙwasa ƙofar
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ansha gwagwarmaya kamin a isa
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
yanasa kaya masu ƙyalli
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ka tabbatar ka kwashe shi duka
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ɗauke daga hanya
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Musa ne gwarzon shekara
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Fyade babu kyau a addinin musulunci
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Yana Shara da tsintsiyar laushi
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Tsarki
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ƙaza da kifi kayan ɗaɗine
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Amma sani shashasha ne
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Akwai tsauni a hanya
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Gwaba me dadi
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Wani ɓangare na garin basa jin Hausa
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Yawan faɗa ba maslaha bane
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Mama kyarku ta rasu
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Bishiyar ɗaɗɗoya
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Kazar tayi ƙwai
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
yaron ya iya saƙa
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Gwamnati ta al'umma ce
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Gyara kayanka ba zai zama sauke mu raba ba
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ka gyara kayan ka
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Malamin ya yi iya gwargwadon karfin sa
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Rigar tana da kyau sosai
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Ɓeran yaci gubar da aka sa mai
|
|
97f373e8-f6e6-63b1-68ad-946915fb5757
|
Kyauta na da daɗi
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Gyatumata ta tsufa.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Ina marmarinn cin gyararriyar gyaɗa.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Shirin da aka gabatar jiya kawai sharar fage ne sha'anin yana gaba.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Ƙyauren gidan yanada ƙarfi
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Yatserewa yaron
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Tsuntsun
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Shafi biyu na karanta jiya
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Ƙyaleshi
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Ɓaure bishiyace
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Muna kan case ɗin yarinyar da aka yiwa fyaɗe
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Audu cikakken dan gwagwarmaya ne
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Tsince tsakuwar cikin waken.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Ɗaya daga abinda nakeso shine matata
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Naga kwarkwasa a cikin ɗakin
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Naga kwarkwasa a cikin ɗakin
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Naga kwarkwasa a cikin ɗakin
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Kwakwar mai kyau ce
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Suka ƙyalƙyale da dariya
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Husna ba ta da ƙyashi
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
An kama ɓarawon
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Wani ɗari-ɗari nake ji.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Sha Sha Sha
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Sojoji sun mana kwantan ɓauna
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Akwai tsama tsakanin mutanen Tsaunin Kankan da Unguwar Tsamiya.
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Barkwanci
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Zan fita waje domin ba fyace majina
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Zan sha agwaluma
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Allah Ya raba mu da tsautsayi da asara
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
*no more phrases in corpus to record*
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Tsarin tsuntsaye ne ka ji su sunata tsiyau-tsiyau
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Daidai
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Farashin kowane kashi shine ɗari biyar
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Fyade mummanar ɗabi'ace
|
|
b0db0a87-2206-12e1-7b27-4e744609ff4b
|
Naje Chan ɓangaran
|
|
c3621689-ca53-c1e1-d0c1-e5619d6c0634
|
Ya zuba ruwa a gwangwani
|
|
c3621689-ca53-c1e1-d0c1-e5619d6c0634
|
Saurayin ƙaƙƙarfa ne matuƙa
|
|
c3621689-ca53-c1e1-d0c1-e5619d6c0634
|
Iro yana gyaran mota
|
|
c3621689-ca53-c1e1-d0c1-e5619d6c0634
|
Yahaya yana zama yake fara gyangyadi
|
Hausa TTS Dataset
Dataset Description
This dataset contains Hausa language text-to-speech (TTS) recordings from multiple speakers. It includes audio files paired with their corresponding Hausa text transcriptions.
Dataset Structure
The dataset is organized as follows:
├── data/
│ ├── metadata.csv # Metadata (source, audio paths, text)
│ └── audio_files/
│ ├── 97f373e8-f6e6-.../ # Speaker 1 audio files
│ ├── b0db0a87-2206-.../ # Speaker 2 audio files
│ └── c3621689-ca53-.../ # Speaker 3 audio files
└── README.md
Data Fields
The metadata.csv contains the following columns:
- file_name: Relative path to the audio file in WAV format
- source: Speaker ID (UUID format) identifying the speaker
- text: Hausa text transcription corresponding to the audio
Dataset Statistics
- Total Samples: ~100 recordings
- Number of Speakers: 3 unique speakers
- Audio Format: WAV files
- Sample Rate: 24,000 Hz (target)
- Language: Hausa (ha)
Usage
Loading the Dataset
from datasets import load_dataset
# Load from Hugging Face
dataset = load_dataset("Aybee5/ha-tts-csv", split="train")
# Access the data
print(dataset[0])
# Output: {'source': 'speaker_id', 'audio': {'path': '...', 'array': [...], 'sampling_rate': 24000}, 'text': '...'}
Example with Audio Processing
from datasets import load_dataset, Audio
# Load dataset
dataset = load_dataset("Aybee5/ha-tts-csv", split="train")
# Cast audio column to specific sampling rate
dataset = dataset.cast_column("audio", Audio(sampling_rate=24000))
# Process audio
for example in dataset:
audio_array = example["audio"]["array"]
sampling_rate = example["audio"]["sampling_rate"]
text = example["text"]
speaker_id = example["source"]
# Your processing here...
Speaker Information
The dataset includes recordings from 3 unique speakers, each identified by a UUID in the source field. For training multi-speaker TTS models, you can map these UUIDs to numeric speaker IDs:
unique_speakers = sorted(set(dataset["source"]))
speaker_to_id = {speaker: idx for idx, speaker in enumerate(unique_speakers)}
Use Cases
This dataset is suitable for:
- Text-to-Speech (TTS) model training
- Multi-speaker voice synthesis
- Hausa language speech research
- Voice cloning applications
- Speech corpus analysis
Languages
- Hausa (ha)
Licensing Information
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation
If you use this dataset in your research, please cite:
@dataset{hausa_tts_dataset,
title={Hausa TTS Dataset},
author={Your Name},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/Aybee5/ha-tts-csv}}
}
Data Collection and Processing
The audio data was collected using MimicStudio recording system and includes native Hausa speakers reading text prompts. All audio files are stored in WAV format with metadata tracked in an SQLite database, which has been exported to CSV format for easy dataset distribution.
Considerations for Using the Data
- Audio quality may vary between speakers
- Some audio files may have background noise
- Text transcriptions are in Hausa language using Latin script
- Speaker characteristics (gender, age, accent) are not explicitly labeled
Additional Information
For questions or issues with this dataset, please open an issue on the dataset repository or contact the dataset maintainer.
- Downloads last month
- 56