Dataset Viewer
Auto-converted to Parquet Duplicate
audio
audioduration (s)
1.24
4.92
source
stringclasses
3 values
text
stringlengths
6
67
97f373e8-f6e6-63b1-68ad-946915fb5757
Mune muka ƙwanƙwasa ƙofar
97f373e8-f6e6-63b1-68ad-946915fb5757
Ansha gwagwarmaya kamin a isa
97f373e8-f6e6-63b1-68ad-946915fb5757
yanasa kaya masu ƙyalli
97f373e8-f6e6-63b1-68ad-946915fb5757
Ka tabbatar ka kwashe shi duka
97f373e8-f6e6-63b1-68ad-946915fb5757
Ɗauke daga hanya
97f373e8-f6e6-63b1-68ad-946915fb5757
Musa ne gwarzon shekara
97f373e8-f6e6-63b1-68ad-946915fb5757
Fyade babu kyau a addinin musulunci
97f373e8-f6e6-63b1-68ad-946915fb5757
Yana Shara da tsintsiyar laushi
97f373e8-f6e6-63b1-68ad-946915fb5757
Tsarki
97f373e8-f6e6-63b1-68ad-946915fb5757
Ƙaza da kifi kayan ɗaɗine
97f373e8-f6e6-63b1-68ad-946915fb5757
Amma sani shashasha ne
97f373e8-f6e6-63b1-68ad-946915fb5757
Akwai tsauni a hanya
97f373e8-f6e6-63b1-68ad-946915fb5757
Gwaba me dadi
97f373e8-f6e6-63b1-68ad-946915fb5757
Wani ɓangare na garin basa jin Hausa
97f373e8-f6e6-63b1-68ad-946915fb5757
Yawan faɗa ba maslaha bane
97f373e8-f6e6-63b1-68ad-946915fb5757
Mama kyarku ta rasu
97f373e8-f6e6-63b1-68ad-946915fb5757
Bishiyar ɗaɗɗoya
97f373e8-f6e6-63b1-68ad-946915fb5757
Kazar tayi ƙwai
97f373e8-f6e6-63b1-68ad-946915fb5757
yaron ya iya saƙa
97f373e8-f6e6-63b1-68ad-946915fb5757
Gwamnati ta al'umma ce
97f373e8-f6e6-63b1-68ad-946915fb5757
Gyara kayanka ba zai zama sauke mu raba ba
97f373e8-f6e6-63b1-68ad-946915fb5757
Ka gyara kayan ka
97f373e8-f6e6-63b1-68ad-946915fb5757
Malamin ya yi iya gwargwadon karfin sa
97f373e8-f6e6-63b1-68ad-946915fb5757
Rigar tana da kyau sosai
97f373e8-f6e6-63b1-68ad-946915fb5757
Ɓeran yaci gubar da aka sa mai
97f373e8-f6e6-63b1-68ad-946915fb5757
Kyauta na da daɗi
b0db0a87-2206-12e1-7b27-4e744609ff4b
Gyatumata ta tsufa.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Ina marmarinn cin gyararriyar gyaɗa.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Shirin da aka gabatar jiya kawai sharar fage ne sha'anin yana gaba.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Ƙyauren gidan yanada ƙarfi
b0db0a87-2206-12e1-7b27-4e744609ff4b
Yatserewa yaron
b0db0a87-2206-12e1-7b27-4e744609ff4b
Tsuntsun
b0db0a87-2206-12e1-7b27-4e744609ff4b
Shafi biyu na karanta jiya
b0db0a87-2206-12e1-7b27-4e744609ff4b
Ƙyaleshi
b0db0a87-2206-12e1-7b27-4e744609ff4b
Ɓaure bishiyace
b0db0a87-2206-12e1-7b27-4e744609ff4b
Muna kan case ɗin yarinyar da aka yiwa fyaɗe
b0db0a87-2206-12e1-7b27-4e744609ff4b
Audu cikakken dan gwagwarmaya ne
b0db0a87-2206-12e1-7b27-4e744609ff4b
Tsince tsakuwar cikin waken.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Ɗaya daga abinda nakeso shine matata
b0db0a87-2206-12e1-7b27-4e744609ff4b
Naga kwarkwasa a cikin ɗakin
b0db0a87-2206-12e1-7b27-4e744609ff4b
Naga kwarkwasa a cikin ɗakin
b0db0a87-2206-12e1-7b27-4e744609ff4b
Naga kwarkwasa a cikin ɗakin
b0db0a87-2206-12e1-7b27-4e744609ff4b
Kwakwar mai kyau ce
b0db0a87-2206-12e1-7b27-4e744609ff4b
Suka ƙyalƙyale da dariya
b0db0a87-2206-12e1-7b27-4e744609ff4b
Husna ba ta da ƙyashi
b0db0a87-2206-12e1-7b27-4e744609ff4b
An kama ɓarawon
b0db0a87-2206-12e1-7b27-4e744609ff4b
Wani ɗari-ɗari nake ji.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Sha Sha Sha
b0db0a87-2206-12e1-7b27-4e744609ff4b
Sojoji sun mana kwantan ɓauna
b0db0a87-2206-12e1-7b27-4e744609ff4b
Akwai tsama tsakanin mutanen Tsaunin Kankan da Unguwar Tsamiya.
b0db0a87-2206-12e1-7b27-4e744609ff4b
Barkwanci
b0db0a87-2206-12e1-7b27-4e744609ff4b
Zan fita waje domin ba fyace majina
b0db0a87-2206-12e1-7b27-4e744609ff4b
Zan sha agwaluma
b0db0a87-2206-12e1-7b27-4e744609ff4b
Allah Ya raba mu da tsautsayi da asara
b0db0a87-2206-12e1-7b27-4e744609ff4b
*no more phrases in corpus to record*
b0db0a87-2206-12e1-7b27-4e744609ff4b
Tsarin tsuntsaye ne ka ji su sunata tsiyau-tsiyau
b0db0a87-2206-12e1-7b27-4e744609ff4b
Daidai
b0db0a87-2206-12e1-7b27-4e744609ff4b
Farashin kowane kashi shine ɗari biyar
b0db0a87-2206-12e1-7b27-4e744609ff4b
Fyade mummanar ɗabi'ace
b0db0a87-2206-12e1-7b27-4e744609ff4b
Naje Chan ɓangaran
c3621689-ca53-c1e1-d0c1-e5619d6c0634
Ya zuba ruwa a gwangwani
c3621689-ca53-c1e1-d0c1-e5619d6c0634
Saurayin ƙaƙƙarfa ne matuƙa
c3621689-ca53-c1e1-d0c1-e5619d6c0634
Iro yana gyaran mota
c3621689-ca53-c1e1-d0c1-e5619d6c0634
Yahaya yana zama yake fara gyangyadi

Hausa TTS Dataset

Dataset Description

This dataset contains Hausa language text-to-speech (TTS) recordings from multiple speakers. It includes audio files paired with their corresponding Hausa text transcriptions.

Dataset Structure

The dataset is organized as follows:

├── data/
│   ├── metadata.csv                    # Metadata (source, audio paths, text)
│   └── audio_files/
│       ├── 97f373e8-f6e6-.../          # Speaker 1 audio files
│       ├── b0db0a87-2206-.../          # Speaker 2 audio files
│       └── c3621689-ca53-.../          # Speaker 3 audio files
└── README.md

Data Fields

The metadata.csv contains the following columns:

  • file_name: Relative path to the audio file in WAV format
  • source: Speaker ID (UUID format) identifying the speaker
  • text: Hausa text transcription corresponding to the audio

Dataset Statistics

  • Total Samples: ~100 recordings
  • Number of Speakers: 3 unique speakers
  • Audio Format: WAV files
  • Sample Rate: 24,000 Hz (target)
  • Language: Hausa (ha)

Usage

Loading the Dataset

from datasets import load_dataset

# Load from Hugging Face
dataset = load_dataset("Aybee5/ha-tts-csv", split="train")

# Access the data
print(dataset[0])
# Output: {'source': 'speaker_id', 'audio': {'path': '...', 'array': [...], 'sampling_rate': 24000}, 'text': '...'}

Example with Audio Processing

from datasets import load_dataset, Audio

# Load dataset
dataset = load_dataset("Aybee5/ha-tts-csv", split="train")

# Cast audio column to specific sampling rate
dataset = dataset.cast_column("audio", Audio(sampling_rate=24000))

# Process audio
for example in dataset:
    audio_array = example["audio"]["array"]
    sampling_rate = example["audio"]["sampling_rate"]
    text = example["text"]
    speaker_id = example["source"]
    # Your processing here...

Speaker Information

The dataset includes recordings from 3 unique speakers, each identified by a UUID in the source field. For training multi-speaker TTS models, you can map these UUIDs to numeric speaker IDs:

unique_speakers = sorted(set(dataset["source"]))
speaker_to_id = {speaker: idx for idx, speaker in enumerate(unique_speakers)}

Use Cases

This dataset is suitable for:

  • Text-to-Speech (TTS) model training
  • Multi-speaker voice synthesis
  • Hausa language speech research
  • Voice cloning applications
  • Speech corpus analysis

Languages

  • Hausa (ha)

Licensing Information

This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Citation

If you use this dataset in your research, please cite:

@dataset{hausa_tts_dataset,
  title={Hausa TTS Dataset},
  author={Your Name},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/Aybee5/ha-tts-csv}}
}

Data Collection and Processing

The audio data was collected using MimicStudio recording system and includes native Hausa speakers reading text prompts. All audio files are stored in WAV format with metadata tracked in an SQLite database, which has been exported to CSV format for easy dataset distribution.

Considerations for Using the Data

  • Audio quality may vary between speakers
  • Some audio files may have background noise
  • Text transcriptions are in Hausa language using Latin script
  • Speaker characteristics (gender, age, accent) are not explicitly labeled

Additional Information

For questions or issues with this dataset, please open an issue on the dataset repository or contact the dataset maintainer.

Downloads last month
56