final / auto.py
Amgalan's picture
Upload auto.py
9dd6856
raw
history blame
3.2 kB
import streamlit as st
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
from io import BytesIO
import requests
button_style = """
<style>
.center-align {
display: flex;
justify-content: center;
}
</style>
"""
DEVICE = 'cuda'
@st.cache_resource
class ConvAutoencoder(nn.Module):
def __init__(self):
super().__init__()
# encoder
self.conv1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=4),
nn.BatchNorm2d(32),
nn.SELU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 8, kernel_size=2),
nn.BatchNorm2d(8),
nn.SELU()
)
self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=True) #<<<<<< Bottleneck
#decoder
# Как работает Conv2dTranspose https://github.com/vdumoulin/conv_arithmetic
self.unpool = nn.MaxUnpool2d(2, 2)
self.conv1_t = nn.Sequential(
nn.ConvTranspose2d(8, 32, kernel_size=2),
nn.BatchNorm2d(32),
nn.SELU()
)
self.conv2_t = nn.Sequential(
nn.ConvTranspose2d(32, 1, kernel_size=4),
nn.LazyBatchNorm2d(),
nn.Sigmoid()
)
def encode(self, x):
x = self.conv1(x)
x = self.conv2(x)
x, indicies = self.pool(x) # ⟸ bottleneck
return x, indicies
def decode(self, x, indicies):
x = self.unpool(x, indicies)
x = self.conv1_t(x)
x = self.conv2_t(x)
return x
def forward(self, x):
latent, indicies = self.encode(x)
out = self.decode(latent, indicies)
return out
model = ConvAutoencoder().to(DEVICE)
model.load_state_dict(torch.load('D:\Bootcamp\phase_2\streamlit\\autoend.pt'))
transform = transforms.Compose([
transforms.ToTensor(), # Преобразование изображения в тензор
# Добавьте другие необходимые преобразования, такие как нормализация, если это необходимо
])
model.eval()
image_source = st.radio("Choose the option of uploading the image of tumor:", ("File", "URL"))
if image_source == "File":
uploaded_file = st.file_uploader("Upload the image", type=["jpg", "png", "jpeg"])
if uploaded_file:
image = Image.open(uploaded_file)
else:
url = st.text_input("Enter the URL of image...")
if url:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
st.markdown(button_style, unsafe_allow_html=True)
model.to('cuda')
if 'image' in locals():
st.image(image, caption="Uploaded image", use_column_width=True)
bw_image = image.convert('L')
image_tensor = transform(bw_image).unsqueeze(0)
image_tensor = image_tensor.to('cuda')
with torch.no_grad():
output = model(image_tensor)
output = transforms.ToPILImage()(output[0].cpu())
if st.button("Detect tumor", type="primary"):
st.image(output, caption="Annotated Image", use_column_width=True)