Upload auto.py
Browse files
auto.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import requests
|
8 |
+
|
9 |
+
button_style = """
|
10 |
+
<style>
|
11 |
+
.center-align {
|
12 |
+
display: flex;
|
13 |
+
justify-content: center;
|
14 |
+
}
|
15 |
+
</style>
|
16 |
+
"""
|
17 |
+
|
18 |
+
DEVICE = 'cuda'
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
|
22 |
+
class ConvAutoencoder(nn.Module):
|
23 |
+
def __init__(self):
|
24 |
+
super().__init__()
|
25 |
+
# encoder
|
26 |
+
self.conv1 = nn.Sequential(
|
27 |
+
nn.Conv2d(1, 32, kernel_size=4),
|
28 |
+
nn.BatchNorm2d(32),
|
29 |
+
nn.SELU()
|
30 |
+
)
|
31 |
+
self.conv2 = nn.Sequential(
|
32 |
+
nn.Conv2d(32, 8, kernel_size=2),
|
33 |
+
nn.BatchNorm2d(8),
|
34 |
+
nn.SELU()
|
35 |
+
)
|
36 |
+
|
37 |
+
self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=True) #<<<<<< Bottleneck
|
38 |
+
|
39 |
+
#decoder
|
40 |
+
# Как работает Conv2dTranspose https://github.com/vdumoulin/conv_arithmetic
|
41 |
+
|
42 |
+
self.unpool = nn.MaxUnpool2d(2, 2)
|
43 |
+
|
44 |
+
self.conv1_t = nn.Sequential(
|
45 |
+
nn.ConvTranspose2d(8, 32, kernel_size=2),
|
46 |
+
nn.BatchNorm2d(32),
|
47 |
+
nn.SELU()
|
48 |
+
)
|
49 |
+
self.conv2_t = nn.Sequential(
|
50 |
+
nn.ConvTranspose2d(32, 1, kernel_size=4),
|
51 |
+
nn.LazyBatchNorm2d(),
|
52 |
+
nn.Sigmoid()
|
53 |
+
)
|
54 |
+
|
55 |
+
def encode(self, x):
|
56 |
+
x = self.conv1(x)
|
57 |
+
x = self.conv2(x)
|
58 |
+
x, indicies = self.pool(x) # ⟸ bottleneck
|
59 |
+
return x, indicies
|
60 |
+
|
61 |
+
def decode(self, x, indicies):
|
62 |
+
x = self.unpool(x, indicies)
|
63 |
+
x = self.conv1_t(x)
|
64 |
+
x = self.conv2_t(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
latent, indicies = self.encode(x)
|
69 |
+
out = self.decode(latent, indicies)
|
70 |
+
return out
|
71 |
+
|
72 |
+
model = ConvAutoencoder().to(DEVICE)
|
73 |
+
|
74 |
+
model.load_state_dict(torch.load('D:\Bootcamp\phase_2\streamlit\\autoend.pt'))
|
75 |
+
|
76 |
+
transform = transforms.Compose([
|
77 |
+
transforms.ToTensor(), # Преобразование изображения в тензор
|
78 |
+
# Добавьте другие необходимые преобразования, такие как нормализация, если это необходимо
|
79 |
+
])
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
|
83 |
+
image_source = st.radio("Choose the option of uploading the image of tumor:", ("File", "URL"))
|
84 |
+
|
85 |
+
if image_source == "File":
|
86 |
+
uploaded_file = st.file_uploader("Upload the image", type=["jpg", "png", "jpeg"])
|
87 |
+
if uploaded_file:
|
88 |
+
image = Image.open(uploaded_file)
|
89 |
+
|
90 |
+
else:
|
91 |
+
url = st.text_input("Enter the URL of image...")
|
92 |
+
if url:
|
93 |
+
response = requests.get(url)
|
94 |
+
image = Image.open(BytesIO(response.content))
|
95 |
+
|
96 |
+
|
97 |
+
st.markdown(button_style, unsafe_allow_html=True)
|
98 |
+
|
99 |
+
model.to('cuda')
|
100 |
+
|
101 |
+
if 'image' in locals():
|
102 |
+
st.image(image, caption="Uploaded image", use_column_width=True)
|
103 |
+
|
104 |
+
bw_image = image.convert('L')
|
105 |
+
|
106 |
+
image_tensor = transform(bw_image).unsqueeze(0)
|
107 |
+
|
108 |
+
image_tensor = image_tensor.to('cuda')
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
output = model(image_tensor)
|
112 |
+
|
113 |
+
output = transforms.ToPILImage()(output[0].cpu())
|
114 |
+
|
115 |
+
if st.button("Detect tumor", type="primary"):
|
116 |
+
st.image(output, caption="Annotated Image", use_column_width=True)
|