Amgalan commited on
Commit
9dd6856
·
1 Parent(s): c65bdfb

Upload auto.py

Browse files
Files changed (1) hide show
  1. auto.py +116 -0
auto.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import torch.nn as nn
4
+ from torchvision import transforms
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ import requests
8
+
9
+ button_style = """
10
+ <style>
11
+ .center-align {
12
+ display: flex;
13
+ justify-content: center;
14
+ }
15
+ </style>
16
+ """
17
+
18
+ DEVICE = 'cuda'
19
+
20
+ @st.cache_resource
21
+
22
+ class ConvAutoencoder(nn.Module):
23
+ def __init__(self):
24
+ super().__init__()
25
+ # encoder
26
+ self.conv1 = nn.Sequential(
27
+ nn.Conv2d(1, 32, kernel_size=4),
28
+ nn.BatchNorm2d(32),
29
+ nn.SELU()
30
+ )
31
+ self.conv2 = nn.Sequential(
32
+ nn.Conv2d(32, 8, kernel_size=2),
33
+ nn.BatchNorm2d(8),
34
+ nn.SELU()
35
+ )
36
+
37
+ self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=True) #<<<<<< Bottleneck
38
+
39
+ #decoder
40
+ # Как работает Conv2dTranspose https://github.com/vdumoulin/conv_arithmetic
41
+
42
+ self.unpool = nn.MaxUnpool2d(2, 2)
43
+
44
+ self.conv1_t = nn.Sequential(
45
+ nn.ConvTranspose2d(8, 32, kernel_size=2),
46
+ nn.BatchNorm2d(32),
47
+ nn.SELU()
48
+ )
49
+ self.conv2_t = nn.Sequential(
50
+ nn.ConvTranspose2d(32, 1, kernel_size=4),
51
+ nn.LazyBatchNorm2d(),
52
+ nn.Sigmoid()
53
+ )
54
+
55
+ def encode(self, x):
56
+ x = self.conv1(x)
57
+ x = self.conv2(x)
58
+ x, indicies = self.pool(x) # ⟸ bottleneck
59
+ return x, indicies
60
+
61
+ def decode(self, x, indicies):
62
+ x = self.unpool(x, indicies)
63
+ x = self.conv1_t(x)
64
+ x = self.conv2_t(x)
65
+ return x
66
+
67
+ def forward(self, x):
68
+ latent, indicies = self.encode(x)
69
+ out = self.decode(latent, indicies)
70
+ return out
71
+
72
+ model = ConvAutoencoder().to(DEVICE)
73
+
74
+ model.load_state_dict(torch.load('D:\Bootcamp\phase_2\streamlit\\autoend.pt'))
75
+
76
+ transform = transforms.Compose([
77
+ transforms.ToTensor(), # Преобразование изображения в тензор
78
+ # Добавьте другие необходимые преобразования, такие как нормализация, если это необходимо
79
+ ])
80
+ model.eval()
81
+
82
+
83
+ image_source = st.radio("Choose the option of uploading the image of tumor:", ("File", "URL"))
84
+
85
+ if image_source == "File":
86
+ uploaded_file = st.file_uploader("Upload the image", type=["jpg", "png", "jpeg"])
87
+ if uploaded_file:
88
+ image = Image.open(uploaded_file)
89
+
90
+ else:
91
+ url = st.text_input("Enter the URL of image...")
92
+ if url:
93
+ response = requests.get(url)
94
+ image = Image.open(BytesIO(response.content))
95
+
96
+
97
+ st.markdown(button_style, unsafe_allow_html=True)
98
+
99
+ model.to('cuda')
100
+
101
+ if 'image' in locals():
102
+ st.image(image, caption="Uploaded image", use_column_width=True)
103
+
104
+ bw_image = image.convert('L')
105
+
106
+ image_tensor = transform(bw_image).unsqueeze(0)
107
+
108
+ image_tensor = image_tensor.to('cuda')
109
+
110
+ with torch.no_grad():
111
+ output = model(image_tensor)
112
+
113
+ output = transforms.ToPILImage()(output[0].cpu())
114
+
115
+ if st.button("Detect tumor", type="primary"):
116
+ st.image(output, caption="Annotated Image", use_column_width=True)