Datasets:
ArXiv:
DOI:
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # TODO: Address all TODOs and remove all explanatory comments | |
| # Lint as: python3 | |
| """QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import datasets | |
| import fsspec | |
| import h5py | |
| import numpy as np | |
| import torch | |
| # TODO: Add BibTeX citation | |
| # Find for instance the citation on arxiv or on the dataset repo/website | |
| _CITATION = """\ | |
| @InProceedings{huggingface:dataset, | |
| title = {NCEDC dataset for QuakeFlow}, | |
| author={Zhu et al.}, | |
| year={2023} | |
| } | |
| """ | |
| # TODO: Add description of the dataset here | |
| # You can copy an official description | |
| _DESCRIPTION = """\ | |
| A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. | |
| """ | |
| # TODO: Add a link to an official homepage for the dataset here | |
| _HOMEPAGE = "" | |
| # TODO: Add the licence for the dataset here if you can find it | |
| _LICENSE = "" | |
| # TODO: Add link to the official dataset URLs here | |
| # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
| # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
| _REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5" | |
| _FILES = [ | |
| "1987.h5", | |
| "1988.h5", | |
| "1989.h5", | |
| "1990.h5", | |
| "1991.h5", | |
| "1992.h5", | |
| "1993.h5", | |
| "1994.h5", | |
| "1995.h5", | |
| "1996.h5", | |
| "1997.h5", | |
| "1998.h5", | |
| "1999.h5", | |
| "2000.h5", | |
| "2001.h5", | |
| "2002.h5", | |
| "2003.h5", | |
| "2004.h5", | |
| "2005.h5", | |
| "2006.h5", | |
| "2007.h5", | |
| "2008.h5", | |
| "2009.h5", | |
| "2010.h5", | |
| "2011.h5", | |
| "2012.h5", | |
| "2013.h5", | |
| "2014.h5", | |
| "2015.h5", | |
| "2016.h5", | |
| "2017.h5", | |
| "2018.h5", | |
| "2019.h5", | |
| "2020.h5", | |
| "2021.h5", | |
| "2022.h5", | |
| "2023.h5", | |
| ] | |
| _URLS = { | |
| "station": [f"{_REPO}/{x}" for x in _FILES], | |
| "event": [f"{_REPO}/{x}" for x in _FILES], | |
| "station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
| "event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
| "station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
| "event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
| } | |
| class BatchBuilderConfig(datasets.BuilderConfig): | |
| """ | |
| yield a batch of event-based sample, so the number of sample stations can vary among batches | |
| Batch Config for QuakeFlow_NC | |
| """ | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
| class QuakeFlow_NC(datasets.GeneratorBasedBuilder): | |
| """QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
| VERSION = datasets.Version("1.1.0") | |
| nt = 8192 | |
| # This is an example of a dataset with multiple configurations. | |
| # If you don't want/need to define several sub-sets in your dataset, | |
| # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
| # If you need to make complex sub-parts in the datasets with configurable options | |
| # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
| # BUILDER_CONFIG_CLASS = MyBuilderConfig | |
| # You will be able to load one or the other configurations in the following list with | |
| # data = datasets.load_dataset('my_dataset', 'first_domain') | |
| # data = datasets.load_dataset('my_dataset', 'second_domain') | |
| # default config, you can change batch_size and num_stations_list when use `datasets.load_dataset` | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" | |
| ), | |
| datasets.BuilderConfig( | |
| name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" | |
| ), | |
| datasets.BuilderConfig( | |
| name="station_train", | |
| version=VERSION, | |
| description="yield station-based samples one by one of training dataset", | |
| ), | |
| datasets.BuilderConfig( | |
| name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" | |
| ), | |
| datasets.BuilderConfig( | |
| name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" | |
| ), | |
| datasets.BuilderConfig( | |
| name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = ( | |
| "station_test" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
| ) | |
| def _info(self): | |
| # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
| if ( | |
| (self.config.name == "station") | |
| or (self.config.name == "station_train") | |
| or (self.config.name == "station_test") | |
| ): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "event_id": datasets.Value("string"), | |
| "station_id": datasets.Value("string"), | |
| "waveform": datasets.Array2D(shape=(3, self.nt), dtype="float32"), | |
| "phase_time": datasets.Sequence(datasets.Value("string")), | |
| "phase_index": datasets.Sequence(datasets.Value("int32")), | |
| "phase_type": datasets.Sequence(datasets.Value("string")), | |
| "phase_polarity": datasets.Sequence(datasets.Value("string")), | |
| "begin_time": datasets.Value("string"), | |
| "end_time": datasets.Value("string"), | |
| "event_time": datasets.Value("string"), | |
| "event_time_index": datasets.Value("int32"), | |
| "event_location": datasets.Sequence(datasets.Value("float32")), | |
| "station_location": datasets.Sequence(datasets.Value("float32")), | |
| }, | |
| ) | |
| elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"): | |
| features = datasets.Features( | |
| { | |
| "event_id": datasets.Value("string"), | |
| "waveform": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"), | |
| "phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
| "phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), | |
| "phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
| "phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
| "begin_time": datasets.Value("string"), | |
| "end_time": datasets.Value("string"), | |
| "event_time": datasets.Value("string"), | |
| "event_time_index": datasets.Value("int32"), | |
| "event_location": datasets.Sequence(datasets.Value("float32")), | |
| "station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), | |
| }, | |
| ) | |
| else: | |
| raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS") | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # This defines the different columns of the dataset and their types | |
| features=features, # Here we define them above because they are different between the two configurations | |
| # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
| # specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
| # supervised_keys=("sentence", "label"), | |
| # Homepage of the dataset for documentation | |
| homepage=_HOMEPAGE, | |
| # License for the dataset if available | |
| license=_LICENSE, | |
| # Citation for the dataset | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
| # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
| # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
| # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
| # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
| urls = _URLS[self.config.name] | |
| # files = dl_manager.download(urls) | |
| if "bucket" not in self.storage_options: | |
| files = dl_manager.download_and_extract(urls) | |
| else: | |
| files = [f"{self.storage_options['bucket']}/{x}" for x in _FILES] | |
| # files = [f"/nfs/quakeflow_dataset/NC/quakeflow_nc/waveform_h5/{x}" for x in _FILES][-3:] | |
| print("Files:\n", "\n".join(sorted(files))) | |
| print(self.storage_options) | |
| if self.config.name == "station" or self.config.name == "event": | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": files[:-1], "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": files[-1:], "split": "test"}, | |
| ), | |
| ] | |
| elif self.config.name == "station_train" or self.config.name == "event_train": | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": files, "split": "train"}, | |
| ), | |
| ] | |
| elif self.config.name == "station_test" or self.config.name == "event_test": | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": files, "split": "test"}, | |
| ), | |
| ] | |
| else: | |
| raise ValueError("config.name is not in BUILDER_CONFIGS") | |
| # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
| def _generate_examples(self, filepath, split): | |
| # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
| # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
| for file in filepath: | |
| print(f"\nReading {file}") | |
| with fsspec.open(file, "rb") as fs: | |
| with h5py.File(fs, "r") as fp: | |
| event_ids = list(fp.keys()) | |
| for event_id in event_ids: | |
| event = fp[event_id] | |
| event_attrs = event.attrs | |
| begin_time = event_attrs["begin_time"] | |
| end_time = event_attrs["end_time"] | |
| event_location = [ | |
| event_attrs["longitude"], | |
| event_attrs["latitude"], | |
| event_attrs["depth_km"], | |
| ] | |
| event_time = event_attrs["event_time"] | |
| event_time_index = event_attrs["event_time_index"] | |
| station_ids = list(event.keys()) | |
| if len(station_ids) == 0: | |
| continue | |
| if ( | |
| (self.config.name == "station") | |
| or (self.config.name == "station_train") | |
| or (self.config.name == "station_test") | |
| ): | |
| waveform = np.zeros([3, self.nt], dtype="float32") | |
| for i, station_id in enumerate(station_ids): | |
| waveform[:, : self.nt] = event[station_id][:, : self.nt] | |
| attrs = event[station_id].attrs | |
| phase_type = attrs["phase_type"] | |
| phase_time = attrs["phase_time"] | |
| phase_index = attrs["phase_index"] | |
| phase_polarity = attrs["phase_polarity"] | |
| station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] | |
| yield f"{event_id}/{station_id}", { | |
| "id": f"{event_id}/{station_id}", | |
| "event_id": event_id, | |
| "station_id": station_id, | |
| "waveform": waveform, | |
| "phase_time": phase_time, | |
| "phase_index": phase_index, | |
| "phase_type": phase_type, | |
| "phase_polarity": phase_polarity, | |
| "begin_time": begin_time, | |
| "end_time": end_time, | |
| "event_time": event_time, | |
| "event_time_index": event_time_index, | |
| "event_location": event_location, | |
| "station_location": station_location, | |
| } | |
| elif ( | |
| (self.config.name == "event") | |
| or (self.config.name == "event_train") | |
| or (self.config.name == "event_test") | |
| ): | |
| waveform = np.zeros([len(station_ids), 3, self.nt], dtype="float32") | |
| phase_type = [] | |
| phase_time = [] | |
| phase_index = [] | |
| phase_polarity = [] | |
| station_location = [] | |
| for i, station_id in enumerate(station_ids): | |
| waveform[i, :, : self.nt] = event[station_id][:, : self.nt] | |
| attrs = event[station_id].attrs | |
| phase_type.append(list(attrs["phase_type"])) | |
| phase_time.append(list(attrs["phase_time"])) | |
| phase_index.append(list(attrs["phase_index"])) | |
| phase_polarity.append(list(attrs["phase_polarity"])) | |
| station_location.append( | |
| [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] | |
| ) | |
| yield event_id, { | |
| "event_id": event_id, | |
| "waveform": waveform, | |
| "phase_time": phase_time, | |
| "phase_index": phase_index, | |
| "phase_type": phase_type, | |
| "phase_polarity": phase_polarity, | |
| "begin_time": begin_time, | |
| "end_time": end_time, | |
| "event_time": event_time, | |
| "event_time_index": event_time_index, | |
| "event_location": event_location, | |
| "station_location": station_location, | |
| } | |