Datasets:
ArXiv:
DOI:
License:
Commit
·
32aa588
0
Parent(s):
add scripts
Browse files- example.py +54 -0
- merge_hdf5.py +65 -0
- quakeflow_nc.py +362 -0
- upload.py +11 -0
example.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
import datasets
|
| 3 |
+
import numpy as np
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
|
| 6 |
+
quakeflow_nc = datasets.load_dataset(
|
| 7 |
+
"AI4EPS/quakeflow_nc",
|
| 8 |
+
name="station",
|
| 9 |
+
split="train",
|
| 10 |
+
# name="station_test",
|
| 11 |
+
# split="test",
|
| 12 |
+
# download_mode="force_redownload",
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
num_proc=36,
|
| 15 |
+
)
|
| 16 |
+
# quakeflow_nc = datasets.load_dataset(
|
| 17 |
+
# "./quakeflow_nc.py",
|
| 18 |
+
# name="station",
|
| 19 |
+
# split="train",
|
| 20 |
+
# # name="statoin_test",
|
| 21 |
+
# # split="test",
|
| 22 |
+
# num_proc=36,
|
| 23 |
+
# )
|
| 24 |
+
|
| 25 |
+
print(quakeflow_nc)
|
| 26 |
+
|
| 27 |
+
# print the first sample of the iterable dataset
|
| 28 |
+
for example in quakeflow_nc:
|
| 29 |
+
print("\nIterable dataset\n")
|
| 30 |
+
print(example)
|
| 31 |
+
print(example.keys())
|
| 32 |
+
for key in example.keys():
|
| 33 |
+
if key == "waveform":
|
| 34 |
+
print(key, np.array(example[key]).shape)
|
| 35 |
+
else:
|
| 36 |
+
print(key, example[key])
|
| 37 |
+
break
|
| 38 |
+
|
| 39 |
+
# %%
|
| 40 |
+
quakeflow_nc = quakeflow_nc.with_format("torch")
|
| 41 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x)
|
| 42 |
+
|
| 43 |
+
for batch in dataloader:
|
| 44 |
+
print("\nDataloader dataset\n")
|
| 45 |
+
print(f"Batch size: {len(batch)}")
|
| 46 |
+
print(batch[0].keys())
|
| 47 |
+
for key in batch[0].keys():
|
| 48 |
+
if key == "waveform":
|
| 49 |
+
print(key, np.array(batch[0][key]).shape)
|
| 50 |
+
else:
|
| 51 |
+
print(key, batch[0][key])
|
| 52 |
+
break
|
| 53 |
+
|
| 54 |
+
# %%
|
merge_hdf5.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import h5py
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
# %%
|
| 9 |
+
h5_dir = "waveform_h5"
|
| 10 |
+
h5_out = "waveform.h5"
|
| 11 |
+
h5_train = "waveform_train.h5"
|
| 12 |
+
h5_test = "waveform_test.h5"
|
| 13 |
+
|
| 14 |
+
# # %%
|
| 15 |
+
# h5_dir = "waveform_h5"
|
| 16 |
+
# h5_out = "waveform.h5"
|
| 17 |
+
# h5_train = "waveform_train.h5"
|
| 18 |
+
# h5_test = "waveform_test.h5"
|
| 19 |
+
|
| 20 |
+
h5_files = sorted(os.listdir(h5_dir))
|
| 21 |
+
train_files = h5_files[:-1]
|
| 22 |
+
test_files = h5_files[-1:]
|
| 23 |
+
# train_files = h5_files
|
| 24 |
+
# train_files = [x for x in train_files if (x != "2014.h5") and (x not in [])]
|
| 25 |
+
# test_files = []
|
| 26 |
+
print(f"train files: {train_files}")
|
| 27 |
+
print(f"test files: {test_files}")
|
| 28 |
+
|
| 29 |
+
# %%
|
| 30 |
+
with h5py.File(h5_out, "w") as fp:
|
| 31 |
+
# external linked file
|
| 32 |
+
for h5_file in h5_files:
|
| 33 |
+
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
|
| 34 |
+
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
|
| 35 |
+
if event not in fp:
|
| 36 |
+
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
|
| 37 |
+
else:
|
| 38 |
+
print(f"{event} already exists")
|
| 39 |
+
continue
|
| 40 |
+
|
| 41 |
+
# %%
|
| 42 |
+
with h5py.File(h5_train, "w") as fp:
|
| 43 |
+
# external linked file
|
| 44 |
+
for h5_file in train_files:
|
| 45 |
+
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
|
| 46 |
+
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
|
| 47 |
+
if event not in fp:
|
| 48 |
+
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
|
| 49 |
+
else:
|
| 50 |
+
print(f"{event} already exists")
|
| 51 |
+
continue
|
| 52 |
+
|
| 53 |
+
# %%
|
| 54 |
+
with h5py.File(h5_test, "w") as fp:
|
| 55 |
+
# external linked file
|
| 56 |
+
for h5_file in test_files:
|
| 57 |
+
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
|
| 58 |
+
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
|
| 59 |
+
if event not in fp:
|
| 60 |
+
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
|
| 61 |
+
else:
|
| 62 |
+
print(f"{event} already exists")
|
| 63 |
+
continue
|
| 64 |
+
|
| 65 |
+
# %%
|
quakeflow_nc.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
import fsspec
|
| 24 |
+
import h5py
|
| 25 |
+
import numpy as np
|
| 26 |
+
import torch
|
| 27 |
+
|
| 28 |
+
# TODO: Add BibTeX citation
|
| 29 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 30 |
+
_CITATION = """\
|
| 31 |
+
@InProceedings{huggingface:dataset,
|
| 32 |
+
title = {NCEDC dataset for QuakeFlow},
|
| 33 |
+
author={Zhu et al.},
|
| 34 |
+
year={2023}
|
| 35 |
+
}
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
# TODO: Add description of the dataset here
|
| 39 |
+
# You can copy an official description
|
| 40 |
+
_DESCRIPTION = """\
|
| 41 |
+
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
# TODO: Add a link to an official homepage for the dataset here
|
| 45 |
+
_HOMEPAGE = ""
|
| 46 |
+
|
| 47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
| 48 |
+
_LICENSE = ""
|
| 49 |
+
|
| 50 |
+
# TODO: Add link to the official dataset URLs here
|
| 51 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
+
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
|
| 54 |
+
_FILES = [
|
| 55 |
+
"1987.h5",
|
| 56 |
+
"1988.h5",
|
| 57 |
+
"1989.h5",
|
| 58 |
+
"1990.h5",
|
| 59 |
+
"1991.h5",
|
| 60 |
+
"1992.h5",
|
| 61 |
+
"1993.h5",
|
| 62 |
+
"1994.h5",
|
| 63 |
+
"1995.h5",
|
| 64 |
+
"1996.h5",
|
| 65 |
+
"1997.h5",
|
| 66 |
+
"1998.h5",
|
| 67 |
+
"1999.h5",
|
| 68 |
+
"2000.h5",
|
| 69 |
+
"2001.h5",
|
| 70 |
+
"2002.h5",
|
| 71 |
+
"2003.h5",
|
| 72 |
+
"2004.h5",
|
| 73 |
+
"2005.h5",
|
| 74 |
+
"2006.h5",
|
| 75 |
+
"2007.h5",
|
| 76 |
+
"2008.h5",
|
| 77 |
+
"2009.h5",
|
| 78 |
+
"2010.h5",
|
| 79 |
+
"2011.h5",
|
| 80 |
+
"2012.h5",
|
| 81 |
+
"2013.h5",
|
| 82 |
+
"2014.h5",
|
| 83 |
+
"2015.h5",
|
| 84 |
+
"2016.h5",
|
| 85 |
+
"2017.h5",
|
| 86 |
+
"2018.h5",
|
| 87 |
+
"2019.h5",
|
| 88 |
+
"2020.h5",
|
| 89 |
+
"2021.h5",
|
| 90 |
+
"2022.h5",
|
| 91 |
+
"2023.h5",
|
| 92 |
+
]
|
| 93 |
+
_URLS = {
|
| 94 |
+
"station": [f"{_REPO}/{x}" for x in _FILES],
|
| 95 |
+
"event": [f"{_REPO}/{x}" for x in _FILES],
|
| 96 |
+
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
| 97 |
+
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
| 98 |
+
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
| 99 |
+
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class BatchBuilderConfig(datasets.BuilderConfig):
|
| 104 |
+
"""
|
| 105 |
+
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
| 106 |
+
Batch Config for QuakeFlow_NC
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
def __init__(self, **kwargs):
|
| 110 |
+
super().__init__(**kwargs)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
| 114 |
+
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
| 115 |
+
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
| 116 |
+
|
| 117 |
+
VERSION = datasets.Version("1.1.0")
|
| 118 |
+
|
| 119 |
+
nt = 8192
|
| 120 |
+
|
| 121 |
+
# This is an example of a dataset with multiple configurations.
|
| 122 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 123 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 124 |
+
|
| 125 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 126 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 127 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 128 |
+
|
| 129 |
+
# You will be able to load one or the other configurations in the following list with
|
| 130 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 131 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 132 |
+
|
| 133 |
+
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
| 134 |
+
BUILDER_CONFIGS = [
|
| 135 |
+
datasets.BuilderConfig(
|
| 136 |
+
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
|
| 137 |
+
),
|
| 138 |
+
datasets.BuilderConfig(
|
| 139 |
+
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
|
| 140 |
+
),
|
| 141 |
+
datasets.BuilderConfig(
|
| 142 |
+
name="station_train",
|
| 143 |
+
version=VERSION,
|
| 144 |
+
description="yield station-based samples one by one of training dataset",
|
| 145 |
+
),
|
| 146 |
+
datasets.BuilderConfig(
|
| 147 |
+
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
|
| 148 |
+
),
|
| 149 |
+
datasets.BuilderConfig(
|
| 150 |
+
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
|
| 151 |
+
),
|
| 152 |
+
datasets.BuilderConfig(
|
| 153 |
+
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
|
| 154 |
+
),
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
DEFAULT_CONFIG_NAME = (
|
| 158 |
+
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def _info(self):
|
| 162 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 163 |
+
if (
|
| 164 |
+
(self.config.name == "station")
|
| 165 |
+
or (self.config.name == "station_train")
|
| 166 |
+
or (self.config.name == "station_test")
|
| 167 |
+
):
|
| 168 |
+
features = datasets.Features(
|
| 169 |
+
{
|
| 170 |
+
"id": datasets.Value("string"),
|
| 171 |
+
"event_id": datasets.Value("string"),
|
| 172 |
+
"station_id": datasets.Value("string"),
|
| 173 |
+
"waveform": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
| 174 |
+
"phase_time": datasets.Sequence(datasets.Value("string")),
|
| 175 |
+
"phase_index": datasets.Sequence(datasets.Value("int32")),
|
| 176 |
+
"phase_type": datasets.Sequence(datasets.Value("string")),
|
| 177 |
+
"phase_polarity": datasets.Sequence(datasets.Value("string")),
|
| 178 |
+
"begin_time": datasets.Value("string"),
|
| 179 |
+
"end_time": datasets.Value("string"),
|
| 180 |
+
"event_time": datasets.Value("string"),
|
| 181 |
+
"event_time_index": datasets.Value("int32"),
|
| 182 |
+
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 183 |
+
"station_location": datasets.Sequence(datasets.Value("float32")),
|
| 184 |
+
},
|
| 185 |
+
)
|
| 186 |
+
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
|
| 187 |
+
features = datasets.Features(
|
| 188 |
+
{
|
| 189 |
+
"event_id": datasets.Value("string"),
|
| 190 |
+
"waveform": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
| 191 |
+
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
| 192 |
+
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
| 193 |
+
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
| 194 |
+
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
| 195 |
+
"begin_time": datasets.Value("string"),
|
| 196 |
+
"end_time": datasets.Value("string"),
|
| 197 |
+
"event_time": datasets.Value("string"),
|
| 198 |
+
"event_time_index": datasets.Value("int32"),
|
| 199 |
+
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 200 |
+
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
| 201 |
+
},
|
| 202 |
+
)
|
| 203 |
+
else:
|
| 204 |
+
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")
|
| 205 |
+
|
| 206 |
+
return datasets.DatasetInfo(
|
| 207 |
+
# This is the description that will appear on the datasets page.
|
| 208 |
+
description=_DESCRIPTION,
|
| 209 |
+
# This defines the different columns of the dataset and their types
|
| 210 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 211 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 212 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 213 |
+
# supervised_keys=("sentence", "label"),
|
| 214 |
+
# Homepage of the dataset for documentation
|
| 215 |
+
homepage=_HOMEPAGE,
|
| 216 |
+
# License for the dataset if available
|
| 217 |
+
license=_LICENSE,
|
| 218 |
+
# Citation for the dataset
|
| 219 |
+
citation=_CITATION,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def _split_generators(self, dl_manager):
|
| 223 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 224 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 225 |
+
|
| 226 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 227 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 228 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 229 |
+
urls = _URLS[self.config.name]
|
| 230 |
+
# files = dl_manager.download(urls)
|
| 231 |
+
if "bucket" not in self.storage_options:
|
| 232 |
+
files = dl_manager.download_and_extract(urls)
|
| 233 |
+
else:
|
| 234 |
+
files = [f"{self.storage_options['bucket']}/{x}" for x in _FILES]
|
| 235 |
+
# files = [f"/nfs/quakeflow_dataset/NC/quakeflow_nc/waveform_h5/{x}" for x in _FILES][-3:]
|
| 236 |
+
print("Files:\n", "\n".join(sorted(files)))
|
| 237 |
+
print(self.storage_options)
|
| 238 |
+
|
| 239 |
+
if self.config.name == "station" or self.config.name == "event":
|
| 240 |
+
return [
|
| 241 |
+
datasets.SplitGenerator(
|
| 242 |
+
name=datasets.Split.TRAIN,
|
| 243 |
+
# These kwargs will be passed to _generate_examples
|
| 244 |
+
gen_kwargs={"filepath": files[:-1], "split": "train"},
|
| 245 |
+
),
|
| 246 |
+
datasets.SplitGenerator(
|
| 247 |
+
name=datasets.Split.TEST,
|
| 248 |
+
gen_kwargs={"filepath": files[-1:], "split": "test"},
|
| 249 |
+
),
|
| 250 |
+
]
|
| 251 |
+
elif self.config.name == "station_train" or self.config.name == "event_train":
|
| 252 |
+
return [
|
| 253 |
+
datasets.SplitGenerator(
|
| 254 |
+
name=datasets.Split.TRAIN,
|
| 255 |
+
gen_kwargs={"filepath": files, "split": "train"},
|
| 256 |
+
),
|
| 257 |
+
]
|
| 258 |
+
elif self.config.name == "station_test" or self.config.name == "event_test":
|
| 259 |
+
return [
|
| 260 |
+
datasets.SplitGenerator(
|
| 261 |
+
name=datasets.Split.TEST,
|
| 262 |
+
gen_kwargs={"filepath": files, "split": "test"},
|
| 263 |
+
),
|
| 264 |
+
]
|
| 265 |
+
else:
|
| 266 |
+
raise ValueError("config.name is not in BUILDER_CONFIGS")
|
| 267 |
+
|
| 268 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 269 |
+
def _generate_examples(self, filepath, split):
|
| 270 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 271 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 272 |
+
|
| 273 |
+
for file in filepath:
|
| 274 |
+
print(f"\nReading {file}")
|
| 275 |
+
with fsspec.open(file, "rb") as fs:
|
| 276 |
+
with h5py.File(fs, "r") as fp:
|
| 277 |
+
event_ids = list(fp.keys())
|
| 278 |
+
for event_id in event_ids:
|
| 279 |
+
event = fp[event_id]
|
| 280 |
+
event_attrs = event.attrs
|
| 281 |
+
begin_time = event_attrs["begin_time"]
|
| 282 |
+
end_time = event_attrs["end_time"]
|
| 283 |
+
event_location = [
|
| 284 |
+
event_attrs["longitude"],
|
| 285 |
+
event_attrs["latitude"],
|
| 286 |
+
event_attrs["depth_km"],
|
| 287 |
+
]
|
| 288 |
+
event_time = event_attrs["event_time"]
|
| 289 |
+
event_time_index = event_attrs["event_time_index"]
|
| 290 |
+
station_ids = list(event.keys())
|
| 291 |
+
if len(station_ids) == 0:
|
| 292 |
+
continue
|
| 293 |
+
if (
|
| 294 |
+
(self.config.name == "station")
|
| 295 |
+
or (self.config.name == "station_train")
|
| 296 |
+
or (self.config.name == "station_test")
|
| 297 |
+
):
|
| 298 |
+
waveform = np.zeros([3, self.nt], dtype="float32")
|
| 299 |
+
|
| 300 |
+
for i, station_id in enumerate(station_ids):
|
| 301 |
+
waveform[:, : self.nt] = event[station_id][:, : self.nt]
|
| 302 |
+
attrs = event[station_id].attrs
|
| 303 |
+
phase_type = attrs["phase_type"]
|
| 304 |
+
phase_time = attrs["phase_time"]
|
| 305 |
+
phase_index = attrs["phase_index"]
|
| 306 |
+
phase_polarity = attrs["phase_polarity"]
|
| 307 |
+
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
| 308 |
+
|
| 309 |
+
yield f"{event_id}/{station_id}", {
|
| 310 |
+
"id": f"{event_id}/{station_id}",
|
| 311 |
+
"event_id": event_id,
|
| 312 |
+
"station_id": station_id,
|
| 313 |
+
"waveform": waveform,
|
| 314 |
+
"phase_time": phase_time,
|
| 315 |
+
"phase_index": phase_index,
|
| 316 |
+
"phase_type": phase_type,
|
| 317 |
+
"phase_polarity": phase_polarity,
|
| 318 |
+
"begin_time": begin_time,
|
| 319 |
+
"end_time": end_time,
|
| 320 |
+
"event_time": event_time,
|
| 321 |
+
"event_time_index": event_time_index,
|
| 322 |
+
"event_location": event_location,
|
| 323 |
+
"station_location": station_location,
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
elif (
|
| 327 |
+
(self.config.name == "event")
|
| 328 |
+
or (self.config.name == "event_train")
|
| 329 |
+
or (self.config.name == "event_test")
|
| 330 |
+
):
|
| 331 |
+
|
| 332 |
+
waveform = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
| 333 |
+
phase_type = []
|
| 334 |
+
phase_time = []
|
| 335 |
+
phase_index = []
|
| 336 |
+
phase_polarity = []
|
| 337 |
+
station_location = []
|
| 338 |
+
|
| 339 |
+
for i, station_id in enumerate(station_ids):
|
| 340 |
+
waveform[i, :, : self.nt] = event[station_id][:, : self.nt]
|
| 341 |
+
attrs = event[station_id].attrs
|
| 342 |
+
phase_type.append(list(attrs["phase_type"]))
|
| 343 |
+
phase_time.append(list(attrs["phase_time"]))
|
| 344 |
+
phase_index.append(list(attrs["phase_index"]))
|
| 345 |
+
phase_polarity.append(list(attrs["phase_polarity"]))
|
| 346 |
+
station_location.append(
|
| 347 |
+
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
| 348 |
+
)
|
| 349 |
+
yield event_id, {
|
| 350 |
+
"event_id": event_id,
|
| 351 |
+
"waveform": waveform,
|
| 352 |
+
"phase_time": phase_time,
|
| 353 |
+
"phase_index": phase_index,
|
| 354 |
+
"phase_type": phase_type,
|
| 355 |
+
"phase_polarity": phase_polarity,
|
| 356 |
+
"begin_time": begin_time,
|
| 357 |
+
"end_time": end_time,
|
| 358 |
+
"event_time": event_time,
|
| 359 |
+
"event_time_index": event_time_index,
|
| 360 |
+
"event_location": event_location,
|
| 361 |
+
"station_location": station_location,
|
| 362 |
+
}
|
upload.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi
|
| 2 |
+
|
| 3 |
+
api = HfApi()
|
| 4 |
+
|
| 5 |
+
# Upload all the content from the local folder to your remote Space.
|
| 6 |
+
# By default, files are uploaded at the root of the repo
|
| 7 |
+
api.upload_folder(
|
| 8 |
+
folder_path="./",
|
| 9 |
+
repo_id="AI4EPS/quakeflow_nc",
|
| 10 |
+
repo_type="space",
|
| 11 |
+
)
|