Datasets:
ArXiv:
DOI:
License:
| # %% | |
| import datasets | |
| import numpy as np | |
| from torch.utils.data import DataLoader | |
| quakeflow_nc = datasets.load_dataset( | |
| "AI4EPS/quakeflow_nc", | |
| name="station", | |
| split="train", | |
| # name="station_test", | |
| # split="test", | |
| # download_mode="force_redownload", | |
| trust_remote_code=True, | |
| num_proc=36, | |
| ) | |
| # quakeflow_nc = datasets.load_dataset( | |
| # "./quakeflow_nc.py", | |
| # name="station", | |
| # split="train", | |
| # # name="statoin_test", | |
| # # split="test", | |
| # num_proc=36, | |
| # ) | |
| print(quakeflow_nc) | |
| # print the first sample of the iterable dataset | |
| for example in quakeflow_nc: | |
| print("\nIterable dataset\n") | |
| print(example) | |
| print(example.keys()) | |
| for key in example.keys(): | |
| if key == "waveform": | |
| print(key, np.array(example[key]).shape) | |
| else: | |
| print(key, example[key]) | |
| break | |
| # %% | |
| quakeflow_nc = quakeflow_nc.with_format("torch") | |
| dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x) | |
| for batch in dataloader: | |
| print("\nDataloader dataset\n") | |
| print(f"Batch size: {len(batch)}") | |
| print(batch[0].keys()) | |
| for key in batch[0].keys(): | |
| if key == "waveform": | |
| print(key, np.array(batch[0][key]).shape) | |
| else: | |
| print(key, batch[0][key]) | |
| break | |
| # %% | |