SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dataera2013/mt-1")
# Run inference
sentences = [
'What are some reasons why better informed people have chosen to avoid using LLMs?',
'There’s a flipside to this too: a lot of better informed people have sworn off LLMs entirely because they can’t see how anyone could benefit from a tool with so many flaws. The key skill in getting the most out of LLMs is learning to work with tech that is both inherently unreliable and incredibly powerful at the same time. This is a decidedly non-obvious skill to acquire!\nThere is so much space for helpful education content here, but we need to do do a lot better than outsourcing it all to AI grifters with bombastic Twitter threads.\nKnowledge is incredibly unevenly distributed\nMost people have heard of ChatGPT by now. How many have heard of Claude?',
'The year of slop\n2024 was the year that the word "slop" became a term of art. I wrote about this in May, expanding on this tweet by @deepfates:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7581 |
cosine_accuracy@3 | 0.9677 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.7581 |
cosine_precision@3 | 0.3226 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.7581 |
cosine_recall@3 | 0.9677 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.8958 |
cosine_mrr@10 | 0.8602 |
cosine_map@100 | 0.8602 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 200 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 200 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 20.32 tokens
- max: 36 tokens
- min: 43 tokens
- mean: 134.92 tokens
- max: 214 tokens
- Samples:
sentence_0 sentence_1 What is the new name for unwanted AI-generated content mentioned in May?
17th: AI for Data Journalism: demonstrating what we can do with this stuff right now
22nd: Options for accessing Llama 3 from the terminal using LLM
May
8th: Slop is the new name for unwanted AI-generated content
15th: ChatGPT in “4o” mode is not running the new features yet
29th: Training is not the same as chatting: ChatGPT and other LLMs don’t remember everything you say
June
6th: Accidental prompt injection against RAG applications
10th: Thoughts on the WWDC 2024 keynote on Apple Intelligence
17th: Language models on the command-line
21st: Building search-based RAG using Claude, Datasette and Val Town
27th: Open challenges for AI engineering
July
14th: Imitation Intelligence, my keynote for PyCon US 2024What are the options for accessing Llama 3 from the terminal?
17th: AI for Data Journalism: demonstrating what we can do with this stuff right now
22nd: Options for accessing Llama 3 from the terminal using LLM
May
8th: Slop is the new name for unwanted AI-generated content
15th: ChatGPT in “4o” mode is not running the new features yet
29th: Training is not the same as chatting: ChatGPT and other LLMs don’t remember everything you say
June
6th: Accidental prompt injection against RAG applications
10th: Thoughts on the WWDC 2024 keynote on Apple Intelligence
17th: Language models on the command-line
21st: Building search-based RAG using Claude, Datasette and Val Town
27th: Open challenges for AI engineering
July
14th: Imitation Intelligence, my keynote for PyCon US 2024What is the name of the model that the author runs on their iPhone?
I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model) on my iPhone. You can install several different apps to get your own, local, completely private LLM. My own LLM project provides a CLI tool for running an array of different models via plugins.
You can even run them entirely in your browser using WebAssembly and the latest Chrome!
Hobbyists can build their own fine-tuned models
I said earlier that building an LLM was still out of reach of hobbyists. That may be true for training from scratch, but fine-tuning one of those models is another matter entirely. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 20 | 0.9008 |
2.0 | 40 | 0.9190 |
2.5 | 50 | 0.9050 |
3.0 | 60 | 0.9050 |
4.0 | 80 | 0.8990 |
5.0 | 100 | 0.9109 |
6.0 | 120 | 0.9029 |
7.0 | 140 | 0.9018 |
7.5 | 150 | 0.9029 |
8.0 | 160 | 0.9029 |
9.0 | 180 | 0.8958 |
10.0 | 200 | 0.8958 |
Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dataera2013/mt-1
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.758
- Cosine Accuracy@3 on Unknownself-reported0.968
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.758
- Cosine Precision@3 on Unknownself-reported0.323
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.758
- Cosine Recall@3 on Unknownself-reported0.968