Loading Model and Tokenizer:


base_model_id = "NousResearch/Meta-Llama-3-8B"
new_model_id = "dasanindya15/llama3-8b_qlora_Cladder_v1"

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel
from transformers import BitsAndBytesConfig

# Load the entire model on the GPU 0
device_map = {"": 0}

# Reload model in FP16 and merge it with LoRA weights
# specify the quantize the model
quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(base_model_id,
                                             quantization_config=quantization_config,
                                             device_map=device_map)
model = PeftModel.from_pretrained(base_model, new_model_id)

# Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"


license: mit datasets: - dasanindya15/Cladder_v1 pipeline_tag: text-classification

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train dasanindya15/llama3-8b_qlora_Cladder_v1